
1

At Low SNR Asymmetric Quantizers Are Better
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Abstract—We study the capacity of the discrete-time Gaussian
channel when its output is quantized with a one-bit quantizer.
We focus on the low signal-to-noise ratio (SNR) regime, where
communication at very low spectral efficiencies takes place.
In this regime a symmetric threshold quantizer is known to
reduce channel capacity by a factor of 2/π, i.e., to cause an
asymptotic power loss of approximately two decibels. Here it is
shown that this power loss can be avoided by using asymmetric
threshold quantizers and asymmetric signaling constellations.
To avoid this power loss, flash-signaling input distributions
are essential. Consequently, one-bit output quantization of the
Gaussian channel reduces spectral efficiency.

Threshold quantizers are not only asymptotically optimal: at
every fixed SNR a threshold quantizer maximizes capacity among
all one-bit output quantizers.

The picture changes on the Rayleigh-fading channel. In the
noncoherent case a one-bit output quantizer causes an un-
avoidable low-SNR asymptotic power loss. In the coherent case,
however, this power loss is avoidable provided that we allow the
quantizer to depend on the fading level.

Index Terms—Capacity per unit-energy, channel capacity,
Gaussian channel, low signal-to-noise ratio (SNR), quantization.

I. INTRODUCTION

WE study the effect on channel capacity of quantizing

the output of the discrete-time average-power-limited

Gaussian channel using a one-bit quantizer. This problem

arises in communication systems where the receiver uses

digital signal processing techniques, which require that the

analog received signal be quantized using an analog-to-digital

converter (ADC). For ADCs with high resolution, the effects

of quantization are negligible. However, high-resolution ADCs

may not be practical when the bandwidth of the commu-

nication system is large and the sampling rate high [1].

In such scenarios, low-resolution ADCs must be used. The

capacity of the discrete-time Gaussian channel with one-bit

output quantization indicates what communication rates can

be achieved when the receiver employs a low-resolution ADC.

We focus on the low signal-to-noise ratio (SNR) regime,

where communication at low spectral efficiencies takes place,
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In this regime, a symmetric threshold quantizer1 reduces

the capacity by a factor of 2/π, corresponding to a 2dB

power loss [2]. Hence the rule of thumb that “hard decisions

cause a 2dB power loss.” Here we demonstrate that if we

allow for asymmetric threshold quantizers with corresponding

asymmetric signal constellations, then the two decibels can be

fully recovered.

This result shows that a threshold (but not necessarily

symmetric) quantizer is asymptotically optimal as the SNR

tends to zero. We further show that this is not only true

asymptotically: for any fixed SNR a threshold quantizer is

optimal among all one-bit output quantizers.

While quantizing the output of the Gaussian channel with a

one-bit quantizer does not cause a loss with respect to the low-

SNR asymptotic capacity, it does cause a significant loss with

respect to the spectral efficiency. Indeed, as we show, the low-

SNR asymptotic capacity of the quantized Gaussian channel

can only be achieved by flash-signaling input distributions

[3, Def. 2]. For the Gaussian channel (even without output

quantization), such input distributions result in poor spectral

efficiency [3, Th. 16]: Gaussian inputs or (at low SNR) binary

antipodal inputs yield much higher spectral efficiencies [3,

Th. 11]. Since output quantization cannot increase the spectral

efficiency, it follows that flash signaling results in poor spectral

efficiency also on the quantized Gaussian channel. Thus, at

low SNR, the Gaussian channel with optimal one-bit output

quantization has poor spectral efficiency.

It should be noted that the discrete-time channel model

that we consider implicitly assumes that the channel output is

sampled at Nyquist rate. While sampling the output at Nyquist

rate incurs no loss in capacity for the additive white Gaussian

noise (AWGN) channel [4], [5], it is not necessarily optimal

(with respect to capacity) when the channel output is first

quantized using a one-bit quantizer. In fact, when a symmetric

threshold quantizer is employed, sampling the output above the

Nyquist rate increases the low-SNR asymptotic capacity [6],

[7] and it increases the capacity in the noiseless case [8], [9].

The rest of the paper is organized as follows. Section II

introduces the channel model and defines the capacity as

well as the capacity per unit-energy. Section III presents

the paper’s main results. Section IV demonstrates that the

capacity per unit-energy can be achieved by pulse-position

modulation (PPM). Section V discusses the implications of

our results on the spectral efficiency. Section VI studies the

effect on the capacity per unit-energy of quantizing the output

of the Rayleigh-fading channel using a one-bit quantizer.

Sections VII through X contain the proofs of our results:

1A threshold quantizer produces 1 if its input is above a threshold, and
it produces 0 if it is not. A symmetric threshold quantizer is a threshold
quantizer whose threshold is zero.
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Figure 1. System model.

Section VII contains the proofs concerning channel capacity,

Section VIII contains the proofs concerning the capacity per

unit-energy, Section IX contains the proofs concerning peak-

power-limited channels, and Section X contains the proofs

concerning Rayleigh-fading channels. Section XI concludes

the paper with a summary and a discussion.

II. CHANNEL MODEL AND CAPACITY

We consider the discrete-time communication system de-

picted in Figure 1. A message M , which is uniformly dis-

tributed over the set {1, 2, . . . ,M}, is mapped by an encoder

to the length-n real sequence X1, X2, . . . , Xn ∈ R of channel

inputs. (Here R denotes the set of real numbers.) The channel

corrupts this sequence by adding white Gaussian noise to

produce the unquantized output sequence

Ỹk = Xk + Zk, k ∈ Z (1)

where {Zk, k ∈ Z} is a sequence of independent and iden-

tically distributed (i.i.d.) Gaussian random variables of zero

mean and variance σ2. (Here Z denotes the set of integers.)

The unquantized output sequence is then quantized using a

quantizer that is specified by a Borel subset D of the reals: it

produces 1 if Ỹk is in D and produces 0 if it is not. Denoting

the time-k quantizer output by Yk,

Yk =

{

1 if Ỹk ∈ D,

0 if Ỹk /∈ D.

While we only consider deterministic quantizers, it should

be noted that our results continue to hold if we allow for

randomized quantization rules, i.e., if the quantizer produces

Yk according to some probability distribution PY |Ỹ with

binary Y .

In view of the direct relationship between the set D and the

quantizer it defines, we shall sometimes abuse notation and

refer to D as the quantizer. An example of a one-bit quantizer

is the threshold quantizer, which corresponds to the set

D = {ỹ ∈ R : ỹ ≥ Υ}, Υ ∈ R. (2)

The decoder observes the quantizer’s outputs Y1, Y2, . . . , Yn

and guesses which message was transmitted.

We impose an average-power constraint on the transmit-

ted sequence: for every realization of the message M , the

sequence x1, x2, . . . , xn must satisfy

1

n

n
∑

k=1

x2
k ≤ P (3)

for some positive constant P , which we call the maximal-

allowed average-power.

For a fixed quantizer D and maximal-allowed average-

power P , the capacity C(P ,D) is [5], [10]

C(P ,D) = sup
E[X2]≤P

I(X ;Y ) (4)

where the supremum is over all distributions of X under

which the second moment of X does not exceed P . Here

and throughout the paper we omit the time indices where they

are immaterial.

We say that a rate R (in nats per channel use) is achievable

using power P and one-bit quantization if for every ǫ > 0
there exists an encoder satisfying (3) and

logM
n

> R− ǫ (5)

as well as a one-bit quantizer and a decoder such that the

probability of error Pr(M̂ 6= M) tends to zero as n tends to

infinity. Here log(·) denotes the natural logarithm function.

The capacity C(P) is the supremum of all achievable rates

and is given by

C(P) = sup
D

C(P ,D) (6)

= sup
D,E[X2]≤P

I(X ;Y ) (7)

where the first supremum is over all quantization regions D,

and the second supremum is over all quantization regions D
and over all distributions of X satisfying E

[

X2
]

≤ P .

Following [11], we define the capacity per unit-energy of

the quantizer D as follows: We say that a rate per unit-energy

Ṙ(0,D) (in nats per energy) is achievable with the quantizer D
if for every ǫ > 0 there exists an encoder satisfying

n
∑

k=1

x2
k ≤ E , for every realization of M (8)

and
logM

E > Ṙ(0,D)− ǫ (9)

together with a decoder such that the probability of error

Pr(M̂ 6= M) tends to zero as E tends to infinity. The capacity

per unit-energy Ċ(0,D) is the supremum of all achievable

rates per unit-energy with the quantizer D and is given by

[11, Th. 2]

Ċ(0,D) = sup
P>0

C(P ,D)

P (10)

= lim
P↓0

C(P ,D)

P (11)

where the second equation follows because, for every D, the

capacity C(P ,D) is a concave function of P .

The definition of capacity per unit-energy using a one-bit

quantizer is analogous: We say that a rate per unit-energy Ṙ(0)
(in nats per energy) is achievable using a one-bit quantizer if

for every ǫ > 0 there exists an encoder satisfying (8) and

logM
E > Ṙ(0)− ǫ (12)

as well as a one-bit quantizer and a decoder such that the

probability of error Pr(M̂ 6= M) tends to zero as E tends to
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infinity. The capacity per unit-energy Ċ(0) is the supremum

of all achievable rates per unit-energy.

Extending the proof of Theorem 2 in [11] to account for

the additional maximization over all possible quantizers, we

obtain

Ċ(0) = sup
P>0

C(P)

P (13)

which, by (6), can be expressed as

Ċ(0) = sup
P>0

sup
D

C(P ,D)

P . (14)

Exchanging the order of the suprema and applying (10) yields

Ċ(0) = sup
D

Ċ(0,D) (15)

= sup
ξ 6=0,D

D
(

PY |X=ξ

∥

∥ PY |X=0

)

ξ2
(16)

where the last step follows from [3, Th. 3]. Here D(·‖·)
denotes relative entropy

D(P‖Q) ,







∫

log

(

dP

dQ

)

dP, if P ≪ Q

∞, otherwise

(17)

(where P ≪ Q indicates that P is absolutely continuous with

respect to Q), and PY |X=x denotes the output distribution

corresponding to the input x. In our case, since the output of

the quantizer is binary,

D
(

PY |X=ξ

∥

∥ PY |X=0

)

= Pr
(

Ỹ ∈ D
∣

∣ X = ξ
)

log
Pr
(

Ỹ ∈ D
∣

∣ X = ξ
)

Pr
(

Ỹ ∈ D
∣

∣ X = 0
)

+ Pr
(

Ỹ /∈ D
∣

∣ X = ξ
)

log
Pr
(

Ỹ /∈ D
∣

∣ X = ξ
)

Pr
(

Ỹ /∈ D
∣

∣ X = 0
) . (18)

It follows from (6) and (11) that

lim
P↓0

C(P)

P = lim
P↓0

sup
D

C(P ,D)

P
≥ sup

D
Ċ(0,D) (19)

which, together with (13) and (15), yields

Ċ(0) = lim
P↓0

C(P)

P . (20)

Thus, the capacity per unit-energy is equal to the slope at zero

of the capacity-vs-power curve.

By the Data Processing Inequality [10, Th. 2.8.1], C(P ,D)
is upper-bounded by the capacity of the unquantized channel

[4]

C(P ,D) ≤ 1

2
log

(

1 +
P
σ2

)

. (21)

Consequently, by (11) and (15),

Ċ(0,D) ≤ 1

2σ2
and Ċ(0) ≤ 1

2σ2
. (22)

A ubiquitous quantizer is the symmetric threshold quantizer,

for which D = {ỹ ∈ R : ỹ ≥ 0}. For this quantizer the

capacity Csym(P) is given by [12, Th. 2], [2, Eq. (3.4.18)]

Csym(P) = log 2−Hb

(

Q

(
√

P
σ2

))

(23)

where Hb(·) denotes the binary entropy function

Hb(p) , −p log p− (1− p) log(1− p), 0 ≤ p ≤ 1 (24)

(where we define 0 log 0 , 0) and Q(·) denotes the Q-function

Q(x) ,
1√
2π

∫ ∞

x

e−
t2

2 dt, x ∈ R. (25)

The capacity Csym(P) can be achieved by transmitting
√
P

and −
√
P equiprobably.

From (23), the capacity per unit-energy Ċsym(0) for a

symmetric threshold quantizer is [2, Eq. (3.4.20)]

Ċsym(0) = lim
P↓0

Csym(P)

P =
1

πσ2
. (26)

This is a factor of 2/π smaller than the capacity per unit-

energy 1/(2σ2) of the Gaussian channel without output quanti-

zation. Thus, quantizing the channel output using a symmetric

threshold quantizer causes a loss of roughly 2dB.

It is tempting to attribute this loss to the fact that the

quantizer forces the decoder to perform only hard-decision

decoding. However, as we shall see, the loss of 2dB is

not a consequence of the hard-decision decoder but of the

suboptimal quantizer. In fact, with an asymmetric threshold

quantizer the loss vanishes (Theorem 2).

III. MAIN RESULTS

Our main results are presented in the following two subsec-

tions. Section III-A presents the results on channel capacity.

We show that the capacity-achieving input distribution is

discrete with at most three mass points and that threshold

quantizers achieve capacity (Theorem 1). Furthermore, we

provide an expression for the capacity when the average-

power constraint (3) is replaced by a peak-power constraint

(Proposition 1).

Section III-B presents the results on capacity per unit-

energy. We show that asymmetric threshold quantizers and

asymmetric signal constellations can achieve the capacity

per unit-energy of the Gaussian channel (Theorem 2), thus

demonstrating that quantizing the output of the Gaussian

channel with a one-bit quantizer does not cause an asymptotic

power loss. We further demonstrate that, in order to achieve

this capacity per unit-energy, flash-signaling input distributions

[3, Def. 2] are required (Theorem 3). Finally, we show that if

the average-power constraint (3) is replaced by a peak-power

constraint, then quantizing the output of the Gaussian channel

with a one-bit quantizer necessarily causes a 2dB power loss

(Proposition 2).
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A. Channel Capacity

Theorem 1 (Optimal Input Distribution and Quantizer):

1) For any given maximal-allowed average-power P and

any Borel set D, the supremum in (4) defining C(P ,D)
is achieved by some input distribution that is concen-

trated on at most three points.

2) For any given maximal-allowed average-power P the

supremum in (7) is achieved by some threshold quantizer

D⋆ = {ỹ ∈ R : ỹ ≥ Υ}
(where Υ ≥ 0 depends on P and σ2) and by a zero-

mean, variance-P , input distribution that is concentrated

on at most three points.

Proof: See Section VII.

The result that the capacity-achieving input distribution is

concentrated on at most three mass points is consistent with

Theorem 1 in [12], which shows that if the quantization

regions of a K-bit quantizer partition the real line into 2K

intervals, then the capacity-achieving input distribution is

concentrated on at most 2K + 1 points.

Proposition 1: If the average-power constraint (3) is re-

placed by the peak-power constraint

X2
k ≤ P , k ∈ Z, with probability one (27)

then the capacity of the channel presented in Section II is

given by

CPP(P) = max
Υ≥0

{

log
(

1 + e−Θ(P,Υ)
)

+Q

(√
P +Υ

σ

)

Θ(P ,Υ)−Hb

(

Q

(√
P +Υ

σ

))}

(28)

where

Θ(P ,Υ) ,
Hb

(

Q
(√

P−Υ
σ

))

−Hb

(

Q
(√

P+Υ
σ

))

1−Q
(√

P−Υ
σ

)

−Q
(√

P+Υ
σ

) . (29)

The capacity can be achieved by a binary input distribution

with mass points at
√
P and −

√
P and by some threshold

quantizer with threshold Υ ≥ 0.

Proof: See Section IX-A.

Numerical evaluation of (28) suggests that, for every maximal-

allowed peak-power P , the maximum is attained for Υ = 0.

In this case, CPP(P) would specialize to the capacity of

the average-power-limited Gaussian channel with symmetric

output quantization (23).

B. Capacity Per Unit-Energy

Theorem 2 (Ċ(0) = 1/(2σ2)): The capacity per unit-

energy of the channel presented in Section II is

Ċ(0) =
1

2σ2
. (30)

Proof: See Section VIII-A.

Thus, if we allow for asymmetric threshold quantizers and

asymmetric signal constellations, then quantizing the output of

the average-power-limited Gaussian channel with an optimal

one-bit quantizer does not cause a loss with respect to the

capacity per unit-energy.

Considering the symmetry of the probability density func-

tion (PDF) of the Gaussian noise, it is perhaps surprising

that an asymmetric quantizer yields a larger rate per unit-

energy than a symmetric one. However, the input distribution

achieving (30) is asymmetric (see below). Hence, the PDF of

the unquantized channel output is asymmetric, so it seems

plausible that the capacity per unit-energy is achieved by

some asymmetric quantizer. In fact, even if the PDF of the

unquantized channel output were symmetric, this would not

necessarily imply that the optimal quantizer is symmetric:

There are examples in the source-coding literature of symmet-

ric PDFs for which the optimal one-bit quantizer with respect

to the mean squared error is asymmetric, see, e.g., [13, Ex. 5.2,

p. 64–65].

Theorem 2 is proved by analyzing (16) with a judicious

choice of D and ξ. In Section IV we provide an alternative

proof by presenting a PPM scheme that achieves the capacity

per unit-energy (30). For this scheme, the error probability

can be analyzed directly using the Union Bound and an

upper bound on the Q-function: there is no need to resort

to conventional methods used to prove coding theorems such

as the method of types, information-spectrum methods, or

random coding exponents.

The capacity per unit-energy (30) can be achieved by

binary on-off keying, i.e., by binary inputs of probability mass

function

P (X = ξ) = 1− P (X = 0) =
P
ξ2

, ξ2 ≥ P (31)

where the nonzero mass point ξ tends to infinity as P tends

to zero. The distribution of such inputs belongs to the class

of flash-signaling input distributions, which was defined by

Verdú [3, Def. 2] as follows.

Definition 1 (Flash Signaling): A family of distributions

of X parametrized by P is said to be flash signaling if it

satisfies E
[

X2
]

≤ P and for every positive ν

lim
P↓0

E
[

X2 I
{

X2 > ν
}]

P = 1. (32)

Here I {statement} denotes the indicator function: it is equal

to one if the statement between the curly brackets is true and

is equal to zero otherwise.

Flash signaling is described in [3] as “the mixture of a

probability distribution that asymptotically concentrates its

mass at 0 and a probability distribution that migrates to

infinity; the weight of the latter vanishes sufficiently fast to

satisfy the vanishing power constraint.” The next theorem

shows that flash signaling is necessary to achieve (30).

Theorem 3 (Flash Signaling Is Required to Achieve Ċ(0)):
Every family of distributions of X parametrized by P that

satisfies E
[

X2
]

≤ P and

lim
P↓0

I(X ;Y )

P =
1

2σ2
(33)

must be flash signaling.

Proof: See Section VIII-B.
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It is easy to show that for flash-signaling input distributions,

threshold quantizers with a bounded threshold give rise to zero

rate per unit-energy. We thus have the following corollary.

Corollary 1 (The Thresholds Must Be Unbounded): If (33)

holds for some family of threshold quantizers (parametrized

by the average power), then the thresholds must be unbounded

in the average power.

Proof: See Section VIII-C.

Intuitively, the power loss in quantizing the output of the

Gaussian channel with a one-bit quantizer can be avoided

by using flash-signaling input distributions and asymmetric

threshold quantizers because for such input distributions and

quantizers the probability that the quantizer causes an error

vanishes as the SNR tends to zero. Indeed, by using binary on-

off keying (31) and threshold quantizers (2), and by cleverly

choosing the rate at which ξ and Υ grow as P decreases,

we can make the probabilities Pr(Y = 1|X = 0) and

Pr(Y = 0|X = ξ) vanish as P tends to zero. This suggests that

the loss caused by the quantizer disappears with decreasing

P . Note, however, that the same argument would also apply

to the averaged-power-limited, noncoherent, Rayleigh-fading

channel (see Section VI), but for this channel quantizing the

output with a one-bit quantizer does cause a loss with respect

to the capacity per unit-energy (Theorem 5).

As mentioned in Section II, the capacity per unit-energy is

equal to the slope at zero of the capacity-vs-power curve. Thus,

Theorem 2 demonstrates that the first derivative of C(P) at

P = 0 is equal to 1/(2σ2). Theorem 3 implies that the second

derivative of C(P) at P = 0 is −∞.

Corollary 2 (C̈(0) = −∞):

C̈(0) = 2 lim
P↓0

C(P)− P Ċ(0)

P2
= −∞. (34)

Proof: By the Data Processing Inequality, for every

family of distributions of X parametrized by P

lim
P↓0

I(X ;Y )− P
2σ2

P2
≤ lim

P↓0

I(X ; Ỹ )− P
2σ2

P2
. (35)

To achieve Ċ(0) it is necessary to use flash signaling (Theo-

rem 3). And for all flash-signaling input distributions the right-

hand side (RHS) of (35) is −∞ ([3, Th. 16]). Consequently,

so is its left-hand side (LHS).

Note that, for the Gaussian channel, the first and second

derivative of the capacity are [4]

Ċ(0) =
1

2σ2
and C̈G(0) = − 1

2σ4
(36)

(where “G” stands for “Gaussian”). Thus, while quantizing

the output of the Gaussian channel with a one-bit quantizer

does not cause a loss with respect to the first derivative of

the capacity-vs-power curve, it causes a substantial loss in

terms of the second derivative. The implications on the spectral

efficiency are discussed in Section V.

Proposition 2: If the average-power constraint (3) is re-

placed by the peak-power constraint

X2
k ≤ P , k ∈ Z, with probability one (37)

then the slope at zero of the capacity-vs-power curve is

lim
P↓0

CPP(P)

P =
1

πσ2
. (38)

Proof: See Section IX-B.

As was shown by Shannon [4], the capacity of the peak-power-

limited unquantized Gaussian channel satisfies

lim
P↓0

CG,PP(P)

P =
1

2σ2
. (39)

Thus, in contrast to the average-power-limited case, quantizing

the output of the peak-power-limited Gaussian channel with a

one-bit quantizer does cause a 2dB power loss.

IV. PULSE-POSITION MODULATION

We next demonstrate that the capacity per unit-energy (30)

can be achieved using a PPM scheme—no random-coding

arguments are needed. For such a scheme the encoder produces

the M channel inputs x1(m), x2(m), . . . , xM(m) for each

message m in {1, 2, . . . ,M}, where

xk(m) =

{

ξ if k = m,

0 if k 6= m,
k = 1, 2, . . . ,M (40)

and where ξ2 = E . For a fixed rate per unit-energy

Ṙ(0) =
logM

E
we have

ξ2 = E =
logM
Ṙ(0)

. (41)

Note that, while the rate per unit-energy is fixed, the rate of

this scheme is logM
M and tends to zero as M tends to infinity.

We employ a threshold quantizer (2) with the threshold Υ
chosen so that for an arbitrary 0 < ǫ < 1 the probability that

the quantizer produces 0 given that X = ξ is equal to ǫ. Thus,

Υ = ξ − σQ−1(ǫ) (42)

which yields

P
(

Yk = 0
∣

∣ Xk = ξ
)

= ǫ (43a)

P
(

Yk = 1
∣

∣ Xk = 0
)

= Q

(

ξ − σQ−1(ǫ)

σ

)

. (43b)

In (42), Q−1(·) denotes the inverse Q-function.

The decoder guesses “M̂ = m” provided that Ym = 1 and

that Yk = 0 for all k 6= m. If Yk = 1 for more than one k, or

if Yk = 0 for all k = 1, 2, . . . ,M, then the decoder declares

an error.

Suppose that message M = m was transmitted. Then the

probability of an error is upper-bounded by

Pr
(

M̂ 6= M
∣

∣M = m
)

= Pr





⋃

k 6=m

(Yk = 1) ∪ (Ym = 0)

∣

∣

∣

∣

∣

∣

M = m





≤
∑

k 6=m

P
(

Yk = 1
∣

∣ Xk = 0
)

+ P
(

Ym = 0
∣

∣ Xm = ξ
)

=
∑

k 6=m

P
(

Yk = 1
∣

∣ Xk = 0
)

+ ǫ

= (M− 1)P
(

Y1 = 1
∣

∣ X1 = 0
)

+ ǫ (44)
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where the second step follows from the Union Bound; the

third step follows from (43a); and the fourth step fol-

lows because the channel is memoryless which implies that

Pr(Yk = 1|Xk = 0) does not depend on k. Since the RHS of

(44) does not depend on m, it follows that also the probability

of error

Pr(M̂ 6= M) =
1

M

M
∑

m=1

Pr
(

M̂ 6= M
∣

∣M = m
)

is upper-bounded by (44).

The first term on the RHS of (44) can be evaluated using

(43b) and (41):

(M− 1)P
(

Y1 = 1
∣

∣ X1 = 0
)

= (M− 1)Q

(

ξ − σQ−1(ǫ)

σ

)

= (M− 1)Q





√
logM− σQ−1(ǫ)

√

Ṙ(0)

σ
√

Ṙ(0)



 . (45)

We continue by showing that if

Ṙ(0) <
1

2σ2

then, for every fixed 0 < ǫ < 1, the RHS of (45) tends to zero

as M tends to infinity. Indeed,

lim
M→∞

(M− 1)Q





√
logM− σQ−1(ǫ)

√

Ṙ(0)

σ
√

Ṙ(0)





≤ lim
α→∞

exp
(

σ2Ṙ(0)
(

α+Q−1(ǫ)
)2
)

Q(α)

≤ lim
α→∞

1√
2πα

exp

(

σ2Ṙ(0)
(

α+Q−1(ǫ)
)2 − 1

2
α2

)

(46)

where the first step follows by upper-bounding M− 1 < M
and by substituting

α =

√
logM− σQ−1(ǫ)

√

Ṙ(0)

σ
√

Ṙ(0)
;

and the second step follows from the inequality [14,

Prop. 19.4.2]

Q(α) <
1√
2πα

e−α2/2, α > 0. (47)

The RHS of (46) is zero for Ṙ(0) < 1
2σ2 .

Combining (46) with (44), we obtain that if Ṙ(0) < 1
2σ2 ,

then the probability of error tends to ǫ as E—and hence, by

(41), also M—tends to infinity. Since ǫ can be chosen arbi-

trarily small, the probability of error can be made arbitrarily

small, thus proving that the capacity per unit-energy (30) is

achievable with the above PPM scheme.

The fact that PPM achieves the capacity per unit-energy

of the Gaussian channel with a threshold quantizer follows

also from the analysis of the probability of error for block

orthogonal signals shown in [15, p. 342–346]. The threshold

a ≥ 0 introduced to bound the RHS of (5.97d) in [15] can be

identified as the threshold Υ of the quantizer.

V. SPECTRAL EFFICIENCY

The discrete-time channel presented in Section II is closely

related to the continuous-time AWGN channel with one-bit

output quantization. Indeed, suppose that the input to the latter

channel is bandlimited to W Hz and that its average-power

is limited by P , and suppose that the Gaussian noise is of

double-sided power spectral density N0/2. Then, the discrete-

time channel (1) with noise-variance

σ2 = WN0 (48)

results from sampling the AWGN channel’s output at the

Nyquist rate 2W . The capacity (in bits per second) of the

AWGN channel with Nyquist sampling and one-bit output

quantization is given by

C
(2W )
AWGN(P) =

2W

log 2
C(P) (49)

where C(P) is the capacity (7) of the discrete-time channel

in nats per channel use. Note, however, that when the channel

output is quantized, sampling at the Nyquist rate need not be

optimal with respect to capacity: see, e.g., [6]–[9] for scenarios

where sampling the quantizer’s output above the Nyquist

rate provides capacity gains. Consequently, C
(2W )
AWGN(P) is, in

general, a lower bound on the capacity of the AWGN channel

with one-bit output quantization.

The energy per information-bit when communicating with

power P at rate C
(2W )
AWGN(P) is defined as

Eb

N0
,

P
C

(2W )
AWGN(P)

1

N0
(50)

which, by (48) and (49), is equal to

Eb

N0
=

log 2

2σ2

P
C(P)

. (51)

The spectral efficiency C̄(·) (in bits per second per Hz) is

defined as

C̄

( Eb

N0

)

,
C

(2W )
AWGN(P)

W
(52)

which, by (49), is

C̄

( Eb

N0

)

=
2

log 2
C(P). (53)

In (52) and (53), P is the solution to (50), namely,

Eb

N0
=

P
C

(2W )
AWGN(P)

1

N0
. (54)

See [3] for a more thorough discussion of spectral efficiency.

(Note that, in contrast to (1), the channel considered in [3]

is complex-valued. Therefore, the expressions for Eb/N0 and

C̄
(

Eb/N0

)

differ by a factor of two.)

The minimum Eb/N0 required for reliable communication

is determined by taking the infimum over P of the RHS of

(51). By (13) this yields [3, Eq. (35)]
( Eb

N0

)

min

=
log 2

2σ2

1

Ċ(0)
. (55)
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Figure 2. Spectral efficiency versus energy per information-bit. The top
subfigure shows the spectral efficiencies of the Gaussian channel with and
without one-bit output quantization. The bottom subfigure shows the spectral
efficiencies for the optimal one-bit quantizer and for the symmetric threshold
quantizer.

Furthermore, the slope of Eb/N0 7→ C̄
(

Eb/N0

)

at (Eb/N0)min

in bits per second per Hz per 3dB is given by [3, Th. 9]2

S0 =
4
[

Ċ(0)
]2

−C̈(0)
. (56)

By (30) and (34), we have for the average-power-limited

Gaussian channel with one-bit output quantization

Ċ(0) =
1

2σ2
and C̈(0) = −∞ (57)

2Again, the channel considered in [3] is complex-valued and the expressions
for

(

Eb/N0

)

min
and S0 therefore differ by a factor of two. Nevertheless, since

the capacity of the complex-valued channel is twice the capacity of the real-
valued channel, it follows that the numerical values of

(

Eb/N0

)

min
and S0

are the same as in [3].

which yields
( Eb

N0

)

min

= log 2 = −1.59 dB (58a)

S0 = 0
bps/Hz

3dB
. (58b)

In comparison, for the unquantized Gaussian channel (36)

ĊG(0) =
1

2σ2
and C̈G(0) = − 1

2σ4
(59)

and for the Gaussian channel with symmetric one-bit output

quantization (23)

Ċsym(0) =
1

πσ2
and C̈sym(0) =

2

3πσ4

(

1

π
− 1

)

. (60)

This yields
( Eb

N0

)

min,G

= log 2 = −1.59 dB (61a)

S0,G = 2
bps/Hz

3dB
(61b)

and
( Eb

N0

)

min,sym

=
π

2
log 2 = 0.37 dB (62a)

S0,sym =
6

π − 1
= 2.8

bps/Hz

3dB
. (62b)

Comparing (62a) with (61a), we see once more that quantizing

the output of the Gaussian channel with a symmetric threshold

quantizer causes a power loss of roughly 2dB. We further see

that with an asymmetric threshold quantizer we can recover

the loss in terms of
(

Eb/N0

)

min
, but there is still a substantial

loss in terms of spectral efficiency. Indeed, for the Gaussian

channel with one-bit output quantization, the wideband slope

S0 is zero, whereas for the unquantized Gaussian channel it

is 2 bits per second per Hz per 3dB.

The above spectral efficiencies are shown in Figure 2. The

top subfigure shows the spectral efficiencies of the Gaussian

channel with and without one-bit output quantization. The

bottom subfigure compares the spectral efficiency C̄(·) for

the optimal one-bit quantizer with the spectral efficiency

C̄sym(·) for the symmetric threshold quantizer. We observe

that, even though the minimum energy per information-bit is

the same with and without one-bit output quantization,3 the

corresponding spectral efficiencies differ substantially for all

Eb/N0. We further observe that for spectral efficiencies above

0.02 bits per second per Hz a symmetric threshold quantizer

is nearly optimal.

We conclude that, for communication systems that operate

at very low spectral efficiencies, asymmetric quantizers are

beneficial, although for most practical scenarios the potential

power gain is significantly smaller than 2dB. For example, at

a spectral efficiency of 0.001 bits per second per Hz, allowing

for asymmetric quantizers with corresponding asymmetric

signal constellations provides a power gain of roughly 0.1dB.

3For numerical reasons, the spectral efficiency of the Gaussian channel with
one-bit output quantization can only be shown for Eb/N0 above −0.5dB.
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VI. ONE-BIT QUANTIZERS FOR FADING CHANNELS

For the average-power-limited (real-valued) Gaussian chan-

nel, we have demonstrated that by allowing for asymmetric

threshold quantizers with corresponding asymmetric signal

constellations, one can achieve the capacity per unit-energy

of the unquantized channel. The same holds for the average-

power-limited complex-valued Gaussian channel [16]: using

binary on-off keying (31) and a radial quantizer (which

produces 1 if the magnitude of the channel output is above

some threshold and produces 0 otherwise), one can achieve

the capacity per unit-energy of the unquantized channel by

judiciously choosing the threshold and the nonzero mass point

as functions of the SNR.

In this section we briefly discuss the effect of one-bit

quantization on the capacity per unit-energy of the discrete-

time, average-power-limited, Rayleigh-fading channel. This

channel’s unquantized output Ỹk is given by

Ỹk = HkXk + Zk, k ∈ Z (63)

where {Hk, k ∈ Z} and {Zk, k ∈ Z} are independent

sequences of i.i.d., zero-mean, circularly-symmetric, complex

Gaussian random variables, the former with unit-variance and

the latter with variance σ2. We say that the channel is coherent

if the receiver is cognizant of the realization of {Hk, k ∈ Z}
and that it is noncoherent if the receiver is only cognizant of

the statistics of {Hk, k ∈ Z}. The unquantized output Ỹk is

quantized using a one-bit quantizer that is specified by a Borel

subset D of the complex field C: it produces 1 if Ỹk is in D,

and it produces 0 if it is not.

The capacities C(P ,D) and C(P) are defined as in Sec-

tion II but with the average-power constraint (3) replaced by

1

n

n
∑

k=1

|xk|2 ≤ P . (64)

Likewise, the capacities per unit-energy Ċ(0,D) and Ċ(0)
are defined as in Section II but with the energy constraint (8)

replaced by
n
∑

k=1

|xk|2 ≤ E . (65)

A. Coherent Fading Channels

Using the same arguments as in Section II, it can be shown

that, for a fixed quantizer D, we have for the coherent channel

[11, Th. 3], [3]

Ċ(0,D) = sup
ξ 6=0

D
(

PY |H,X=ξ

∥

∥ PY |H,X=0

∣

∣ PH

)

|ξ|2 (66)

where D(·‖ · |·) denotes conditional relative entropy

D
(

PY |H,X=ξ

∥

∥ PY |H,X=0

∣

∣ PH

)

=

∫

D
(

PY |H=h,X=ξ

∥

∥ PY |H=h,X=0

)

dPH(h); (67)

PH denotes the distribution of the fading H ; and PY |H=h,X=x

denotes the distribution of Y conditioned on (H,X) = (h, x).4

It can be further shown that

Ċ(0) = sup
ξ 6=0,D

D
(

PY |H,X=ξ

∥

∥ PY |H,X=0

∣

∣ PH

)

|ξ|2 . (68)

By the Data Processing Inequality, the capacity per unit-

energy is upper-bounded by that of the unquantized channel

[17], [3]

Ċ(0) ≤ 1

σ2
. (69)

We next show that, by choosing the one-bit quantizer as a

function of H and the SNR, this upper bound can be achieved.

Theorem 4 (Coherent Case): The capacity per unit-energy

of the coherent Rayleigh-fading channel is given by

Ċ(0) =
1

σ2
. (70)

It is achieved by a family of radial quantizers parametrized by

P with thresholds that are proportional to |H |.
Proof: See Section X-A.

The assumption that the fading H is Gaussian is not essential.

In fact, Theorem 4 holds for every fading distribution having

unit variance.

B. Noncoherent Fading Channels

Using the same arguments as in Section II, it can be shown

that in the noncoherent case

Ċ(0,D) = sup
ξ 6=0

D
(

PY |X=ξ

∥

∥ PY |X=0

)

|ξ|2 (71)

and

Ċ(0) = sup
ξ 6=0,D

D
(

PY |X=ξ

∥

∥ PY |X=0

)

|ξ|2 . (72)

Since the capacity per unit-energy of the unquantized

Rayleigh-fading channel equals 1/σ2 irrespective of whether

the channel is coherent or not [17], [3], it follows from

the Data Processing Inequality that (69) holds also in the

noncoherent case.

The capacity per unit-energy (70) of the coherent channel

with one-bit output quantization is achieved using binary on-

off keying where the nonzero mass point tends to infinity as

the SNR tends to zero. This result might mislead one to think

that (70) also holds in the noncoherent case. Indeed, in the

absence of a quantizer, binary on-off keying with diverging

nonzero mass point achieves the capacity per unit-energy 1/σ2

irrespective of whether the receiver is cognizant of the fading

realization or not [3], [17]. It might therefore seem plausible

that also in the noncoherent case quantizing the channel output

with a one-bit quantizer would cause no loss in the capacity

per unit-energy. But this is not the case:

4This can be shown along the lines of the proof of Theorem 3 in [11]
but with the mutual information I(X; Y ) replaced by the conditional mutual

information I(X; Y |H). That the RHS of (66) is an upper bound on Ċ(0,D)
follows then immediately from [11, Eq. (15)]. Showing that this holds with
equality requires swapping the order of taking the limit as P tends to zero
and of computing the expectation over the fading.
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Theorem 5 (Noncoherent Case): For the noncoherent

Rayleigh-fading channel with one-bit output quantization

Ċ(0) <
1

σ2
. (73)

Proof: See Section X-B.

The case where the real and imaginary parts of the fading

channel’s output are quantized separately using a one-bit

quantizer for each was studied, e.g., in [18]–[22]. However, in

[18]–[21] only symmetric threshold quantizers are considered.

VII. PROOF OF THEOREM 1

We prove Theorem 1 in five steps:

1) We first show that for any given maximal-allowed

average-power P and any Borel set D, the supremum

in (4) defining C(P ,D) is achieved by some input

distribution that is concentrated on at most three points

(Section VII-A).

2) We next show that for every three-mass-points input

distribution, the supremum over all quantizers can be

replaced with the supremum over all threshold quantiz-

ers and all quantizers whose quantization region consists

of a finite interval (Section VII-B).

3) We continue by showing that the supremum in (7)

defining C(P) is achieved (Section VII-C).

4) We then show that threshold quantizers are optimal by

demonstrating that quantization regions consisting of a

finite interval are suboptimal (Section VII-D).

5) We finally show that the capacity-achieving input distri-

bution must be centered and must satisfy the average-

power constraint with equality (Section VII-E).

A. Input Distributions Consisting of Three Mass Points

Generalizing the proof of Theorem 1 in [12] to arbitrary

quantizers, we prove that for every fixed quantizer D and

maximal-allowed average-power P , the capacity C(P ,D) is

achieved by an input distribution consisting of three (or fewer)

mass points. To this end, we first argue that we can introduce

an additional peak-power constraint without reducing capacity,

provided that we allow the maximal-allowed peak-power to

tend to infinity. Thus, we show that C(P ,D), which is defined

in (4) without a peak-power constraint, can also be expressed

as

C(P ,D) = lim
A→∞

sup
E[X2]≤P,

|X|≤A

I
(

PX ,WD
)

(74)

where WD denotes the channel law corresponding to the

quantization region D, and where I
(

PX ,WD
)

denotes the

mutual information of a channel with law WD when its input

is distributed according to PX . Clearly, the RHS of (74) cannot

exceed its LHS, because imposing an additional peak-power

constraint cannot increase capacity. It remains to prove that

the LHS cannot exceed the RHS.

By Fano’s Inequality [10, Th. 2.11.1] and the Data Process-

ing Inequality, we have that, for every blocklength n, every

encoder m 7→
(

x1(m), . . . , xn(m)
)

of rate R = logM
n that

satisfies the average-power constraint, and every quantization

region D, the probability of error is lower-bounded by [10,

Sec. 8.9]

Pr(M̂ 6= M) ≥ 1− 1

nR

n
∑

k=1

I
(

Xk(M);Yk

)

− 1

nR
. (75)

Let An be the largest magnitude of the symbols that the

encoder can produce

An , max
1≤k≤n,
1≤m≤M

|xk(m)| (76)

so

|xk(m)| ≤ An,
(

k = 1, 2, . . . , n, m = 1, 2, . . . ,M
)

. (77)

With this notation, we have for every blocklength n and every

quantizer D,

1

n

n
∑

k=1

I
(

Xk(M);Yk

)

≤ sup
E[X2]≤P,

|X|≤An

I
(

PX ,WD
)

≤ sup
A>0

sup
E[X2]≤P,

|X|≤A

I
(

PX ,WD
)

(78)

where the first inequality follows from (77) and by the

concavity of

P 7→ sup
E[X2]≤P,

|X|≤An

I
(

PX ,WD
)

.

Thus, the RHS of (75) is bounded away from zero whenever

R exceeds the RHS of (78), and the inequality

C(P ,D) ≤ sup
A>0

sup
E[X2]≤P,

|X|≤A

I
(

PX ,WD
)

(79)

is established. Since the inner supremum on the RHS of (79)

is monotonically nondecreasing in A, we can replace the outer

supremum by a limit and thus establish (74).

Introducing a peak-power constraint in (74) allows us next

to establish the existence of a capacity-achieving input dis-

tribution of three mass points using Dubins’s Theorem as

follows. Recall that by (74)

C(P ,D) = lim
A→∞

CD,A(P) (80)

where CD,A(P) denotes the capacity of the memoryless

channel Pr
(

Ỹ ∈ D
∣

∣ X = x
)

with the input X taking values

in the interval [−A,A] and with the binary output Y :

CD,A(P) , sup
E[X2]≤P,

|X|≤A

I
(

PX ,WD
)

. (81)

Proceeding along the lines of [23, Sec. II-C] but accounting

for the additional average-power constraint, it can be shown

that CD,A(P) is achieved by an input distribution consisting

of three mass points. Indeed, since P 7→ CD,A(P) is concave

it is continuous, so there exists some P ′ ≤ P such that

CD,A(P) = sup
E[X2]=P′,

|X|≤A

I
(

PX ,WD
)

. (82)
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The input distribution achieving CD,A(P) must be concen-

trated on the interval [−A,A] and additionally satisfy
∫

x2 dPX(x) = P ′. (83)

The arguments in [23, Sec. II-C] thus go through with the set A
in [23, Sec. II-C] replaced by the set of input distributions that

induce the given output distribution and that additionally lie

on the hyperplane (83).

Having established that under an additional peak-power

constraint capacity is achieved by a three-mass-points input

distribution, we now study what happens to these three mass

points as the allowed peak-power tends to infinity. We thus

study how the three mass points at locations

ξ = (ξL, ξM, ξR)

with corresponding masses

p = (pL, pM, pR)

behave as A tends to infinity.

By possibly considering a subsequence of peak powers, we

can assume that, as A tends to infinity, ξ converges to some

ξ⋆ = (ξ⋆L, ξ
⋆
M, ξ⋆R) whose components are on the extended real

line R∪{±∞}. Likewise we can assume that p converges to

some probability vector p⋆. Since the input distributions must

satisfy the average-power constraint, if any of the components

of ξ⋆ is ±∞, then the corresponding component of p⋆ must

be zero. By Lemma 1 (Appendix I), Pr(Ỹ ∈ D|X = ξℓ)
converges to Pr(Ỹ ∈ D|X = ξ⋆ℓ ) whenever ξ⋆ℓ ∈ R, and the

continuity of

CD,A(P) = Hb

(

∑

ℓ∈{L,M,R}
pℓ Pr

(

Ỹ ∈ D
∣

∣ X = ξℓ
)

)

−
∑

ℓ∈{L,M,R}
pℓHb

(

Pr
(

Ỹ ∈ D
∣

∣ X = ξℓ
)

)

demonstrates that limA→∞ CD,A(P) (which equals C(P ,D)
by (74)) equals the mutual information corresponding to

(p⋆, ξ⋆) provided that in computing the latter the mass points

of zero mass are ignored. Since the mass points at ±∞ are of

zero mass (by the average-power constraint), those are ignored,

and we conclude that C(P ,D) is achieved by (at most) three

finite mass point. For sufficiently large A (exceeding the

largest of these mass points) the peak-power constraint is

inactive.

B. Quantizers for Three-Mass-Points Input Distributions

Having established that for any quantizer D the capacity

C(P ,D) is achieved by a three-mass-points input distri-

bution, we now fix some arbitrary three-mass-points input

distribution5 PX concentrated at (ξ1, ξ2, ξ3) and study the

quantizer that maximizes the mutual information I
(

PX ,WD
)

corresponding to it. (Without loss of generality, we assume

5Every two-mass-points distribution can be viewed as a three-mass-points
distribution with one of the masses being zero.

that ξ1 6= ξ2, ξ1 6= ξ3, and ξ2 6= ξ3.) We will show that when

PX is a three-mass-points input distribution, we have

sup
D

I
(

PX ,WD
)

= sup
Υ1≤Υ2

I
(

PX ,WD(Υ1,Υ2)

)

(84)

where the quantizer D(Υ1,Υ2) is defined as

D(Υ1,Υ2) , {ỹ ∈ R : Υ1 ≤ ỹ ≤ Υ2}, Υ1 ≤ Υ2 (85)

with

D(−∞,Υ2) , {ỹ ∈ R : ỹ ≤ Υ2}, Υ2 ∈ R (86a)

D(Υ1,∞) , {ỹ ∈ R : ỹ ≥ Υ1}, Υ1 ∈ R (86b)

D(−∞,∞) , R (86c)

D(−∞,−∞) = D(∞,∞) , ∅. (86d)

(Here ∅ denotes the empty set.) Needless to say, the case

Υ1 = Υ2 and the forms (86c) and (86d) yield zero mutual

information and are thus uninteresting.

Define

W ,

{

(ω1, ω2, ω3) ∈ [0, 1]3 :

ωℓ = Pr
(

Ỹ ∈ D
∣

∣ X = ξℓ
)

,D ⊂ R

}

(87)

as the set of possible channel laws that different quantizers

can induce for the inputs (ξ1, ξ2, ξ3), and let W denote the

closure of the convex hull of W . With this notation

sup
D

I(PX ,WD) = sup
W∈W

I
(

PX ,W
)

≤ sup
W∈W

I
(

PX ,W
)

(88)

where the second step follows because W ⊆ W . Recall that

an extreme point of W is a channel in W that cannot be

written as a convex combination of two different channels

in W . By the Krein-Milman Theorem [24, Cor. 18.5.1], every

channel law W ∈ W can be written as a convex combination

of extreme points of W . Since mutual information is convex in

the channel law (when the input distribution is held fixed) [10,

Th. 2.7.4], it follows that on the RHS of (88) we can replace

the supremum over the set W with the supremum over its

extreme points.

We next show that the extreme points of W correspond to

quantizers of the form (85). Once we show this, it will follow

that (88) holds with equality, because these extreme points of

W are in fact in W . This will prove (84).6

To prove that the extreme points of W are indeed the

channel laws corresponding to quantizers of the form (85),

we consider the support function of W [24, Sec. 13]

f(λ) , sup
(ω1,ω2,ω3)∈W

{λ1 ω1 + λ2 ω2 + λ3 ω3} (89)

for λ = (λ1, λ2, λ3) ∈ R3. Since W is the closure of all

convex combinations of the elements of W [24, Th. 2.3], the

6Note that W is the set of possible channel laws that different quantizers
can induce for the inputs (ξ1, ξ2, ξ3), provided that we allow for randomized
quantization rules. It thus follows that (84) continues to hold if on the LHS,
instead of maximizing over all deterministic quantizers D, we maximize over
all probability distributions P

Y |Ỹ with Y binary.
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support function of W is the same as that of W and

f(λ) = sup
D

{

λ1 ω1(D) + λ2 ω2(D) + λ3 ω3(D)
}

(90)

where

ωℓ(D) , Pr
(

Ỹ ∈ D
∣

∣ X = ξℓ
)

, ℓ = 1, 2, 3. (91)

We rewrite (90) as

f(λ) = sup
D

1√
2πσ2

∫

D
gλ(ỹ) dỹ (92)

where

gλ(ỹ) , λ1e
− (ỹ−ξ1)2

2σ2

+ λ2e
− (ỹ−ξ2)2

2σ2 + λ3e
− (ỹ−ξ3)2

2σ2 , ỹ ∈ R. (93)

The integral on the RHS of (92) is maximized when D is the

set

D⋆(λ) =
{

ỹ ∈ R : gλ(ỹ) ≥ 0
}

. (94)

The structure of D⋆(λ) depends on the zeros of gλ(·), which

we study next.

Our study of the zeros of gλ(·) depends on the signs of

λ1, λ2, λ3 and on how many of them are zero. The case where

λ1, λ2, λ3 are all zero is trivial, because in this case f(λ) is

zero irrespective of D. We will see that in all other cases the

set D that achieves f(λ) is unique up to Lebesgue measure

zero. If exactly two λ’s, say λ1 and λ2, are zero, then the set

D that achieves f(λ) is either R or ∅, depending on whether

λ3 is positive or negative. We next consider the case where

exactly one of the λ’s, say λ3, is zero. In this case

gλ(ỹ) = λ1e
− (ỹ−ξ1)2

2σ2 + λ2e
− (ỹ−ξ2)2

2σ2 , ỹ ∈ R (95)

which is either positive (if λ1 > 0 and λ2 > 0), negative (if

λ1 < 0 and λ2 < 0), or has a zero at

ỹ =
ξ1 + ξ2

2
+

σ2

ξ2 − ξ1
log

∣

∣

∣

∣

λ1

λ2

∣

∣

∣

∣

(96)

(if λ1 and λ2 have opposite signs). Consequently, if exactly

one of the λ’s is zero, then the set D that achieves f(λ) is

either the entire real line, the empty set, or a ray, i.e., of the

form (−∞,Υ) or (Υ,∞), where Υ is the RHS of (96).

We finally turn to the case where all the λ’s are nonzero.

If they are all of equal sign, then f(λ) has no zeros and the

set D that maximizes f(λ) is either the entire real line R or

the empty set, depending on whether the λ’s are all positive

or all negative. It remains to study the case where the λ’s are

nonzero but not of equal sign. Changing the sign of all the

λ’s is tantamount to multiplying gλ(·) by −1 and therefore

does not change the locations of the zeros, so we can assume

without loss of generality that one of the λ’s, say λ1, is positive

and that the remaining two λ2, λ3 are negative. In this case

gλ(ỹ) = λ1e
− (ỹ−ξ1)2

2σ2 hλ(ỹ), ỹ ∈ R (97)

where

hλ(ỹ) , 1−
∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

e
ξ2
1
−ξ2

2
2σ2 eỹ

ξ2−ξ1
σ2

−
∣

∣

∣

∣

λ3

λ1

∣

∣

∣

∣

e
ξ2
1
−ξ2

3
2σ2 eỹ

ξ3−ξ1
σ2 , ỹ ∈ R. (98)

Note that the zeros of gλ(·) are the same as the zeros of hλ(·).
Further note that hλ(·) is a nonzero analytic function whose

second derivative

∂2

∂ỹ2
hλ(ỹ) = − (ξ2 − ξ1)

2

σ4

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

e
ξ2
1
−ξ2

2
2σ2 eỹ

ξ2−ξ1
σ2

− (ξ3 − ξ1)
2

σ4

∣

∣

∣

∣

λ3

λ1

∣

∣

∣

∣

e
ξ2
1
−ξ2

3
2σ2 eỹ

ξ3−ξ1
σ2 , ỹ ∈ R (99)

is strictly negative. Consequently, hλ(·)—and hence also

gλ(·)—can have at most two zeros. (If it had three or more,

then by Rolle’s Theorem its derivative would have at least two

zeros, and its second derivative would therefore have a zero in

contradiction to (99).) If hλ(·) has at most one zero, then the

set D achieving f(λ) is either the entire real line, the empty

set, or a ray. If it has two zeros, then D comprises two disjoint

rays or else a finite interval—either way, D or its complement

is a finite interval.

We next show that for every λ 6= 0 the quantization region

achieving f(λ) is unique up to sets of Lebesgue measure zero.

Let D⋆(λ) be the quantization region that achieves f(λ), and

let D1 be any other quantization region. Then
∫

D⋆(λ)

gλ(ỹ) dỹ −
∫

D1

gλ(ỹ) dỹ

=

∫

D⋆(λ)∩Dc
1

gλ(ỹ) dỹ −
∫

D1∩D⋆(λ)c
gλ(ỹ) dỹ

≥
∫

D⋆(λ)∩Dc
1

gλ(ỹ) dỹ

≥ 0 (100)

where the second step follows because for every ỹ ∈ D⋆(λ)c

we have gλ(ỹ) < 0; and the last step follows because for

every ỹ ∈ D⋆(λ) we have gλ(ỹ) ≥ 0. (Here Ac denotes

the complement of the set A.) Furthermore, since the zeros

of gλ(·) are isolated, it is nonzero almost everywhere, so the

inequalities hold with equality if, and only if, D⋆(λ)∩Dc
1 and

D1 ∩D⋆(λ)c have both Lebesgue measure zero.

Because quantizers that differ on a set of Lebesgue measure

zero induce identical channel laws, the uniqueness (up to sets

of Lebesgue measure zero) of the set D achieving f(λ) (for

λ 6= 0) implies that for every λ 6= 0 the tuple (ω⋆
1 , ω

⋆
2 , ω

⋆
3)

that achieves f(λ) is unique.

We next note that, by [24, Th. 13.1], every (ω1, ω2, ω3) ∈ W
satisfying

λ1ω1 + λ2ω2 + λ3ω3 < f(λ), for every λ 6= 0

must be an interior point of W . Since an interior point cannot

be an extreme point, it follows that every extreme point of a

compact convex set achieves the supremum defining f(λ) at

some λ 6= 0. Furthermore, since for a given λ 6= 0 the support

function f(λ) is achieved uniquely by a channel law that is

induced by a quantizer of the form (85) or their complement,

it follows that the extreme points of W are all achieved by

quantizers of this form or their complement. Recalling that

mutual information is maximized over W (for a given input

distribution) at an extreme point, and noting that the mutual

information corresponding to the quantizer D is the same as

that corresponding to its complement, we conclude that—for
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any fixed three-mass-points input distribution—the supremum

over all quantizers can be replaced with the supremum over

all quantizers of the form (85), thus proving (84).

C. The Supremum Defining C(P) Is Achieved

Having established that to each quantizer the optimal input

distribution is of three mass points, and having established

that to each three-mass-points input distribution the optimal

quantizer is of the form (85), we conclude that we can express

C(P) of (7) as

C(P) = sup
(p,ξ) : E[X2]≤P,

Υ1≤Υ2

I
(

p,W(Υ1,Υ2|ξ)
)

(101)

where (p, ξ) denotes the three-mass-points distribution of

masses

p = (p1, p2, p3) ∈ [0, 1]3

and locations

ξ = (ξ1, ξ2, ξ3) ∈ R
3

and where W(Υ1,Υ2|ξ) denotes the channel law correspond-

ing to the quantizer D(Υ1,Υ2) and to the mass points ξℓ,
ℓ = 1, 2, 3:

W
(

Υ1,Υ2

∣

∣ ξℓ
)

, Pr
(

Ỹ ∈ D(Υ1,Υ2)
∣

∣ X = ξℓ
)

. (102)

We next show that this supremum is achieved.

By the definition of the supremum, there exists a sequence
{

(pi, ξi,Υ1,i,Υ2,i), i ∈ N
}

(where N denotes the set of

positive integers) such that

lim
i→∞

I
(

pi,W(Υ1,i,Υ2,i|ξi)
)

= C(P). (103)

By taking a subsequence (if needed), we may assume without

loss of generality that pi converges to some p⋆, that ξi
converges to some ξ

⋆
(whose components may be ±∞) and

that Υ1,i and Υ2,i converge to Υ⋆
1 and Υ⋆

2, both of which may

be ±∞. From the continuity of the cumulative distribution

function of the Normal distribution, it follows that, whenever

ξ⋆ℓ is finite,

lim
i→∞

Pr(Υ1,i ≤ ξℓ,i + Z ≤ Υ2,i)

= Pr(Υ⋆
1 ≤ ξ⋆ℓ + Z ≤ Υ⋆

2) (104)

where we recall that Z is a centered Gaussian random variable

of positive variance σ2.

Since the mass p⋆ℓ corresponding to nonfinite locations

ξ⋆ℓ is zero (by the average-power constraint), and since pℓ,i
converges to p⋆ℓ , (104) and the continuity of the binary entropy

function allow us to infer that

lim
i→∞

I
(

pi,W(Υ1,i,Υ2,i|ξi)
)

= lim
i→∞

{

Hb

(

3
∑

ℓ=1

pℓ,iW (Υ1,i,Υ2,i|ξℓ,i)
)

−
3
∑

ℓ=1

pℓ,iHb

(

W (Υ1,i,Υ2,i|ξℓ,i)
)

}

= I
(

p⋆,W(Υ⋆
1,Υ

⋆
2|ξ⋆)

)

(105)

provided that in computing the mutual information on the

LHS of (106) the mass points of zero mass are ignored. This

combines with (103) to imply that

I
(

p⋆,W(Υ⋆
1,Υ

⋆
2|ξ⋆)

)

= C(P). (106)

Noting that the mass points at ±∞ are of zero mass and

therefore ignored, we conclude that C(P) is achieved by an

input distribution of (at most) three finite mass points and by

a quantizer of the form (85).

D. A Threshold Quantizer Is Optimal

Having established that C(P) is achieved by a three-mass-

points input distribution and a quantizer of the form (85), we

now prove that C(P) is in fact achieved by a three-mass-points

input distribution and a threshold quantizer, i.e., a quantizer of

the form (86b). Clearly Υ1 and Υ2 cannot be both nonfinite,

as this would result in zero mutual information, whereas C(P)
is strictly positive whenever P is positive7

C(P) > 0, P > 0. (107)

For the same reason we can assume, without loss of optimality,

that Υ1 6= Υ2. Since (86a) is the complement of a set

of the form (86b)—which gives rise to the same mutual

information—it remains to rule out the case where Υ1 and

Υ2 are both finite.

We shall prove this by contradiction. We shall assume that

the quantization region D(Υ1,Υ2) for some finite Υ1 < Υ2 is

optimal and derive a contradiction to optimality. Assume then

that Υ1 and Υ2 are both finite with Υ1 < Υ2. Define

θ ,
Υ1 +Υ2

2
. (108)

Let ξ be the mass points of the capacity-achieving input

distribution, and let p be the corresponding probabilities. Note

that there is no loss in optimality in assuming that θ is

nonnegative

θ ≥ 0 (109)

because if θ is negative, then we can consider the input (p,−ξ)
(whose second moment is identical to that of (p, ξ)) and the

quantizer D(−Υ2,−Υ1) (whose midpoint is of opposite sign

to that of D(Υ1,Υ2)) which give rise to the same mutual

information as the input (p, ξ) and the quantizer D(Υ1,Υ2).
Assume that the mass points are ordered, i.e., ξ1 < ξ2 < ξ3.

Since the locations of mass points of zero mass have no effect

on the mutual information, there is no loss in optimality in

assuming that the probability of the largest mass point satisfies

p3 > 0. Furthermore, p3 < 1 since p3 = 1 would imply that

C(P) = 0, P > 0 in contradiction to (107).

We continue by noting that the symmetry of the Normal

distribution implies that

W
(

Υ1,Υ2

∣

∣ θ − δ
)

= W
(

Υ1,Υ2

∣

∣ θ + δ
)

, δ ≥ 0. (110)

7This can be verified by noting that a symmetric threshold quantizer and

an equiprobable ±
√
P input distribution yield positive mutual information

for every positive P , cf. (23).
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Indeed, defining ∆ , (Υ2 − Υ1)/2 (so Υ1 = θ − ∆ and

Υ2 = θ +∆), we have

W
(

Υ1,Υ2

∣

∣ θ − δ
)

=

∫ θ+∆

θ−∆

1√
2πσ2

e−
(ỹ−θ+δ)2

2σ2 dỹ

=

∫ θ+∆

θ−∆

1√
2πσ2

e−
(−τ+θ+δ)2

2σ2 dτ

= W
(

Υ1,Υ2

∣

∣ θ + δ
)

(111)

where we made the substitution τ = −ỹ + 2θ. Furthermore,

since θ ≥ 0,

(θ − δ)2 ≤ (θ + δ)2, δ ≥ 0. (112)

As we next argue, (110) and (112) imply that there is no loss

in optimality in assuming that

ξ1 < ξ2 < ξ3 ≤ θ. (113)

Indeed, suppose ξ3 > θ. Then ξ3 can be written as θ + δ,

for some δ > 0. However, ξ̃3 = θ − δ gives rise to the same

channel law (110) but has a smaller cost (112). Thus, for every

ξ3 > θ we can find a ξ̃3 < θ satisfying the power constraint

that achieves the same rate.

We next show that (113) leads to a contradiction by consid-

ering a perturbation of the quantizer. For every Γ > Υ2 define

the perturbed quantization region

D̃ , (Υ1,Υ2) ∪ [Γ,+∞) (114)

and denote the channel law corresponding to D̃ and ξ by

W(D̃|ξ):

W
(

D̃
∣

∣ ξℓ
)

, Pr
(

Ỹ ∈ D̃
∣

∣ X = ξℓ
)

= W (Υ1,Υ2|ξℓ) +Q

(

Γ− ξℓ
σ

)

(115)

for ℓ = 1, 2, 3. We will contradict the optimality of the input

(p, ξ) and the quantizer D(Υ1,Υ2) by showing that for (p, ξ)
satisfying (113), we can find a sufficiently large Γ exceeding

Υ2 such that

I
(

p,W(D̃|ξ)
)

> I
(

p,W(Υ1,Υ2|ξ)
)

. (116)

To show this we use (115) to express the mutual information

on the LHS of (116) as

I
(

p,W(D̃|ξ)
)

= Hb

(

P (Υ1,Υ2) + P (Γ)
)

−
3
∑

ℓ=1

pℓHb

(

W
(

Υ1,Υ2

∣

∣ ξℓ
)

+Q

(

Γ− ξℓ
σ

)

)

(117)

where

P (Υ1,Υ2) ,
3
∑

ℓ=1

pℓ W (Υ1,Υ2|ξℓ) (118a)

P (Γ) ,

3
∑

ℓ=1

pℓ Q

(

Γ− ξℓ
σ

)

. (118b)

A Taylor series expansion of Hb(p+ ǫ) around p yields

Hb(p+ ǫ) = Hb(p) + ǫ log
1− p

p
+ R(p, ǫ) (119)

for 0 < p < 1− ǫ and some remainder R(p, ǫ) satisfying

|R(p, ǫ)| ≤ ǫ2

2

1

p(1− p− ǫ)
. (120)

With this, we obtain

I
(

p,W(D̃|ξ)
)

= Hb

(

P (Υ1,Υ2)
)

+ P (Γ) log
1− P (Υ1,Υ2)

P (Υ1,Υ2)

−
3
∑

ℓ=1

pℓHb

(

W
(

Υ1,Υ2

∣

∣ ξℓ
)

)

−
3
∑

ℓ=1

pℓQ

(

Γ− ξℓ
σ

)

log
1−W

(

Υ1,Υ2

∣

∣ ξℓ
)

W
(

Υ1,Υ2

∣

∣ ξℓ
)

+ K(p, ξ,Γ)

= I
(

p,W(Υ1,Υ2|ξ)
)

+ P (Γ) log
1− P (Υ1,Υ2)

P (Υ1,Υ2)

−
3
∑

ℓ=1

pℓQ

(

Γ− ξℓ
σ

)

log
1−W

(

Υ1,Υ2

∣

∣ ξℓ
)

W
(

Υ1,Υ2

∣

∣ ξℓ
)

+ K(p, ξ,Γ) (121)

where

K(p, ξ,Γ) , R
(

P (Υ1,Υ2), P (Γ)
)

−
3
∑

ℓ=1

pℓR

(

W
(

Υ1,Υ2

∣

∣ ξℓ
)

, Q

(

Γ− ξℓ
σ

)

)

. (122)

Since the LHS of (115) is strictly smaller than 1 so is its

RHS and it follows upon averaging over p that for every

P > 0 and every Υ1 ≤ Υ2 < Γ

P (Υ1,Υ2) + P (Γ) < 1. (123)

Furthermore, P (Υ1,Υ2) is strictly positive since

W (Υ1,Υ2|ξℓ) > 0 for ℓ = 1, 2, 3. Using (120), it thus

follows that

lim
Γ→∞

∣

∣R
(

P (Υ1,Υ2), P (Γ)
)∣

∣

Q
(

Γ−ξ3
σ

)

≤ lim
Γ→∞

[P (Γ)]2

Q
(

Γ−ξ3
σ

)

1

2P (Υ1,Υ2)
(

1− P (Υ1,Υ2)− P (Γ)
)

≤ lim
Γ→∞

Q
(

Γ−ξ3
σ

)

2P (Υ1,Υ2)
(

1− P (Υ1,Υ2)− P (Γ)
)

= 0 (124)

where the second step follows because ξ1 < ξ2 < ξ3, which

implies that

P (Γ) ≤ Q

(

Γ− ξ3
σ

)

and where the last step follows because P (Γ) and

Q
(

(Γ− ξ3)/σ
)

both tend to zero as Γ tends to infinity. Along

the same lines, it can be shown that for ℓ = 1, 2, 3

lim
Γ→∞

∣

∣

∣

∣

R

(

W (Υ1,Υ2|ξℓ), Q
(

Γ−ξℓ
σ

)

)∣

∣

∣

∣

Q
(

Γ−ξ3
σ

) = 0. (125)
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It thus follows from (122), (124), (125), and the Triangle

Inequality that

lim
Γ→∞

∣

∣K(q, ξ,Γ)
∣

∣

Q
(

Γ−ξ3
σ

)

≤ lim
Γ→∞

∣

∣R
(

P (Υ1,Υ2), P (Γ)
)∣

∣

Q
(

Γ−ξ3
σ

)

+ lim
Γ→∞

3
∑

ℓ=1

pℓ

∣

∣

∣

∣

R

(

W (Υ1,Υ2|ξℓ), Q
(

Γ−ξℓ
σ

)

)∣

∣

∣

∣

Q
(

Γ−ξ3
σ

)

= 0. (126)

We further have by [14, Prop. 19.4.2] that for ℓ = 1, 2

lim
Γ→∞

Q
(

Γ−ξℓ
σ

)

Q
(

Γ−ξ3
σ

) ≤ lim
Γ→∞

Γ− ξ3
Γ− ξℓ

e
ξ2
3
−ξ2

ℓ
2σ2

1− σ2

(Γ−ξ3)2

e−Γ
ξ3−ξℓ

σ2

= 0. (127)

We thus obtain from (118b), (121), (126), and (127) that

lim
Γ→∞

I
(

p,W(D̃|ξ)
)

− I
(

p,W(Υ1,Υ2|ξ)
)

Q
(

Γ−ξ3
σ

)

= p3 log
1− P (Υ1,Υ2)

P (Υ1,Υ2)
− p3 log

1−W
(

Υ1,Υ2

∣

∣ ξ3
)

W
(

Υ1,Υ2

∣

∣ ξ3
)

= p3

(

log
1− P (Υ1,Υ2)

1−W
(

Υ1,Υ2

∣

∣ ξ3
) + log

W
(

Υ1,Υ2

∣

∣ ξ3
)

P (Υ1,Υ2)

)

> 0 (128)

where the inequality follows from the assumption p3 > 0 and

by noting that

ξ 7→ W
(

Υ1,Υ2

∣

∣ ξ
)

is strictly increasing on (−∞, θ) (see Appendix II), which

together with p3 < 1 implies that

W
(

Υ1,Υ2

∣

∣ ξ3
)

> P (Υ1,Υ2). (129)

Consequently, for a sufficiently large Γ, I
(

p,W(D̃|ξ)
)

is

strictly larger than I
(

p,W(Υ1,Υ2|ξ)
)

, contradicting the as-

sumption that D(Υ1,Υ2) with finite Υ1 ≤ Υ2 achieves C(P).

E. Centered, Variance-P Input Distribution

We have shown that the supremum in (7) is achieved by

some input distribution that is concentrated on at most three

points and by some threshold quantizer:

C(P) = I
(

p⋆,W(Υ⋆|ξ⋆)
)

(130)

where ξ⋆ ∈ R3 is the location of the mass points, p⋆ is

their corresponding probabilities, Υ⋆ is the threshold of the

quantizer, and W(Υ⋆|ξ⋆) is the resulting channel law. We next

show that the input distribution (p⋆, ξ⋆) must be centered and

must satisfy the average-power constraint with equality:

3
∑

ℓ=1

p⋆ℓ ξ
⋆
ℓ = 0 (131a)

3
∑

ℓ=1

p⋆ℓ
(

ξ⋆ℓ
)2

= P . (131b)

To show this we note that, for a fixed threshold quantizer Υ⋆,

the capacity as a function of the maximal-allowed average-

power is a concave nondecreasing function that is strictly

smaller than 1 bit per channel use, and that tends to 1 bit

per channel use as the maximal-allowed average-power tends

to infinity. Consequently, this capacity-cost function must be

strictly increasing and the second moment of (p⋆, ξ⋆) must

therefore be P . By noting that the capacity is achieved by some

threshold quantizer, this argument also proves that C(P) must

be strictly increasing in P . This further implies that (p⋆, ξ⋆)
must be centered because otherwise we could shift ξ⋆ and

Υ⋆ by the mean and thus reduce the second moment without

changing the mutual information.

VIII. PROOFS: CAPACITY PER UNIT-ENERGY

A. Proof of Theorem 2

We will lower-bound the RHS of (16) by restricting the

supremum to threshold quantizers (2) and thus demonstrate

that

Ċ(0) ≥ 1

2σ2
. (132)

Together with the upper bound (22), this will prove Theorem 2.

To prove (132), we first note that a threshold quantizer

induces the channel

P
(

Y = 1
∣

∣ X = x) = Q

(

Υ− x

σ

)

, x ∈ R (133)

and P
(

Y = 0
∣

∣ X = x
)

= 1 − P
(

Y = 1
∣

∣ X = x). By (16),

we thus obtain

Ċ(0) ≥ sup
ξ 6=0,Υ∈R











Q
(

Υ−ξ
σ

)

log
Q(Υ−ξ

σ )
Q(Υ

σ )

ξ2

+

[

1−Q
(

Υ−ξ
σ

)]

log
1−Q(Υ−ξ

σ )
1−Q(Υ

σ )

ξ2











= sup
ξ 6=0,Υ∈R











Q
(

Υ−ξ
σ

)

log 1

Q(Υ
σ )

ξ2

+

[

1−Q
(

Υ−ξ
σ

)]

log 1

1−Q(Υ
σ )

ξ2

−
Hb

(

Q
(

Υ−ξ
σ

))

ξ2











. (134)

We now change variables by defining µ , ξ − Υ and by

replacing the supremum over (ξ,Υ) with the supremum over

(ξ, µ). This latter supremum we lower-bound by taking ξ to

infinity while holding µ fixed. This yields for the last two

terms on the RHS of (134)

lim
ξ→∞

Hb

(

Q
(

−µ
σ

))

ξ2
= 0 (135)
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and

lim
ξ→∞

[

1−Q
(

−µ
σ

)]

log 1

1−Q( ξ−µ
σ )

ξ2
= 0. (136)

We use the upper bound on the Q-function (47) to lower-bound

the first term on the RHS of (134) as

lim
ξ→∞

Q
(

−µ
σ

)

log 1

Q( ξ−µ
σ )

ξ2

≥ Q
(

−µ

σ

)

lim
ξ→∞

1
2 log(2π) + log ξ−µ

σ + (ξ−µ)2

2σ2

ξ2

= Q
(

−µ

σ

) 1

2σ2
. (137)

Combining (135)–(137) with (134) yields

Ċ(0) ≥ Q
(

−µ

σ

) 1

2σ2
(138)

from which we obtain (132) by letting µ tend to infinity. This

proves Theorem 2.

Note that (16) is achieved by binary on-off keying [11]. By

showing that (16) is lower-bounded by 1/(2σ2) as we take ξ
to infinity, we thus implicitly show that Ċ(0) is achieved by

binary on-off keying where the nonzero mass point tends to

infinity as P tends to zero.

B. Proof of Theorem 3

We first argue that in order to prove Theorem 3 it suffices

to show that for every fixed ν > 0

sup
ξ2≤ν,D

D
(

PY |X=ξ

∥

∥ PY |X=0

)

ξ2
<

1

2σ2
. (139)

Suppose then that this strict inequality holds for every

ν > 0. Consider a family of quantizers and input distributions

parametrized by P with E
[

X2
]

≤ P . By [11, Eq. (15)], it

follows that for every ν > 0

I(X ;Y )

P
≤
∫

D
(

PY |X=x

∥

∥ PY |X=0

)

x2

x2

P dPX(x)

=

∫

x2≤ν

D
(

PY |X=x

∥

∥ PY |X=0

)

x2

x2

P dPX(x)

+

∫

x2>ν

D
(

PY |X=x

∥

∥ PY |X=0

)

x2

x2

P dPX(x)

≤ sup
ξ2≤ν,D

{

D
(

PY |X=ξ

∥

∥ PY |X=0

)

ξ2

}

E
[

X2 I
{

X2 ≤ ν
}]

P

+ sup
ξ2>ν,D

{

D
(

PY |X=ξ

∥

∥ PY |X=0

)

ξ2

}

E
[

X2 I
{

X2 > ν
}]

P

= sup
ξ2≤ν,D

{

D
(

PY |X=ξ

∥

∥ PY |X=0

)

ξ2

}

E
[

X2 I
{

X2 ≤ ν
}]

P

+
1

2σ2

E
[

X2 I
{

X2 > ν
}]

P (140)

where the last step follows because the capacity per unit-

energy can be achieved by binary on-off keying where the

nonzero mass point tends to infinity (see Section VIII-A), so

sup
ξ2>ν,D

D
(

PY |X=ξ

∥

∥ PY |X=0

)

ξ2
=

1

2σ2
. (141)

Taking the limit as P tends to zero on both sides of (140)

yields

lim
P↓0

I(X ;Y )

P

≤ lim
P↓0

(

1

2σ2

E
[

X2 I
{

X2 > ν
}]

P

+ sup
ξ2≤ν,D

{

D(PY |X=ξ‖PY |X=0)

ξ2

}

E
[

X2 I
{

X2 ≤ ν
}]

P

)

≤ 1

2σ2
(142)

where lim denotes the limit inferior. Here the last step follows

from (139) and from the average-power constraint

E
[

X2 I
{

X2 > ν
}]

P +
E
[

X2 I
{

X2 ≤ ν
}]

P ≤ 1. (143)

Since the inequality in (139) is strict for every ν > 0, it follows

from (143) that the last line in (142) can hold with equality

only if for every ν > 0

lim
P↓0

E
[

X2 I
{

X2 > ν
}]

P = 1. (144)

Thus, if (139) holds, then every family of distributions of X
satisfying E

[

X2
]

≤ P that achieves

lim
P↓0

I(X ;Y )

P =
1

2σ2
(145)

must be flash signaling, thus proving Theorem 3.

Having established that in order to prove Theorem 3 it

suffices to show that (139) holds for every ν > 0, we now

proceed to do so. We first note that, for every ξ 6= 0, the

supremum in (139) over all quantizers D can be replaced with

the supremum over all threshold quantizers. Indeed, let

W ,

{

(ω1, ω2) ∈ [0, 1]2 :

ω1 = Pr
(

Ỹ ∈ D
∣

∣ X = ξ
)

,

ω2 = Pr
(

Ỹ ∈ D
∣

∣ X = 0
)

, D ⊂ R

}

(146)

denote the set of possible conditional probability distributions
(

PY |X=ξ, PY |X=0

)

that different quantizers can induce. Ap-

plying the methods of Section VII-B, it can be shown that

the extreme points of W correspond to threshold quantizers.

(Recall that W denotes the closure of the convex hull of W .)

Indeed, for binary inputs, the support function f(·) is given by

(92) with λ3 = 0, ξ1 = ξ, and ξ2 = 0. The quantization region

D⋆(λ) that achieves the supremum in (92) consists of the set of

ỹ ∈ R for which gλ(ỹ) in (95) is nonnegative. Since gλ(·) has

at most one zero, it follows that D⋆(λ) consists of at most two

regions, i.e., it is a threshold quantizer. Using that the relative

entropy on the LHS of (139) is convex in
(

PY |X=ξ, PY |X=0

)

[10, Th. 2.7.2], it follows by the same arguments as in

Section VII-B that, for every ξ 6= 0, D
(

PY |X=ξ

∥

∥ PY |X=0

)

is maximized by some threshold quantizer.
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We next note that we can assume, without loss of opti-

mality, that the threshold Υ of the quantizer is nonnegative.

Consequently, the supremum over D on the LHS of (139)

can be replaced by a supremum over threshold quantizers of

nonnegative thresholds Υ ≥ 0. Indeed, for x ∈ R,

Pr
(

Ỹ ≥ Υ
∣

∣ X = x
)

= 1− Pr
(

Ỹ ≥ −Υ
∣

∣ X = −x
)

(147)

and consequently,

D
(

PY |X=ξ

∥

∥ PY |X=0

)∣

∣

D={ỹ∈R : ỹ≥Υ}
= D

(

PY |X=−ξ

∥

∥ PY |X=0

)∣

∣

D={ỹ∈R : ỹ≥−Υ} . (148)

Thus, to every pair (ξ,Υ) corresponds another pair (−ξ,−Υ)
achieving the same relative entropy. Since ξ and −ξ have the

same magnitude, this implies that both pairs give rise to the

same value for

D
(

PY |X=ξ

∥

∥ PY |X=0

)

ξ2

hence we can assume without loss of generality that Υ ≥ 0.

We continue by defining the random variable U as

U , Ỹ I
{

Ỹ ≥ 0
}

. (149)

Note that, for Υ ≥ 0, the quantizer’s output can be expressed

as Y = I {U ≥ Υ}. It thus follows from the Data Processing

Inequality for Relative Entropy [10, Sec. 2.9] that

D
(

PY |X=ξ

∥

∥ PY |X=0

)

≤ D
(

PU|X=ξ

∥

∥ PU|X=0

)

=
1√
2πσ2

∫ ∞

0

e−
(ỹ−ξ)2

2σ2 log
e−

(ỹ−ξ)2

2σ2

e−
ỹ2

2σ2

dỹ

+
1√
2πσ2

(∫ 0

−∞
e−

(ỹ−ξ)2

2σ2 dỹ

)

log

∫ 0

−∞
e−

(ỹ−ξ)2

2σ2 dỹ

∫ 0

−∞
e−

ỹ2

2σ2 dỹ

, Ψ(ξ) (150)

irrespective of the threshold Υ ≥ 0. Here the last equality

should be viewed as the definition of Ψ(ξ). By applying the

Log-Sum Inequality [10, Th. 2.7.1] to Ψ(ξ), we obtain

Ψ(ξ) ≤ 1√
2πσ2

∫ ∞

−∞
e−

(ỹ−ξ)2

2σ2 log
e−

(ỹ−ξ)2

2σ2

e−
ỹ2

2σ2

dỹ

=
ξ2

2σ2
(151)

with equality if, and only if,

e−
(ỹ−ξ)2

2σ2

e−
ỹ2

2σ2

= 2Q

(

ξ

σ

)

, for almost every ỹ ≤ 0. (152)

Since (152) holds only for ξ = 0, this yields

Ψ(ξ) <
ξ2

2σ2
, ξ 6= 0. (153)

Note that (153) and (151) give an upper bound on the relative

entropy that does not depend on the threshold. By combining

(150) and (153), and recalling that for every ξ 6= 0 the relative

entropy in (139) is maximized by some threshold quantizer,

we obtain

sup
D

D
(

PY |X=ξ

∥

∥ PY |X=0

)

ξ2
≤ Ψ(ξ)

ξ2
<

1

2σ2
, ξ 6= 0. (154)

Since the function ξ 7→ ξ−2Ψ(ξ) is continuous on R \ {0}
and, as shown in Appendix III, satisfies

lim
ξ→0

Ψ(ξ)

ξ2
=

1

2σ2

(

1

2
+

1

π

)

<
1

2σ2
(155)

we obtain (139) by maximizing (154) over ξ2 ≤ ν. This proves

Theorem 3.

C. Proof of Corollary 1

To prove Corollary 1 we need to show that for every ν > 0
and every threshold quantizer with threshold 0 ≤ Υ ≤ ν,

sup
ξ 6=0,0≤Υ≤ν

D
(

PY |X=ξ

∥

∥ PY |X=0

)

ξ2
<

1

2σ2
. (156)

By (154) we have that for every ξ 6= 0 and every ν > 0

sup
0≤Υ≤ν

D
(

PY |X=ξ

∥

∥ PY |X=0

)

ξ2
≤ Ψ(ξ)

ξ2
<

1

2σ2
(157)

where ξ 7→ ξ−2Ψ(ξ) is continuous on R \ {0} and satis-

fies (155). To conclude the proof of the corollary it thus

remains to show that for every ν > 0

lim
ξ2→∞

sup
0≤Υ≤ν

D
(

PY |X=ξ

∥

∥ PY |X=0

)

ξ2
<

1

2σ2
(158)

where lim denotes the limit superior. This can be done by

noting that for 0 ≤ Υ ≤ ν

D
(

PY |X=ξ

∥

∥ PY |X=0

)

= Q

(

Υ− ξ

σ

)

log
1

Q
(

Υ
σ

) −Hb

(

Q

(

Υ− ξ

σ

)

)

+

[

1−Q

(

Υ− ξ

σ

)

]

log
1

1−Q
(

Υ
σ

)

≤ log
1

Q
(

Υ
σ

) + log
1

1−Q
(

Υ
σ

)

≤ log
1

Q
(

ν
σ

) + log 2 (159)

where the second step follows because 0 ≤ Q(x) ≤ 1, x ∈ R

and Hb(p) ≥ 0, 0 ≤ p ≤ 1, and where the last step follows

because x 7→ Q(x) is monotonically decreasing in x ∈ R and

because 0 ≤ Υ ≤ ν. Computing the limiting ratio of the RHS

of (159) to ξ2 as ξ2 tends to infinity yields for every ν > 0

lim
ξ2→∞

sup
0≤Υ≤ν

D
(

PY |X=ξ

∥

∥ PY |X=0

)

ξ2
= 0 (160)

thus establishing (158). This proves Corollary 1.
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IX. PROOFS: PEAK-POWER-LIMITED CHANNELS

A. Proof of Proposition 1

The peak-power-limited Gaussian channel with one-bit out-

put quantization is a memoryless channel with a continuous

input taking values in
[

−
√
P ,

√
P
]

and a binary output. It thus

follows from Dubins’s Theorem that, for every quantization

region D, the capacity-achieving input distribution is discrete

with two mass points [23, Sec. II-C]. We shall denote these

two mass points by ξ1 and ξ2.

We next argue that threshold quantizers are optimal. Let W
denote the set of all possible channel laws, i.e.,

W ,

{

(ω1, ω2) ∈ [0, 1]2 :

ωℓ = Pr
(

Ỹ ∈ D
∣

∣ X = ξℓ
)

,D ⊂ R

}

. (161)

Applying the methods of Section VII-B to binary channel in-

puts, it can be shown that the extreme points of W correspond

to threshold quantizers (2) or complements thereof. (For more

details, see also Section VIII-B.) By the same arguments as in

Section VII-B, it follows that for every binary random variable

X , the mutual information I(X ;Y ) is maximized by some

threshold quantizer.

The capacity of the peak-power-limited Gaussian channel

with one-bit output quantization is thus given by

CPP(P) = sup
(p,ξ),Υ∈R

I
(

p,W(Υ|ξ)
)

(162)

where (p, ξ) denotes the two-mass-points distribution with

masses

p = (p1, p2) ∈ [0, 1]2

and locations

ξ = (ξ1, ξ2) ∈ [−
√
P ,

√
P ]2

and where W(Υ|ξ) denotes the channel law corresponding to

the threshold quantizer (2) and to the mass points (ξ1, ξ2):

W (Υ|ξℓ) = Pr
(

Ỹ ≥ Υ
∣

∣ X = ξℓ
)

, ℓ = 1, 2. (163)

Following the steps in Section VII-C, it can be further shown

that the supremum on the RHS of (162) is achieved.

In the following, we demonstrate that there is no loss in

optimality in assuming that the mass points of the capacity-

achieving input distribution are located at −
√
P and

√
P .

Indeed, suppose that the optimal mass points are located at

−
√
P ≤ ξ1 < ξ2 <

√
P. (164)

Then, it follows from the strict monotonicity of the Q-function

that

Q

(

Υ− ξ1
σ

)

< Q

(

Υ− ξ2
σ

)

< Q

(

Υ−
√
P

σ

)

. (165)

Since W (Υ|ξ1) does not depend on ξ2, this implies that for

every Υ and ξ1, the channel law W(Υ|ξ) can be written

as a convex combination of W(Υ|ψ) and W(Υ|ζ), where

ψ = (ξ1, ξ1) and ζ =
(

ξ1,
√
P
)

. By the convexity of

mutual information in the channel law, and by noting that

I
(

p,W(Υ|ψ)
)

= 0, it follows that

I
(

p,W(Υ|ξ)
)

≤ I
(

p,W(Υ|ζ)
)

(166)

for every Υ and (p, ξ) satisfying (164). Thus, ξ2 =
√
P

achieves the capacity. By repeating the same arguments for

ξ1, we obtain that the mass points of the capacity-achieving

input distribution are located at −
√
P and

√
P . It follows that

the capacity can be expressed as

CPP(P) = max
Υ∈R

CΥ(P) (167)

where CΥ(P) denotes the capacity of the binary asymmetric

channel with crossover probabilities

W (0|1) = Q

(
√
P −Υ

σ

)

(168a)

W (1|0) = Q

(
√
P +Υ

σ

)

. (168b)

For every Υ ∈ R, the capacity of the binary asymmetric

channel can be computed as

CΥ(P) = log
(

1 + e−θ
)

+ θW (1|0)−Hb

(

W (1|0)
)

(169)

where

θ ,
Hb

(

W (0|1)
)

−Hb

(

W (1|0)
)

1−W (0|1)−W (1|0) . (170)

Combining (169), (168a), and (168b) with (167) yields

CPP(P) = max
Υ∈R

{

log
(

1 + e−Θ(P,Υ)
)

+Q

(√
P +Υ

σ

)

Θ(P ,Υ)−Hb

(

Q

(√
P +Υ

σ

))}

(171)

where

Θ(P ,Υ) ,
Hb

(

Q
(√

P−Υ
σ

))

−Hb

(

Q
(√

P+Υ
σ

))

1−Q
(√

P−Υ
σ

)

−Q
(√

P+Υ
σ

) . (172)

Proposition 1 follows then by noting that the RHS of (171)

is symmetric in Υ ∈ R, so the maximization in (171) can be

restricted to Υ ≥ 0 without reducing (171).

B. Proof of Proposition 2

It was shown in the previous section that the capacity

is achieved with a threshold quantizer and a binary input

distribution having mass points at
√
P and −

√
P . Thus, the

capacity can be expressed as

CPP

(

P
)

= max
Υ≥0

{

Hb

(

p+Q

(

Υ−A
σ

)

+ p−Q

(

Υ+A
σ

)

)

− p+Hb

(

Q

(

Υ−A
σ

)

)

− p−Hb

(

Q

(

Υ+A
σ

)

)}

(173)

for some probabilities 0 < p+ < 1 and 0 < p− < 1 satisfying

p+ + p− = 1. To simplify notation, we have introduced

A ,
√
P and we have made the dependence of p+ and p−

on Υ not explicit.
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Expanding Hb(·) as a Taylor series around Q
(

Υ/σ
)

, we

obtain for the first term on the RHS of (173)

Hb

(

p+Q

(

Υ−A
σ

)

+ p−Q

(

Υ+A
σ

)

)

= Hb

(

Q

(

Υ

σ

)

)

+ log
1−Q

(

Υ
σ

)

Q
(

Υ
σ

) ×

×
[

p+Q

(

Υ−A
σ

)

+ p−Q

(

Υ+A
σ

)

−Q

(

Υ

σ

)]

− 1

2Q
(

Υ
σ

)[

1−Q
(

Υ
σ

)]×

×
[

p+Q

(

Υ−A
σ

)

+ p−Q

(

Υ+A
σ

)

−Q

(

Υ

σ

)

]2

+ RH(A,Υ, p+) (174)

where

RH(A,Υ, p+) ,
1− 2p̃

6p̃ (1− p̃)
×

×
[

p+Q

(

Υ−A
σ

)

+ p−Q

(

Υ+A
σ

)

−Q

(

Υ

σ

)

]3

(175)

for some p̃ ∈
[

Q
(

(Υ + A)/σ
)

, Q
(

(Υ − A)/σ
)]

. Expanding

the Q-function as a Taylor series around Υ/σ yields

p+Q

(

Υ−A
σ

)

+ p−Q

(

Υ+A
σ

)

−Q

(

Υ

σ

)

= (p+ − p−)
A
σ

1√
2π

e−
Υ2

2σ2 + RQ(A,Υ, p+) (176)

where

RQ(A,Υ, p+) ,
A2

2σ2

x̃√
2πσ2

e−
x̃2

2σ2 (177)

for some x̃ ∈ [Υ−A,Υ+A]. Note that
∣

∣x̃ exp
(

−x̃2/(2σ2)
)∣

∣ ≤ σ/
√
e (178)

so RQ(A,Υ, p+) satisfies

∣

∣RQ(A,Υ, p+)
∣

∣ ≤ A2

2σ2
√
2πe

, 0 ≤ p+ ≤ 1. (179)

Combining (176) with (174), we obtain for the first term on

the RHS of (173)

Hb

(

p+Q

(

Υ−A
σ

)

+ p−Q

(

Υ+A
σ

)

)

= Hb

(

Q

(

Υ

σ

)

)

+ log
1−Q

(

Υ
σ

)

Q
(

Υ
σ

) ×

×
[

p+Q

(

Υ−A
σ

)

+ p−Q

(

Υ+A
σ

)

−Q

(

Υ

σ

)]

− 1

2Q
(

Υ
σ

)[

1−Q
(

Υ
σ

)]×

×
[

(p+ − p−)
A
σ

1√
2π

e−
Υ2

2σ2 + RQ(A,Υ, p+)

]2

+ RH(A,Υ, p+)

= Hb

(

Q

(

Υ

σ

)

)

+ log
1−Q

(

Υ
σ

)

Q
(

Υ
σ

) ×

×
[

p+Q

(

Υ−A
σ

)

+ p−Q

(

Υ+A
σ

)

−Q

(

Υ

σ

)]

− A2

σ2

e−
Υ2

σ2

4πQ
(

Υ
σ

)[

1−Q
(

Υ
σ

)] (p+ − p−)
2

+ K(A,Υ, p+) + RH(A,Υ, p+) (180)

where

K(A,Υ, p+) , −
2(p+ − p−) 1√

2π
e−

Υ2

2σ2 A
σ RQ(A,Υ, p+)

2Q
(

Υ
σ

)[

1−Q
(

Υ
σ

)]

−
∣

∣RQ(A,Υ, p+)
∣

∣

2

2Q
(

Υ
σ

)[

1−Q
(

Υ
σ

)] . (181)

Taylor-series expansions for the last two terms on the RHS

of (173) follow directly from (180) by setting p+ to 1 and

to 0. Thus, by applying (180) to (173), and by using that

p+ + p− = 1, we obtain

CPP(P) = max
Υ≥0







A2

σ2

e−
Υ2

σ2

4πQ
(

Υ
σ

)[

1−Q
(

Υ
σ

)]

[

1− (p+ − p−)
2
]

+ K(A,Υ, p+) + RH(A,Υ, p+)

− p+
[

K(A,Υ, 1) + RH(A,Υ, 1)
]

− p−
[

K(A,Υ, 0) + RH(A,Υ, 0)
]







. (182)

As shown in Appendix IV, we have

lim
A↓0

sup
Υ≥0

|RH(A,Υ, p+)|
A2

= 0, 0 ≤ p+ ≤ 1 (183a)

lim
A↓0

sup
Υ≥0

|K(A,Υ, p+)|
A2

= 0, 0 ≤ p+ ≤ 1. (183b)

Using (183a), (183b), and the Triangle Inequality, (182) can

thus be upper-bounded by

CPP(P) ≤ sup
Υ≥0

A2

σ2

e−
Υ2

σ2
[

1− (p+ − p−)2
]

4πQ
(

Υ
σ

)[

1−Q
(

Υ
σ

)] + o
(

A2
)

(184)

where limA↓0 o
(

A2
)

/A2 = 0. Consequently, dividing (184)

by P = A2 and computing the limit as P tends to zero, yields

lim
P↓0

CPP(P)

P ≤ sup
Υ≥0

1

σ2

e−
Υ2

σ2
[

1− (p+ − p−)2
]

4πQ
(

Υ
σ

)[

1−Q
(

Υ
σ

)]

≤ sup
Υ≥0

e−
Υ2

σ2

4πQ
(

Υ
σ

)[

1−Q
(

Υ
σ

)]

1

σ2
(185)

where the second inequality holds with equality for

p+ = p− = 1/2.

It remains to show that the maximum on the RHS of (185)

is attained for Υ = 0. To this end, we argue that the function

f(Υ) ,
e−

Υ2

σ2

Q
(

Υ
σ

)[

1−Q
(

Υ
σ

)] , Υ ≥ 0 (186)
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Figure 3. The function u 7→ g(u) for 0 ≤ u ≤ 2.

is monotonically decreasing in Υ ≥ 0. Indeed, the first

derivative of f(·) is given by

f ′(Υ) = −
1
σ e

−Υ2

σ2

[

Q
(

Υ
σ

)]2[
1−Q

(

Υ
σ

)]2 g

(

Υ

σ

)

, Υ ≥ 0 (187)

where

g(u) , 2uQ(u)[1−Q(u)]− e−
u2

2√
2π

[1− 2Q(u)] (188)

for u ≥ 0. For u ≥ 2, we lower-bound the Q-function as [14,

Prop. 19.4.2]

Q(u) >
3

4

1√
2πu

e−
u2

2 , u ≥ 2 (189)

to obtain

g(u) >
3

2

e−
u2

2√
2π

[1−Q(u)]− e−
u2

2√
2π

[1− 2Q(u)]

=
e−

u2

2√
8π

[1 +Q(u)]

> 0. (190)

For 0 ≤ u ≤ 2, it can be shown numerically that g(u) ≥ 0;

see Figure 3.

It thus follows that g
(

Υ/σ
)

≥ 0, Υ/σ ≥ 0 and hence, by

(187), f ′(Υ) ≤ 0, Υ ≥ 0. Consequently,

max
Υ≥0

f(Υ) = f(0) = 4 (191)

which together with (185) yields

lim
P↓0

CPP(P)

P ≤ 1

πσ2
. (192)

Noting that the RHS of (192) is achieved for p+ = p− = 1/2
and a symmetric threshold quantizer (cf. (26)), this proves

Proposition 2.

X. PROOFS: FADING CHANNELS

A. Proof of Theorem 4

We will lower-bound the RHS of (68) by restricting the

supremum to radial quantizers

D =
{

ỹ ∈ C : |ỹ| ≥ Υ
}

, Υ > 0 (193)

and thus demonstrate that

Ċ(0) ≥ 1

σ2
. (194)

Together with the upper bound (69), this will prove Theorem 4.

To prove (194), note that, conditioned on (H,X) = (h, x),
the squared magnitude of

√

2/σ2Ỹ has a noncentral chi-

square distribution with 2 degrees of freedom and noncen-

trality parameter 2
σ2 |h|2|x|2 [25, p. 8]. Consequently, a radial

quantizer induces the channel [25, Sec. 2-E]

Pr
(

Y = 1
∣

∣ H = h,X = x
)

= Q1

(

√

2

σ2
|h||x|,

√

2

σ2
Υ

)

(195)

for h ∈ C, x ∈ C, and Υ > 0, where Q1(·, ·) denotes the

first-order Marcum Q-function [25, Eq. (2.20)]. For x = 0
this becomes

Pr
(

Y = 1
∣

∣ H = h,X = 0
)

= e−
Υ2

σ2 (196)

for h ∈ C and Υ > 0. This yields

D
(

PY |H,X=ξ

∥

∥ PY |H,X=0

∣

∣ PH

)

= E

[

Q1

(

√

2

σ2
|H ||ξ|,

√

2

σ2
Υ

)

log
1

e−
Υ2

σ2

]

+ E

[{

1−Q1

(

√

2

σ2
|H ||ξ|,

√

2

σ2
Υ

)}

log
1

1− e−
Υ2

σ2

]

− E

[

Hb

(

Q1

(

√

2

σ2
|H ||ξ|,

√

2

σ2
Υ

))]

(197a)

≥ E

[

Q1

(

√

2

σ2
|H ||ξ|,

√

2

σ2
Υ

)

Υ2

σ2

]

− log 2 (197b)

where (197b) follows because the second term in (197a) is

nonnegative, and because the binary entropy function is upper-

bounded by log 2.

By applying (197b) to (68), we obtain

Ċ(0) ≥ sup
ξ 6=0,
Υ>0

{

E

[

Q1

(

√

2

σ2
|H ||ξ|,

√

2

σ2
Υ

)

Υ2

|ξ|2σ2

]

− 1

|ξ|2 log 2

}

. (198)

We lower-bound the supremum on the RHS of (198) by

choosing Υ = µ|h||ξ| for some fixed 0 < µ < 1 and by taking

|ξ| to infinity. We then lower-bound the first-order Marcum

Q-function using [25, Sec. C-2, Eq. (C.24)]

Q1(α, β)

≥ 1− 1

2

[

exp

(

− (α− β)2

2

)

− exp

(

− (α+ β)2

2

)

]

(199)
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for α > β ≥ 0. This yields

Ċ(0)

≥ µ2E
[

|H |2
]

σ2

− lim
|ξ|→∞

1

2|ξ|2 E

[

exp

(

−|H |2|ξ|2
σ2

(1− µ)2
)

µ2|H |2|ξ|2
σ2

]

+ lim
|ξ|→∞

1

2|ξ|2 E

[

exp

(

−|H |2|ξ|2
σ2

(1 + µ)2
)

µ2|H |2|ξ|2
σ2

]

≥ µ2E
[

|H |2
]

σ2
− lim

|ξ|→∞

µ2

2|ξ|2e (1− µ)2

=
µ2E

[

|H |2
]

σ2
(200)

where the second step follows because 0 ≤ xe−αx ≤ 1/(eα)
for every x ≥ 0 and α > 0. This establishes (194) because H
is of unit variance and µ can be arbitrarily close to 1.

B. Proof of Theorem 5

By the Data Processing Inequality for Relative Entropy, the

relative entropy on the RHS of (72) is upper-bounded by the

relative entropy corresponding to the unquantized channel, i.e.,

[3, Eq. (64)]

D
(

PY |X=ξ

∥

∥ PY |X=0

)

|ξ|2 ≤ 1

σ2
−

log
(

1 + |ξ|2
σ2

)

|ξ|2 . (201)

Consequently, the capacity per unit-energy (72) is strictly

smaller than 1/σ2 unless the supremum on the RHS of (72)

is approached as |ξ| tends to infinity. It thus remains to show

that

lim
|ξ|→∞

sup
D

D
(

PY |X=ξ

∥

∥ PY |X=0

)

|ξ|2 <
1

σ2
. (202)

To this end, we first note that, for every ξ 6= 0, the supremum

in (202) over all quantizers D can be replaced with the

supremum over all radial quantizers (193). Indeed, for every

quantization region satisfying

Pr
(

Y = 1
∣

∣ X = ξ
)

= β, 0 < β < 1

the relative entropy

D
(

PY |X=ξ

∥

∥ PY |X=0

)

= β log
1

Pr
(

Y = 1
∣

∣ X = 0
)

+ (1− β) log
1

1− Pr
(

Y = 1|X = 0
) −Hb(β) (203)

is a convex function of Pr
(

Y = 1
∣

∣ X = 0
)

. Thus, for every

0 < β < 1, the RHS of (203) is maximized for the quantiza-

tion region that minimizes (or maximizes) Pr
(

Y = 1
∣

∣ X = 0
)

while holding Pr
(

Y = 1
∣

∣ X = ξ
)

= β fixed. By the Neyman-

Pearson Lemma [26], such a quantization region has the form

D⋆ =

{

ỹ ∈ C :
f(ỹ|0)
f(ỹ|ξ) ≤ Λ

}

, Λ > 0 (204)

(or the complement thereof), where f(ỹ|x) denotes the con-

ditional density of Ỹ , conditioned on X = x, and where Λ

is such that Pr
(

Ỹ ∈ D⋆
∣

∣ X = ξ
)

= β. (Note that for every

0 < β < 1 there exists such a Λ since, for the channel model

(63), Pr
(

Ỹ ∈ D⋆
∣

∣ X = ξ
)

is a continuous, strictly increasing

function of Λ > 0.) The likelihood ratio on the RHS of (204)

is given by

f(ỹ|0)
f(ỹ|ξ) =

(

1 +
|ξ|2
σ2

)

e
− |ỹ|2

σ2
|ξ|2

σ2+|ξ|2 , ỹ ∈ C (205)

so (204) is a radial quantizer with threshold

Υ = σ

√

√

√

√

(

1 +
σ2

|ξ|2
)

log

(

1 + |ξ|2
σ2

Λ

)

. (206)

Thus, for every 0 < β < 1, the RHS of (203) is maximized

by a radial quantizer whose threshold is a function of β.

This implies that, for every nonzero ξ, the relative entropy

D(PY |X=ξ‖PY |X=0) is maximized by a radial quantizer. Such

a quantizer induces the channel

Pr
(

Y = 1
∣

∣ X = x
)

= exp

(

− Υ2

|x|2 + σ2

)

(207)

for x ∈ C and Υ > 0. Consequently,

D
(

PY |X=ξ

∥

∥ PY |X=0

)

= e
− Υ2

|ξ|2+σ2 log
1

e−
Υ2

σ2

+

[

1− e
− Υ2

|ξ|2+σ2

]

log
1

1− e−
Υ2

σ2

−Hb

(

e
− Υ2

|ξ|2+σ2

)

≤ Υ2

σ2
e
− Υ2

|ξ|2+σ2 −
[

1− e−
Υ2

σ2

]

log

(

1− e−
Υ2

σ2

)

≤ Υ2

σ2
e
− Υ2

|ξ|2+σ2 +
1

e
(208)

where the second step follows because Hb(·) ≥ 0 and

exp
(

−Υ2/(|ξ|2 + σ2)
)

≥ exp
(

−Υ2/σ2
)

; and the third step

follows because −x log x ≤ 1
e , 0 < x < 1.

The first term on the RHS of (208) is maximized for

Υ2 = |ξ|2 + σ2, which yields

Υ2

σ2
e
− Υ2

|ξ|2+σ2 ≤ |ξ|2
e σ2

+
1

e
, Υ > 0. (209)

The RHS of (208) is thus upper-bounded by

D
(

PY |X=ξ

∥

∥ PY |X=0

)

≤ |ξ|2
e σ2

+
2

e
. (210)

Dividing both sides of (210) by |ξ|2, and computing the limit

as |ξ| tends to infinity, yields

lim
|ξ|→∞

sup
D

D
(

PY |X=ξ

∥

∥ PY |X=0

)

|ξ|2 ≤ 1

e σ2
<

1

σ2
. (211)

This proves Theorem 5.

XI. SUMMARY AND CONCLUSION

It is well-known that quantizing the output of the discrete-

time, average-power-limited, Gaussian channel using a sym-

metric threshold quantizer reduces the capacity per unit-energy

by a factor of 2/π, a loss which translates to a power loss

of approximately 2dB. We have shown that this loss can
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be avoided by using asymmetric threshold quantizers with

corresponding asymmetric signal constellations. Moreover, the

capacity per unit-energy can be achieved by a PPM scheme.

For this scheme, the error probability can be analyzed directly

using the Union Bound and the standard upper bound on the

Q-function (47). There is no need to resort to conventional

methods used to prove coding theorems such as the method

of types, information-spectrum methods, or random coding

exponents.

The above results demonstrate that the 2dB power loss

incurred on the Gaussian channel with symmetric one-bit

output quantization is not due to the hard decisions but

due to the suboptimal quantizer. In fact, if we employ an

asymmetric threshold quantizer, and if we use asymmetric

signal constellations, then hard-decision decoding achieves the

capacity per unit-energy of the Gaussian channel.

The above results also demonstrate that a threshold quan-

tizer is asymptotically optimal as the SNR tends to zero. This

is not only true asymptotically: for every fixed SNR, we have

shown that, among all one-bit quantizers, a threshold quantizer

is optimal.

We have also shown that the capacity per unit-energy can

only be achieved by flash-signaling input distributions. Since

such signaling leads to poor spectral efficiencies, a significant

loss in spectral efficiency is unavoidable. Thus, while one-

bit output quantization does not reduce the capacity per unit-

energy, it does reduce the spectral efficiency.

For Rayleigh-fading channels, we have shown that, in the

coherent case, a one-bit quantizer does not reduce the capacity

per unit-energy, provided that we allow the quantizer to depend

on the fading level. This is no longer true in the noncoherent

case: here all one-bit output quantizers reduce the capacity per

unit-energy.

APPENDIX I

Lemma 1: Let D be a Borel subset of the reals, and let the

sequence of real numbers {xk} converge to ξ. Let Z be a

zero-mean Gaussian random variable of positive variance σ2.

Then

lim
k→∞

Pr
(

xk + Z ∈ D
)

= Pr
(

ξ + Z ∈ D
)

. (212)

Proof: Let f(·) denote the density of a zero-mean,

variance-σ2 Gaussian random variable, so

Pr
(

xk + Z ∈ D
)

=

∫

D
f(ỹ − xk) dỹ.

Since f(·) is continuous, and since the sequence {xk}
converges to ξ, it follows that the sequence of densities

ỹ 7→ f(ỹ − xk) converges to ỹ 7→ f(ỹ−ξ). The result follows

then by noting that, for every k,

Pr
(

xk + Z ∈ R
)

= Pr
(

ξ + Z ∈ R
)

= 1 (213)

and from Scheffe’s Theorem [27, Th. 16.12].

From Lemma 1 we conclude that x 7→ Pr(Y = 1|X = x) is

continuous. Since it also bounded, it follows that Pr(Y = 1) is

continuous in the input distribution under the weak topology.

Since the binary entropy function is a continuous bounded

function, this implies that H(Y ) is continuous in the input

distribution. By the same lemma, it follows that also the

mapping x 7→ Hb

(

Pr(Y = 1|X = x)
)

is continuous

and bounded, so H(Y |X) is also continuous in the input

distribution. We thus have the following lemma.

Lemma 2: For every fixed quantizer D, the functionals

H(Y ), H(Y |X), and I(X ;Y ) are continuous in the input

distribution under the weak topology.

For proving the existence of a capacity-achieving input

distribution we need a compactness result:

Lemma 3: Let A > 0 be fixed. Every sequence of prob-

ability measures on the interval [−A,A] of second moment

not exceeding P has a subsequence that converges weakly to

a probability distribution on the interval [−A,A] of second

moment not exceeding P .

Proof: By Prokhorov’s Theorem, every sequence of prob-

ability measures on [−A,A] has a subsequence that converges

weakly to some probability measure on [−A,A]. The second

moment of this limiting probability measure cannot exceed P
because the function x 7→ x2 is a continuous bounded function

on the interval [−A,A].

Note that Lemma 3 continues to hold for sequences of

probability measures on R of second moment not exceeding

P , albeit with a slightly different proof. Thus, the amplitude

constraint A is not essential.

It follows from Lemmas 1–3 that the supremum in (81)

defining CD,A(P) is achieved.

APPENDIX II

We show that, for ξ < θ, the function ξ 7→ W
(

Υ1,Υ2

∣

∣ ξ
)

is strictly increasing. To this end, we note that

W
(

Υ1,Υ2

∣

∣ ξ
)

= Q

(

θ −∆− ξ

σ

)

−Q

(

θ +∆− ξ

σ

)

(214)

and take the derivative with respect to ξ. (Recall that

θ = (Υ1 +Υ2)/2 and ∆ = (Υ2 −Υ1)/2.) This yields

∂

∂ξ
W
(

Υ1,Υ2

∣

∣ ξ
)

=
1√
2πσ2

e−
(θ−∆−ξ)2

2σ2 − 1√
2πσ2

e−
(θ+∆−ξ)2

2σ2

=
1√
2πσ2

e−
(θ−ξ)2+∆2

2σ2

[

e∆
θ−ξ

σ2 − e−∆ θ−ξ

σ2

]

> 0, ξ < θ (215)

thus proving the claim.

APPENDIX III

To show that

lim
ξ→0

Ψ(ξ)

ξ2
=

1

2σ2

(

1

2
+

1

π

)

(216)
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we write Ψ(ξ) as

Ψ(ξ) =
1√
2πσ2

∫ ∞

0

e−
(ỹ−ξ)2

2σ2

(

ỹξ

σ2
− ξ2

2σ2

)

dỹ

+Q

(

ξ

σ

)

log

(

2Q

(

ξ

σ

)

)

=
ξ2

2σ2
Q

(

− ξ

σ

)

+
ξ√
2πσ2

(

e−
ξ2

2σ2 − 1

)

+

[

Q

(

ξ

σ

)

log

(

2Q

(

ξ

σ

)

)

+
ξ√
2πσ2

]

(217)

and compute the limiting ratio of each term on the RHS of

(217) to ξ2 as ξ tends to zero. For the first two terms, we have

lim
ξ→0

ξ2

2σ2Q
(

− ξ
σ

)

ξ2
=

1

4σ2
(218)

and

lim
ξ→0

ξ√
2πσ2

(

e−
ξ2

2σ2 − 1
)

ξ2
= 0. (219)

To evaluate the last term on the RHS of (217), we express

ξ 7→ Q
(

ξ/σ
)

as a Taylor series around zero

Q

(

ξ

σ

)

=
1

2
− ξ√

2πσ2
+ o
(

ξ2
)

. (220)

With this, we obtain

[

Q

(

ξ

σ

)

log

(

2Q

(

ξ

σ

)

)

+
ξ√
2πσ2

]

=

(

1

2
− ξ√

2πσ2
+ o
(

ξ2
)

)

log

(

1− ξ

σ

√

2

π
+ o
(

ξ2
)

)

+
ξ√
2πσ2

=

(

1

2
− ξ√

2πσ2
+ o
(

ξ2
)

)

(

− ξ

σ

√

2

π
− ξ2

σ2

1

π
+ o
(

ξ2
)

)

+
ξ√
2πσ2

=
ξ2

2σ2

1

π
+ o
(

ξ2
)

(221)

where the second step follows because

log(1 + x) = x− 1

2
x2 + o

(

x2
)

. (222)

Consequently,

lim
ξ→0

Q
(

ξ
σ

)

log

(

2Q
(

ξ
σ

)

)

+ ξ√
2πσ2

ξ2
=

1

2σ2

1

π
. (223)

The claim follows by combining (218)–(223) with (217).

APPENDIX IV

A. Proof of (183a)

To prove (183a), namely

lim
A↓0

sup
Υ≥0

|RH(A,Υ, p+)|
A2

= 0, 0 ≤ p+ ≤ 1

we fix some ν ≥ 1 and analyze the cases 0 ≤ Υ ≤ ν and

Υ > ν separately. Since we are interested in the limit as A
tends to zero, there is no loss in generality in assuming that

A ≤ 1.

If 0 ≤ Υ ≤ ν, then p̃ in (175) is bounded by

Q

(

ν +A
σ

)

≤ p̃ ≤ Q

(

−A
σ

)

(224)

which, by the assumption A ≤ 1, implies that p̃ is bounded

away from 0 and 1:

Q

(

ν + 1

σ

)

≤ p̃ ≤ Q

(

− 1

σ

)

. (225)

Consequently, combining (176) with (175) and using the

Triangle Inequality yields for 0 ≤ Υ ≤ ν
∣

∣RH(A,Υ, p+)
∣

∣

≤
[ A
2σ

|p+ − p−|√
2π

e−
Υ2

2σ2 +
∣

∣RQ(A,Υ, p+)
∣

∣

]3 |1− 2p̃|
p̃2(1− p̃)2

≤
[ A
2σ

1√
2π

e−
Υ2

2σ2 +
∣

∣RQ(A,Υ, p+)
∣

∣

]3
1

p̃2(1− p̃)2

≤
A3

[

1
2σ

√
2π

+ A
2σ2

√
2πe

]3

[

Q
(

ν+1
σ

)

(

1−Q
(

− 1
σ

)

)]2 . (226)

Here the second step follows by upper-bounding |1− 2p̃| ≤ 1
and |p+ − p−| ≤ 1; and the third step follows from (179) and

(225) and by upper-bounding exp
(

−Υ2/(2σ2)
)

≤ 1. Since

the RHS of (226) does not depend on Υ, this yields

lim
A↓0

sup
0≤Υ≤ν

|RH(A,Υ, p+)|
A2

= 0, 0 ≤ p+ ≤ 1. (227)

For Υ > ν, we first upper-bound (177) as

∣

∣RQ(A,Υ, p+)
∣

∣ ≤ A2

2σ2

Υ+A√
2πσ2

e−
(Υ−A)2

2σ2

≤ A2

σ2

Υ√
2πσ2

e−
(Υ−1)2

2σ2 (228)

where the first step follows by upper-bounding x̃ ≤ Υ+A and

exp
(

−x̃2/(2σ2)
)

≤ exp
(

−(Υ−A)2/(2σ2)
)

; and the second

step follows because Υ > ν and A ≤ 1, so A < Υ. Combining

(228) with (175) yields for Υ > ν
∣

∣RH(A,Υ, p+)
∣

∣

≤
[ A
2σ

|p+ − p−|√
2π

e−
Υ2

2σ2 +
∣

∣RQ(A,Υ, p+)
∣

∣

]3 |1− 2p̃|
p̃2(1− p̃)2

≤
[ A
2σ

1√
2π

e−
Υ2

2σ2 +
A2

σ2

Υ√
2πσ2

e−
(Υ−1)2

2σ2

]3
1

p̃2(1 − p̃)2

≤ Υ3

(2πσ2)
3
2

e−
3(Υ−1)2

2σ2

[A
2
+

A2

σ2

]3
1

p̃2(1− p̃)2
(229)
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where the first step follows from the Triangle Inequality; the

second step follows from (228) and because |p+ − p−| ≤ 1
and |1 − 2p̃| ≤ 1; and the last step follows because

exp
(

−Υ2/(2σ2)
)

≤ Υexp
(

−(Υ− 1)2/(2σ2)
)

for Υ > 1.

We next note that, since Υ > ν > A and 0 ≤ A ≤ 1, we

have

p̃ ≤ Q

(

Υ−A
σ

)

<
1

2
(230)

and

p̃ ≥ Q

(

Υ+A
σ

)

>

(

1− σ2

(Υ +A)2

)

σ√
2π(Υ +A)

e−
(Υ+A)2

2σ2

>

(

1− σ2

ν2

)

σ√
2π(Υ + 1)

e−
(Υ+1)2

2σ2 , Υ > ν (231)

where the second step follows from [14, Prop. 19.4.2]. Con-

sequently, using (230) and (231), the RHS of (229) can be

upper-bounded by

∣

∣RH(A,Υ, p+)
∣

∣

≤ Υ3

(2πσ2)
3
2

e−
3(Υ−1)2

2σ2

4

[

A
2 + A2

σ2

]3

(

1− σ2

ν2

)2
σ2

2π(Υ+1)2 e
− (Υ+1)2

σ2

=

4

[

A
2 + A2

σ2

]3

√
2πσ5

(

1− σ2

ν2

)2Υ
3(Υ + 1)2×

× exp

(

−3(Υ− 1)2

2σ2
+

(Υ + 1)2

σ2

)

, Υ > ν. (232)

Since the function

Υ 7→ Υ3(Υ + 1)2 exp

(

−3(Υ− 1)2

2σ2
+

(Υ + 1)2

σ2

)

is bounded in Υ > ν, this yields

lim
A↓0

sup
Υ>ν

|RH(A,Υ, p+)|
A2

= 0, 0 ≤ p+ ≤ 1. (233)

Combining (227) and (233) proves (183a).

B. Proof of (183b)

To prove (183b), namely

lim
A↓0

sup
Υ≥0

|K(A,Υ, p+)|
A2

= 0, 0 ≤ p+ ≤ 1

we fix some ν ≥ 1 and analyze the cases 0 ≤ Υ ≤ ν and

Υ > ν separately. Without loss of generality, we assume that

A ≤ 1. If 0 ≤ Υ ≤ ν, then we have

Q

(

ν

σ

)

≤ Q

(

Υ

σ

)

≤ 1

2
(234)

which yields for every 0 ≤ p+ ≤ 1 and every A ≤ 1
∣

∣K(A,Υ, p+)
∣

∣

=

∣

∣

∣

A
σ

2(p+−p−)√
2π

e−
Υ2

2σ2 RQ(A,Υ, p+) +
∣

∣RQ(A,Υ, p+)
∣

∣

2
∣

∣

∣

2Q
(

Υ
σ

)[

1−Q
(

Υ
σ

)]

≤
A
σ

2|p+−p−|√
2π

∣

∣RQ(A,Υ, p+)
∣

∣+
∣

∣RQ(A,Υ, p+)
∣

∣

2

Q
(

ν
σ

)

≤ 1

Q
(

ν
σ

)

[A3

σ3

1

2π
√
e
+

A4

4σ42πe

]

, 0 ≤ Υ ≤ ν. (235)

Here the second step follows from (234), from the upper

bound exp
(

−Υ2/(2σ2)
)

≤ 1, Υ ∈ R, and from the Triangle

Inequality; and the third step follows from (179) and because

|p+ − p−| ≤ 1. Consequently,

lim
A↓0

sup
0≤Υ≤ν

|K(A,Υ, p+)|
A2

= 0, 0 ≤ p+ ≤ 1. (236)

If Υ > ν, then we have [14, Prop. 19.4.2]

σ√
2πΥ

(

1− σ2

ν2

)

e−
Υ2

2σ2 < Q

(

Υ

σ

)

<
1

2
(237)

and, by (228),

∣

∣RQ(A,Υ, p+)
∣

∣ ≤ A2

σ2

Υ√
2πσ2

e−
(Υ−1)2

2σ2 , Υ > ν. (238)

We thus obtain for Υ > ν
∣

∣K(A,Υ, p+)
∣

∣

=

∣

∣

∣

A
σ

2(p+−p−)√
2π

e−
Υ2

2σ2 RQ(A,Υ, p+) +
∣

∣RQ(A,Υ, p+)
∣

∣

2
∣

∣

∣

2Q
(

Υ
σ

)[

1−Q
(

Υ
σ

)]

≤
√
2πΥe

Υ2

2σ2

σ
(

1− σ2

ν2

)

[A
σ

2|p+ − p−|√
2π

e−
Υ2

2σ2
∣

∣RQ(A,Υ, p+)
∣

∣

+
∣

∣RQ(A,Υ, p+)
∣

∣

2
]

≤
√
2πΥe

Υ2

2σ2

σ
(

1− σ2

ν2

)

[ A3

σ3π

Υ

σ
e−

Υ2

2σ2 − (Υ−1)2

2σ2 +
A4

σ42π

Υ2

σ2
e−

(Υ−1)2

σ2

]

≤
√

2

π

1
(

1− σ2

ν2

)

Υ2

σ2
e

Υ2

2σ2 − (Υ−1)2

σ2

[

1 +
A
2σ

Υ

σ

]A3

σ3

≤
√

2

π

1
(

1− σ2

ν2

)

Υ2

σ2
e

Υ2

2σ2 − (Υ−1)2

σ2

[

1 +
Υ2

2σ2

]A3

σ3
(239)

where the second step follows from (237) and from the

Triangle Inequality; the third step follows from (238) and

because |p+ − p−| ≤ 1; the fourth step follows by upper-

bounding exp
(

−Υ2/(2σ2)
)

≤ exp
(

(Υ− 1)2/(2σ2)
)

; and the

last step follows because Υ > ν and A ≤ 1, so A ≤ Υ.

Since the function

Υ 7→ Υ2

σ2
e

Υ2

2σ2 − (Υ−1)2

σ2

[

1 +
Υ2

2σ2

]

is bounded in Υ > ν, this yields

lim
A↓0

sup
Υ>ν

|K(A,Υ, p+)|
A2

= 0, 0 ≤ p+ ≤ 1. (240)

Combining (236) and (240) proves (183b).
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