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Channels That Heat Up
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Abstract—This paper considers an additive noise channel where
the time-� noise variance is a weighted sum of the squared magni-
tudes of the previous channel inputs plus a constant. This channel
model accounts for the dependence of the intrinsic thermal noise
on the data due to the heat dissipation associated with the trans-
mission of data in electronic circuits: the data determine the trans-
mitted signal, which in turn heats up the circuit and thus influences
the power of the thermal noise.

The capacity of this channel (both with and without feedback)
is studied at low transmit powers and at high transmit powers. At
low transmit powers, the slope of the capacity-versus-power curve
at zero is computed and it is shown that the heating-up effect is ben-
eficial. At high transmit powers, conditions are determined under
which the capacity is bounded, i.e., under which the capacity does
not grow to infinity as the allowed average power tends to infinity.

Index Terms—Capacity per unit cost, channel capacity, channels
with memory, high signal-to-noise ratio (SNR), on-chip communi-
cation.

I. INTRODUCTION

H EATING in electronics is strongly related to perfor-
mance limitation, aging, and reliability issues. High

performance-density and small physical size make heating
important and challenging to address. This is reinforced by the
trend of modern (micro-)electronics technology to pack more
and faster operations within the smallest possible physical area
in order to increase performance, reduce cost and size, and
therefore expand the potential applications of the product and
make it more profitable.

Electrical power dissipation into heat raises the local temper-
ature of the circuit, so the temperature depends on the circuit
activity. The raised temperature results in higher intrinsic noise
in the circuit which in turn reduces its effective communication
and computation capacity. This “negative” performance feed-
back is expected to become an important issue in the years to
come [1]–[3].

This work aims to add this dimension to our understanding
of the coupling mechanism between communication and com-
putation performance and heating. To this end, a class of com-
munication channels, whose noise power depends dynamically
on their activity, is introduced and studied.
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To motivate the mathematical development of this new class
of channels we first discuss the underlying physical mecha-
nism that connects circuit activity with power consumption and
heating. Heating is unavoidable in electronic circuits since they
convert part of the power they draw from the power supply net-
work (and other circuits they are connected to) into heat.

Every circuit is a three-dimensional object embedded inside
the substrate and the surrounding packaging material. It gener-
ates heat, in a distributed manner, that is diffused according to
the heat diffusion equation

(1)

Here is the volumetric heat capacity of the material, is the
point temperature, is the thermal conductivity, and is the heat
flux generated by the distributed conversion of electrical power
into heat [4], [5]. (If other heat sources exist in the volume of the
circuit, they should be included in the heat diffusion equation as
well.)

In many cases, (1) can be simplified to the corresponding or-
dinary differential equation (2) providing a lumped model of the
thermal dynamics

(2)

Here is the lumped heat capacity of the circuit (partially in-
cluding the substrate and packaging), is the thermal resis-
tance between the circuit and the external heat-sinking environ-
ment (e.g., the air) whose temperature is , and is the in-
stantaneous electrical power in the circuit that is converted into
heat.

Assuming that the environmental temperature is fixed and
that , the solution of (2) is given by

(3)

Now suppose that our circuit operates according to a refer-
ence clock of period , i.e., it transmits an output value
at the beginning of every clock period . (Here
denotes the set of real numbers, and denotes the set of posi-
tive integers.) Further assume that the part of the electrical en-
ergy converted into heat due to the transmission of is (pro-
portional to) —a typical case in circuits when is voltage
or current. Then (3) can be approximated by its discrete version

(4)

By defining
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(4) becomes

(5)

Equation (5) describes the relation between the local temper-
ature of the electronic circuit and the circuit activity. Note that
(5), being a general discrete-time convolution, also captures dis-
cretized versions of higher order lumped approximations of the
diffusion equation (1). It therefore represents a general model of
the circuit-heating process, despite the simplifying assumptions
used in its derivation.

Every electronic circuit has some intrinsically generated
noise, which is added to the signal and degrades its quality.
In wideband circuits, the dominant type of noise is typically
thermal noise [6]–[8]. Thermal noise is stationary Gaussian,
and in most applications it can be considered white within the
bandwidth of interest. The variance of the thermal noise
follows the Johnson–Nyquist formula

(6)

where is the circuit’s bandwidth, is the absolute tempera-
ture of the circuit, and is a proportionality constant.

Applying (5) to (6), and assuming that the intrinsic noise is
only additive, yields a channel model where the variance of
the additive noise is determined by the history of the power of
the transmitted signal, i.e.,

(7)

where and are discussed in more detail in Section II
(proportionality constants like are incorporated into the pa-
rameters and ).

While in today’s microelectronics technology the increase
in thermal noise due to data transmission is often marginal
compared to the signal power and can therefore be neglected,
there are scenarios where the thermal coupling of data and
noise becomes significant. For example, consider a commu-
nication system where the transmission of data is assisted by
a repeater, which receives the transmitted signal, amplifies it,
and retransmits it. The signal at the repeater’s input is typically
corrupted by thermal noise, which is then amplified together
with the signal. When the repeater is a monolithic circuit, the
temperature of the repeater’s receiving end (input)—and hence
also the variance of the thermal noise—depends on the power of
the signal sent out by the repeater’s transmitting end (output),
which in turn depends on the power of the signal sent out by
the transmitter. Since the signal power at the repeater’s output
is much larger than that at the repeater’s input, the increase in
thermal noise due to retransmission of data can be significant
compared to the repeater’s input-signal power.

We also expect that the above channel model will be rele-
vant to the next generation of nanoscale electronic technologies
based on silicon or biological substrates [3], [9], as well as to
the interface between nanocircuits and conventional microelec-
tronics [10].

Fig. 1. A schema of the communication system.

The rest of this paper is organized as follows. Section II de-
scribes the channel model in more detail. Section III discusses
channel capacity and lists some important properties thereof.
Section IV presents our main results. Sections V and VI pro-
vide the proofs of these results. Section VII concludes with a
summary and a discussion of our results.

II. CHANNEL MODEL

We consider the communication system depicted in Fig. 1.
We assume that the message is uniformly distributed over the
set for some positive integer . The en-
coder maps the message to the length- sequence ,
where is called the blocklength. In the absence of feedback,
the sequence is a function of the message , i.e.,

for some mapping . Here stands for
. If there is a feedback link, then

is not only a function of the message but also of the past
channel output symbols , i.e., for
some mapping . The receiver guesses the
transmitted message based on the -channel output symbols

, i.e., for some mapping .
Conditional on , the

time- channel output is given by

(8)

where is a zero-mean, unit-variance, stationary, weakly
mixing random process, drawn independently of , and being
of finite fourth moment and of finite differential entropy rate,
i.e.,

and (9)

See [11] for a definition of weak mixing. For example,
could be a stationary ergodic Gaussian process [12] (see also
[13, Sec. II]). In particular, the case of most interest is when

are independent and identically distributed (i.i.d.), zero-
mean, unit-variance, Gaussian random variables, and the reader
is encouraged to focus on this case.

The parameter is assumed to be positive. It accounts for
the temperature of the device when the transmitter is silent. The
coefficients are nonnegative and bounded, i.e.,

and (10)

They characterize the dissipation of the heat produced by trans-
mitting message . (It seems reasonable to assume that the se-
quence is monotonically nonincreasing, i.e., for



3596 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 8, AUGUST 2009

. This assumption is, however, not required for the results
that are derived in this paper.)

An example of a heat dissipation profile that satisfies (10) is
the geometric heat dissipation profile where is a geometric
sequence, i.e.,

(11)

for some .
The heat dissipation depends inter alia on the efficiency of

the heat sink that is employed in order to absorb the produced
heat. In the above example (11), the heat sink’s efficiency is
described by the parameter : the smaller , the more efficient
the heat sink. In general, an efficient heat sink is modeled by a
heat dissipation profile for which the sequence decays fast.

We study the above channel under an average-power con-
straint on the inputs, i.e., the mappings (without feedback)
and (with feedback) are chosen so that—aver-
aged over the message and channel outputs —the se-
quence satisfies

(12)

and we define the signal-to-noise ratio (SNR) as

(13)

Note 1: The results presented in this paper do not change
when (12) is replaced by a per-message average-power con-
straint, i.e., when the mappings and are
chosen so that, for each message and for any given
sequence of output symbols , the sequence satisfies

(14)

Indeed, all achievability results (which are based on schemes
that ignore the feedback) are derived under (14), whereas all
converse results are derived under (12). Since all mappings
and that satisfy (14) also satisfy (12), this implies
that the achievability results as well as the converse results de-
rived in this paper hold irrespective of whether constraint (12)
or (14) is imposed.

The channel (8) is reminiscent of a multipath fading channel,
when the transmitter and the receiver are not aware of the real-
ization of the fading but only of its statistics (noncoherent set-
ting). In fact, some of the techniques used this work can be ex-
tended to study the high-SNR asymptotic behavior of the ca-
pacity of such channels [14]. For more studies of noncoherent
fading channels at high SNR see, e.g., [15]–[17].

III. CHANNEL CAPACITY

A rate (in nats per channel use) is said to be achievable
if for every there exist sequences of mappings
(without feedback) or (with feedback)
and such that for each

(where denotes the natural logarithm function), and such
that the error probability tends to zero as goes
to infinity. The capacity is the supremum of all achievable rates.
We denote by the capacity under the input constraint
(12) when there is no feedback, and we add the subscript “FB”
to indicate that there is a feedback link. Clearly

(15)

as we can always ignore the feedback.
In the absence of feedback, the information capacity is de-

fined as

(16)

where the supremum is over all joint distributions on
satisfying (12). Here we denote by the

limit inferior; likewise, we shall denote the limit superior by
. When there is a feedback link, we define the information

capacity as

(17)

where the supremum is over all mappings satis-
fying (12). By Fano’s inequality [18, Theorem 2.11.1] we have

(18)

and

(19)

See [19] for conditions that guarantee that is
achievable. Note that the channel (8) is not stationary1 since the
variance of the additive noise depends on the time-index . It is
therefore prima facie not clear whether the inequalities in (18)
and (19) hold with equality.

In this paper, we shall investigate the capacities and
at low and high SNR. To study capacity at low SNR,

we compute the capacities per unit cost defined as [20]

(20)

and

(21)

It will become apparent later that the suprema in (20) and (21)
are attained when SNR tends to zero. Note that (15) implies

(22)

At high SNR, we study conditions under which the capacity is
unbounded in the SNR. Notice that when the allowed transmit
power is large, there is a tradeoff between optimizing the present
transmission and minimizing the interference to future trans-
missions. Indeed, increasing the transmission power may help
to overcome the present ambient noise, but it also heats up the
chip and thus increases the noise variance in future receptions.

1By a stationary channel we mean a channel where for any stationary se-
quence of channel inputs �� � and corresponding channel outputs �� �, the
pair ��� �� �� is jointly stationary.
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We shall see that, as we increase the allowed transmit power, the
capacity does not necessarily tend to infinity.

IV. MAIN RESULTS

Our main results are presented in the following two sections.
Section IV-A focuses on capacity at low SNR and presents our
results on the capacity per unit cost. Section IV-B provides a
sufficient condition and a necessary condition on under
which the capacity is bounded in the SNR.

A. Capacity Per Unit Cost

The results presented in this subsection hold under the addi-
tional assumptions that is i.i.d. and that

(23)

To shorten notation, we denote this sum by , i.e.,

(24)

Proposition 1: Consider the above channel model, and as-
sume additionally that the sequence satisfies (23) and that

is i.i.d. Then

(25)

where denotes the capacity of the channel

which is a special case of (8) for .
Proof: See Appendix A.

For , (8) describes a channel with an ideal heat sink
or, equivalently, a channel that does not heat up. Proposition 1
thus demonstrates that the heating up can only increase the in-
formation capacity per unit cost. In other words, at low SNR,
the heating-up effect is not harmful.

For Gaussian noise, i.e., when is a sequence of i.i.d.,
zero-mean, unit-variance, Gaussian random variables, the
heating-up effect is beneficial.

Theorem 2: Consider the above channel model. Assume ad-
ditionally that the sequence satisfies (23) and that is
a sequence of i.i.d., zero-mean, unit-variance, Gaussian random
variables. Then, irrespective of whether feedback is available or
not

(26)

Proof: See Section V.

For example, for the geometric heat dissipation profile (11)
we obtain from Theorem 2

(27)

Thus the capacity per unit cost is monotonically decreasing in .
The above result might be counterintuitive, because it sug-

gests not to use heat sinks at low SNR. Nevertheless, it can

be heuristically explained by noting that the heating-up effect
increases the channel gain.2 Indeed, if we split up the channel
output

into a data-dependent part

and a data-independent part (with being a sequence
of i.i.d., zero-mean, variance- , Gaussian random variables
drawn independently of ), then the channel gain
for (8) is given by

(28)

where the supremum is over all joint distributions on
satisfying (12). Thus, in view of (28), Theorem 2

demonstrates that the capacity per unit cost is determined by
the channel gain . This result is not specific to (8) but has
also been observed for other channel models. For example, the
same is true for fading channels whenever the additive noise is
Gaussian [21], [22].

B. Conditions for Bounded Capacity

While at low SNR the heating-up effect is beneficial, at high
SNR it is detrimental. In fact, it turns out that the capacity can
be even bounded in the SNR, i.e., the capacity does not tend to
infinity as the SNR tends to infinity. The following theorem pro-
vides a sufficient condition and a necessary condition on
for the capacity to be bounded. Note that the results presented
in this section do not require the additional assumptions made
in Section IV-A: we neither assume that the sequence sat-
isfies (23) nor that is i.i.d.

Theorem 3: Consider the channel model described in Sec-
tion II. Then

(i) (29)

(ii) (30)

where we define for every and .
Proof: See Section VI.

For example, for the geometric heat dissipation (11) we have

2The channel gain is given by the ratio of the “desired” power at the channel
output to the “desired” power at the channel input.
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and it follows from Theorem 3 that the capacity is bounded. On
the other hand, for a supergeometric heat dissipation, i.e., when

for some and , we obtain

and Theorem 3 implies that the capacity is unbounded. Roughly
speaking, we can say that when the sequence of coefficients

decays not faster than geometrically, the capacity is
bounded in the SNR, and when the sequence of coefficients

decays faster than geometrically, the capacity is un-
bounded in the SNR.

Note 2: For Part (i) of Theorem 3, the assumptions that the
process is weakly mixing and that it has a finite fourth
moment are not needed. These assumptions are only needed for
Lemma 5 in the proof of Part (ii). In Part (ii) of Theorem 3, the
condition on the left-hand side (LHS) of (30) can be replaced by

(31)

This condition (31) is weaker than the original condition (30)
because

If neither the LHS of (29) nor the LHS of (30) holds, i.e.,

and (32)

then the capacity can be bounded or unbounded. Example 1
gives a sequence satisfying (32) for which the capacity is
bounded, and Example 2 provides a sequence satisfying
(32) for which the capacity is unbounded. (These sequences

are not monotonically decreasing in . Consequently, Ex-
amples 1 and 2 are rather of mathematical than of practical
interest. Nevertheless, they show that when neither condition
of Theorem 3 is satisfied, one can construct simple examples
yielding a bounded capacity or an unbounded capacity, thus
demonstrating the difficulty of finding conditions that are nec-
essary and sufficient for the capacity to be bounded.)

Example 1: Consider the sequence where all co-
efficients with an even index are equal to , and where all
coefficients with an odd index are . It satisfies (32) because

and . Then the
time- channel output corresponding to the channel inputs

is given by

where denotes the floor function. Thus, at even times
the output only depends on the “even” in-
puts , while at odd times the output

only depends on the “odd” inputs
. (Here denotes the set of non-

negative integers.) By proceeding along the lines of the proof
of Part (i) of Theorem 3 while choosing in (62) ,
it can be shown that the capacity of this channel is bounded.
(Intuitively, the channel can be viewed as consisting of two
parallel channels, one connecting the inputs and outputs at even
times, and the other connecting the inputs and outputs at odd
times. By Theorem 3, the capacity of both parallel channels is
bounded, and it is therefore plausible that the capacity of the
original channel is bounded as well.)

Example 2: Consider the sequence where all coeffi-
cients with an even positive index are , and where all other
coefficients are . (Again, we have and

.) In this case the time- channel output
corresponding to is given by

Using Gaussian inputs of power at even times while setting
the inputs to be zero at odd times, and measuring the channel
outputs only at even times, reduces the channel to a memory-
less additive noise channel and demonstrates (using the result
of [23]) the achievability of

which is unbounded in the SNR.

The two seemingly similar examples thus lead to completely
different capacity results. The crucial difference between Ex-
ample 1 and Example 2 is that in the former example, at even
times the interference is caused by the past channel inputs at
even times, whereas in the latter example, at even times the in-
terference is caused by the past channel inputs at odd times.
Thus, in Example 2, setting all “odd” inputs to zero cancels (at
even times) the interference from past channel inputs and hence
transforms the channel into an additive noise channel whose ca-
pacity is unbounded. Evidently, this approach does not work for
Example 1.

V. PROOF OF THEOREM 2

In Section V-A, we derive an upper bound on the feedback ca-
pacity , and in Section V-B we derive a lower bound
on the capacity in the absence of feedback. These
bounds are used in Section V-C to derive an upper bound on

and a lower bound on , which are then both shown
to be equal to . Together with (22) this proves The-
orem 2.

A. Converse

The upper bound on is based on (19) and on an
upper bound on . We have
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(33)

where the first step follows from the chain rule for mutual in-
formation [18, Theorem 2.5.2]; the second step follows because

is a function of and ; and the last step follows from
the behavior of differential entropy under translation and scaling
[18, Theorems 9.6.3 and 9.6.4], and because is independent
of .

Evaluating the differential entropy of a Gaussian
random variable, and using the trivial lower bound

we obtain the final upper bound

(34)

where we define . Here, the second step follows because
conditioning cannot increase entropy and from the entropy max-
imizing property of Gaussian random variables [18, Theorem
9.6.5]; the third step follows from Jensen’s inequality; the fourth
step by rewriting the double sum; the fifth step follows because
the coefficients are nonnegative which implies that

and the last step follows from the power constraint (12).

B. Direct Part

As mentioned earlier, the above channel (8) is not stationary,
and it is therefore prima facie not clear whether
is achievable. We shall sidestep this problem by studying the
capacity of a different channel whose time- channel output

is, conditional on the sequence , given
by

(35)

where and are defined in Section II. This channel has
the advantage that it is stationary and ergodic in the sense that
when is a stationary ergodic process, the pair
is jointly stationary ergodic. It follows that if the sequences

and are independent
of each other, and if the random variables
are bounded, then any rate that can be achieved over this new
channel is also achievable over the original channel. Indeed, the
original channel (8) can be converted into (35) by adding

to the channel output (where is a sequence of i.i.d.,
zero-mean, unit-variance, Gaussian random variables drawn in-
dependently of ),3 and since the independence of

and ensures that the
sequence is independent of the message , it fol-
lows that any rate achievable over (35) can be achieved over (8)
by using a receiver that generates and then guesses

based on .4

We shall consider channel inputs that are blockwise
i.i.d. in blocks of symbols (for some ). Thus, denoting

(where denotes the trans-
pose), is a sequence of i.i.d. random length- vectors with

taking on the value with probability and
with probability , for some . Note that to

satisfy the average-power constraint (12) we shall choose and
so that

(36)

Let . Noting that the pair
is jointly stationary ergodic, it follows from [19]

that the rate

is achievable over the new channel (35) and thus yields a lower
bound on the capacity of the original channel (8). We
have

3The boundedness of the random variables � � � � ����� � � � guarantees
that � � is finite for any realization of �� � � � ����� � � ��.

4This approach is specific to the case where �� � is a Gaussian process.
Indeed, it relies heavily on the fact that, given �� � � �� �, the additive
noise term on the right-hand side (RHS) of (35) can be written as the sum of
two independent random variables, where one random variable depends only
on �� � � � ����� � � ��, and where the other random variable depends only
on �� � � � �� �� � � ��. This certainly holds for Gaussian random variables,
but it does not necessarily hold for other distributions on �� �.
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(37)

where we use the chain rule and the nonnegativity of mutual
information. It is shown in Appendix B that

(38)

This together with a Cesáro-type theorem [18, Theorem 4.2.3]
yields

(39)

where the first step follows by the stationarity of ,
which implies that does not depend on , and
by noting that .

We proceed to analyze for a given
sequence . Making use of the canonical decom-
position of mutual information (e.g., [20, eq. (10)]), we have

(40)

where the first step follows because, for our choice of input dis-
tribution, and hence conveys as much
information about as . Here denotes relative en-
tropy, i.e.,

if

otherwise

denotes the distribution of ; and
and denote the distributions of

conditional on the inputs
and , respectively.

Thus, is the law of an -variate Gaussian

random vector of mean and of diagonal covari-
ance matrix with diagonal entries

is the law of an -variate, zero-mean, Gaussian

random vector of diagonal covariance matrix with diag-

onal entries

and is given by

In order to evaluate the first term on the RHS of (40), we note
that the relative entropy of two real, -variate Gaussian random
vectors of means and and of covariance matrices and

is given by

(41)

where and denote the determinant and the trace,
and where denotes the identity matrix.

Let denote the second

term on the RHS of (40) averaged over , i.e.,

Then using (41) and (40) and taking expectations over ,
we obtain, again defining ,
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(42)

where the second step follows from the lower bound
(which follows by applying

Jensen’s inequality to the convex function
), and from the upper bound

and the third step follows from (36) and by upper-bounding
. The final lower bound follows now

by (42) and (39)

(43)

and by recalling that

(44)

C. Asymptotic Analysis

We start with analyzing the upper bound (34). Using that
for we have

(45)

and we thus obtain

(46)

In order to derive a lower bound on we note that

(47)

and proceed by analyzing the limiting ratio of the lower bound
(43) to SNR as SNR tends to zero. To this end, we first show
that

(48)

We recall that for any pair of distributions and satisfying
[20, p. 1023]

(49)

Thus, for any , (49) together with
implies that

(50)

In order to show that this also holds when

is averaged over , we derive in the following the uniform
upper bound

(51)

The claim (48) follows then by upper-bounding

and by (50).
To prove (51) we use that every Gaussian random vector can

be expressed as the sum of two independent Gaussian random
vectors to write the channel output as

(52)

where, conditional on and are -variate,
zero-mean Gaussian random vectors, drawn independently of
each other and having the respective diagonal covariance ma-
trices and whose diagonal entries are given by

and

Thus, is the portion of the noise due to , and is the
portion of the noise that remains after subtracting . Note that

and are independent of each other because is,
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by construction, independent of . The upper bound (51)
follows now by

(53)

where and denote
the distributions of conditional on the inputs

and on , respectively;
denotes the unconditional distribution of ; and

denotes the distribution of conditional
on . Here, the inequality follows by the data processing
inequality for relative entropy [18, Section 2.9] and by noting
that is independent of .

Returning to the analysis of (43), we obtain from (43) and (47)

(54)

By letting first go to infinity while holding fixed, and by
letting then go to infinity, we obtain the desired lower bound

(55)

Thus, (55), (22), and (46) yield

(56)

which proves Theorem 2.

VI. PROOF OF THEOREM 3

A. Part (i)

In order to show that

(57)

implies that the feedback capacity is bounded, we
derive an upper bound on the capacity that is based on (19) and
on an upper bound on . Again, we define .

We first note that, according to (57), we can find an
and a such that

and (58)

We continue with the chain rule for mutual information

(59)

Each summand in the first sum on the RHS of (59) is upper-
bounded by

(60)

Recall that is finite (10). Here, the first step
follows because conditioning cannot increase entropy; the
second step follows because is a function of

, from the behavior of entropy under translation and
scaling [18, Theorems 9.6.3 and 9.6.4], and from the fact that,
conditional on , the random variable is independent
of ; the third step follows from the entropy
maximizing property of Gaussian random variables and by
lower-bounding ; the
fourth step follows by upper-bounding each coefficient
by the supremum of ; the fifth step follows from
the power constraint (12); and the last step follows because
conditioning cannot increase entropy.

The summands in the second sum on the RHS of (59) are
upper-bounded using the general upper bound for mutual infor-
mation [15, Theorem 5.1]

(61)

where is the channel law, is the distribution on
the channel input , and is any distribution on the output
alphabet. Thus, any choice of output distribution yields an
upper bound on the mutual information.
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For each , we upper-bound the condi-
tional mutual information for a given

by choosing to be a Cauchy distribution
whose density is given by

(62)

where we choose with

where and are given by (58).5 Note that (58)
together with (10) implies that

and (63)

Applying (62) to (61) yields

(64)

and we thus obtain, averaging over

(65)

We evaluate the terms on the RHS of (65) individually. We
begin with

(66)

where we use the same arguments as in the second step in (60).
The next term is upper-bounded by

5When � � �, with this choice of � the density of the Cauchy dis-
tribution (62) is undefined. However, this event is of zero probability and has
therefore no impact on the mutual information ��� �� �� �.

(67)

where we define, for a given

(68)

Here, the second step in (67) follows from Jensen’s inequality,
and the last step follows from (63). Similarly, we use Jensen’s
inequality along with (63) to upper-bound

(69)

In order to lower-bound we need the following
lemma.

Lemma 4: Let be a random variable of density
. Then for any and

(70)

where is if the statement is true and otherwise;
is defined as

(71)

and where tends to zero as .
Proof: See [15, Lemma 6.7].

We write the expectation as

and lower-bound the conditional expectation for a given

(72)
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(73)

for some and . Here, the inequality follows
by splitting the conditional expectation into the two expectations
given in (73) at the top of the page, and by upper-bounding then
the first expectation on the RHS of (73) using Lemma 4 and
the second expectation by . Averaging (72) over
yields

(74)

Note that the fact that is of unit variance together with
[15, Lemma 6.4] implies that is finite.

Turning back to the upper bound (65), we obtain from (66),
(67), (69), and (74)

(75)

where

is a finite constant. The last step in (75) follows because we have
with probability one . Note
that does not depend on since the process is stationary.

Turning back to the evaluation of the second sum on the RHS
of (59), we use that, for any sequences and

(76)

Defining

(77)

and

(78)

we have for the first sum on the RHS of (76)

(79)

which follows by lower-bounding the denominator by , and
by using then Jensen’s inequality together with the last two steps
in (60). For the second sum on the RHS of (76) we have

(80)

where the second step follows by adding to the expectation
and by upper-bounding then and (63);
and the third step follows because we have with probability one

We combine now (75), (76), (79), and (80) to upper-bound
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(81)

which together with (59) and (60) yields

(82)

This converges to as we let tend to infinity, thus
proving that implies that the capacity

is bounded in the SNR.

B. Part (ii)

We show that

(83)

implies that the capacity is unbounded in the SNR.
Part (ii) of Theorem 3 follows then by noting that

We prove the claim by proposing a coding scheme that
achieves an unbounded rate. We first note that (83) implies that
for any we can find an such that

(84)

If there exists an such that , , then we can
achieve the (unbounded) rate

by a coding scheme where is a sequence
of i.i.d., zero-mean, Gaussian random variables of variance ,
and where the other inputs are deterministically zero. Indeed,
by waiting time-steps, the chip’s temperature cools down to
the ambient one, so the noise variance is independent of the pre-
vious channel inputs and we can achieve—after appropriate nor-
malization—the capacity of the additive white Gaussian noise
(AWGN) channel [23].

For the more general case (84) we propose the following en-
coding and decoding scheme. Let denote the
codeword sent out by the transmitter that corresponds to the
message . We choose some and generate the
components in-
dependently of each other according to a zero-mean Gaussian
law of variance . The other components are set to zero. (It fol-
lows from the weak law of large numbers that
converges to in probability as tends to infinity. This
guarantees that the probability that a codeword does not satisfy
the per-message power constraint (14)—and hence also the av-
erage-power constraint (12)—vanishes as tends to infinity.)

The receiver uses a nearest neighbor decoder in order to guess
based on the received sequence of channel outputs . Thus,

it computes for each and decides on
the message that satisfies

(85)

where ties are resolved with a fair coin flip. Here denotes
the Euclidean norm, and and denote the vectors

and

We are interested in the average probability of error
, averaged over all codewords in the codebook, and averaged

over all codebooks. By the symmetry of the codebook construc-
tion, the probability of error corresponding to the th message

does not depend on , and we thus
conclude that

We further note that

(86)

where

...

which is, conditional on , equal to . In order
to analyze (86) we need the following lemma.

Lemma 5: Consider the channel described in Section II,
and assume that satisfies (83). Further assume that

is a sequence of i.i.d., zero-mean,
Gaussian random variables of variance , and that for

. (Here denotes the remainder upon
dividing by ). Let the set be defined as

(87)

where we define

(88)

Then

(89)

for any .
Proof: See Appendix C.
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In order to upper-bound the RHS of (86) we proceed along the
lines of [23], [22]. Using that, by the symmetry of the codebook
construction, the law of does not depend on , and using
that the codewords are independent of each other so, conditional
on , the distribution of does not
depend on , we obtain

(90)

It follows from Lemma 5 that the first term on the RHS of (90)
vanishes as tends to infinity. To evaluate the second term on
the RHS of (90), we note that by the union of events bound

(91)

By upper-bounding

by lower-bounding

and by applying Chernoff’s bound [24, Section 5.4], we obtain
for each and for any

(92)

Applying (91) and (92) to (90), it follows that

tends to zero as tends to infinity if for some the rate
satisfies

(93)

Hence, by choosing , it follows that any rate
below

is achievable. As tends to infinity this converges to

(94)

It remains to show that given (84) we can make
arbitrarily large. Indeed, (84) implies that

and the RHS of (94) can therefore be further lower-bounded by

Letting tend to infinity yields that we can achieve any rate
below

Since this can be made arbitrarily large by choosing suffi-
ciently small, we conclude that implies
that the capacity is unbounded.

VII. CONCLUSION

We studied a model for on-chip communication with nonideal
heat sinks. To account for the heating-up effect, we proposed
a channel model where the variance of the additive noise de-
pends on a weighted sum of the past channel input powers. The
weights are related to the efficiency of the heat sink.

To study the capacity of this channel at low SNR, we com-
puted the capacity per unit cost. We showed that, irrespective
of the distribution on the (i.i.d.) noise sequence , the
heating-up effect is not harmful in the sense that the capacity
per unit cost cannot be smaller than the capacity per unit
cost of the channel with an ideal sink (i.e., for ). We
further showed that if the noise is i.i.d. Gaussian, then
the heating-up effect is even beneficial in the sense that the
capacity per unit cost is larger than the capacity per unit cost
of the channel with an ideal heat sink. This suggests that at low
SNR no heat sinks should be used. (Of course, there may be
other reasons to use heat sinks.) Studying capacity at high SNR,
we derived a sufficient condition and a necessary condition
for the capacity to be bounded in the SNR. We showed that if

decays not faster than geometrically, then the capacity is
bounded in the SNR. On the other hand, if decays faster
than geometrically, then the capacity is unbounded in the SNR.
This result demonstrates the importance of an efficient heat
sink at high SNR.
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APPENDIX A
PROOF OF PROPOSITION 1

We first note that by the expression of the capacity per unit
cost of a memoryless channel [20] we have

(95)
where denotes the channel law of the channel

(96)

Thus, to prove Proposition 1 it suffices to show that

We shall obtain this result by deriving a lower bound on
and by computing then its limiting ratio to SNR

as SNR tends to zero.
In order to lower-bound , which we defined in

(16) as

we evaluate for inputs that are block-
wise i.i.d. in blocks of symbols (for some ). Thus,

is a sequence of i.i.d. random
length- vectors with taking on the
value with probability and with prob-
ability , for some . To satisfy the power constraint
(12) we shall choose and such that

(97)

We use the chain rule for mutual information to write

(98)

where the inequality follows because reducing observations
cannot increase mutual information.

Let denote the maximum rate achievable on
(96) using on–off keying with on-symbol and with its cor-
responding probability chosen in order to satisfy the power
constraint , i.e.,

(99)

Notice that is a nonnegative, monotonically
nondecreasing function with . From the strict
concavity of mutual information it follows that

Also, for a fixed , the function is concave
in . Consequently, for some , we have that

is strictly monotonic in and hence
the supremum on the RHS of (99) is attained for

By expressing for a given
as

(where is defined in (68)), and by using that for
the supremum on the RHS of (99) is attained for
, we obtain

(100)

for . Averaging (100) over , and ap-
plying the result to (98), yields

(101)

where the second inequality follows by the monotonicity of
and because we have with probability

one . The lower
bound on follows by letting tend to infinity

(102)

for .
We continue by lower-bounding the information capacity per

unit cost as

(103)
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where in the last step we substitute

Proceeding along the lines of the proof of [20, Theorem 3], it
can be shown that

(104)

and therefore

(105)

Noting that (10) and (23) imply

(106)

we obtain, upon letting tend to infinity

(107)

Maximizing (107) over yields then

(108)
which, in view of (95), proves Proposition 1.

APPENDIX B

We prove that

(109)

Let be defined as

(110)

(111)

We have

(112)

where the second step follows because conditioning cannot in-
crease entropy and because, conditional on , the random
variable is independent of ; the third step fol-
lows from the entropy maximizing property of Gaussian random
variables and because, conditional on , the random vari-
able is Gaussian; the fourth step follows because, with

probability one, ; and the last step fol-

lows because, with probability one, .

By upper-bounding , we obtain

(113)

and (109) follows thus by noting that (23) implies

APPENDIX C
PROOF OF LEMMA 5

We show that for any

(114)

and

(115)

Lemma 5 follows then by the union of events bound.
In order to prove (114) and (115), we first note that

(116)

(117)

and hence, by Cesáro’s mean [18, Theorem 4.2.3]

(118)
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(119)

where was defined in (88) as

Thus, for any and there exists an such that
for all

(120)

(121)

and it follows from the triangle inequality that

(122)

and

(123)

This yields

(124)

and

(125)

where . Here, the last inequalities
in (124) and (125) follow from Chebyshev’s inequality [24,
Section 5.4].

It remains to show that

(126)

and

(127)

We shall prove (126). The proof of (127) follows along the same
lines. We begin by writing the variance as

(128)

where . We evaluate
both terms on the RHS of (128) individually. For the sake of
clarity, we shall omit the details and show only the main steps.
Unless otherwise stated, these steps can be derived in a straight-
forward way using that

i) is a sequence of i.i.d., zero-mean, vari-
ance- , Gaussian random variables;

ii) the fourth moment of a zero-mean, variance- , Gaussian
random variable is given by , and all odd moments are
zero;

iii) for ;
iv) (and hence also ) is a zero-mean,

unit-variance, stationary, weakly mixing random process;
v) and are independent of each other.

For the first sum on the RHS of (128) it suffices to show that
. Indeed, this sum contains only

summands and hence, if , then its ratio
to vanishes as tends to infinity. We have

(129)

where the last step follows by upper-bounding by
and by . Note that (83) implies that

and
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By additionally noting that has a finite fourth moment
(9), it follows that (for any finite )

(130)

In order to show that the second term on the RHS of (128)
vanishes as tends to infinity, we shall evaluate

(131)

We have

(132)

and

(133)

Equations (131), (132), and (133) thus yield

(134)

We continue by summing over

(135)

where the second step follows by substituting and
from the stationarity of .

The first two terms on the RHS of (135) can be
upper-bounded using (84), namely

Indeed, by noting that , this yields

(136)

and

(137)

Applying (136) we can upper-bound the first term on the RHS
of (135) by

(138)

Likewise, applying (137) we can upper-bound the second term
on the RHS of (135) by

(139)

where the first inequality follows from the Cauchy–Schwarz
inequality.
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As for the last term on the RHS of (135), we upper-bound
each summand by

(140)

where the first inequality follows by upper-bounding
; and the second

inequality follows by upper-bounding

Applying (138), (139), and (140) to (135) yields

(141)

Here, the second step follows by upper-bounding

By Cesáro’s mean [18, Theorem 4.2.3] the first two terms on
the RHS of (141) tend to zero as tends to infinity, and by the
weakly mixing property of the third term on the RHS of
(141) tends to zero as tends to infinity [11, Theorem 6.1]. It
thus follows from (128), (130), and (141) that

Together with (124) this proves (114). The proof of (115) fol-
lows along the same lines.
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