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Abstract—As shown by Médard, the capacity of fading chan-
nels with imperfect channel-state information (CSI) can be lower-
bounded by assuming a Gaussian channel input and by treating
the unknown portion of the channel multiplied by the channel
input as independent worst-case (Gaussian) noise. Recently, we
have demonstrated that this lower bound can be sharpened by a
rate-splitting approach: by expressing the channel input as the
sum of two independent Gaussian random variables (referred to
as layers), say X = X1+X2, and by applying Médard’s bounding
technique to first lower-bound the capacity of the virtual channel
from X1 to the channel output Y (while treating X2 as noise),
and then lower-bound the capacity of the virtual channel from
X2 to Y (while assuming X1 to be known), one obtains a lower
bound that is strictly larger than Médard’s bound. This rate-
splitting approach is reminiscent of an approach used by Rimoldi
and Urbanke to achieve points on the capacity region of the
Gaussian multiple-access channel (MAC). Here we blend these
two rate-splitting approaches to derive a novel inner bound
on the capacity region of the memoryless fading MAC with
imperfect CSI. Generalizing the above rate-splitting approach
to more than two layers, we show that, irrespective of how we
assign powers to each layer, the supremum of all rate-splitting
bounds is approached as the number of layers tends to infinity,
and we derive an integral expression for this supremum. We
further derive an expression for the vertices of the best inner
bound, maximized over the number of layers and over all power
assignments.

I. INTRODUCTION

Consider a discrete-time, memoryless, fading channel with
imperfect channel-state information (CSI), whose time-k out-
put (k ∈ Z), conditioned on the channel input X[k] = x ∈ C,
is

Y [k] = (Ĥ[k] + H̃[k])x+ Z[k] (1)

(with C and Z denoting the set of complex numbers and the
set of integers, respectively). Here, the noise {Z[k]}k∈Z is
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a sequence of independent and identically distributed (i.i.d.),
zero-mean, circularly-symmetric, complex Gaussian random
variables with variance σ2. The fading processes {Ĥ[k]}k∈Z
and {H̃[k]}k∈Z are both sequences of i.i.d. complex random
variables (of arbitrary distribution), the former with mean µ
and variance V̂ and the latter with mean zero and variance
Ṽ . Assume that the processes {Ĥ[k]}k∈Z, {H̃[k]}k∈Z, and
{Z[k]}k∈Z are independent of each other and of the input
sequence {X[k]}k∈Z. Further assume that the receiver is
cognizant of the realization of {Ĥ[k]}k∈Z, but the transmitter
is only cognizant of its distribution. Finally assume that both
the transmitter and receiver are cognizant of the distributions
of {H̃[k]}k∈Z and {Z[k]}k∈Z but not of their realizations.

The fading process {Ĥ[k]}k∈Z can be viewed as an estimate
of the channel fading coefficient

H[k] , Ĥ[k] + H̃[k], k ∈ Z (2)

and {H̃[k]}k∈Z can be viewed as the channel estimation error.
The capacity of the above channel (1) under the average-

power constraint P is given by [1]

C(P ) = sup I(X;Y |Ĥ) (3)

where the supremum is over all distributions of X satisfying
E[|X|2] ≤ P . Here and throughout the paper we omit the
time indices k where they are immaterial. Since (3) is difficult
evaluate, it is common to assess C(P ) using upper and lower
bounds. A well-known lower bound is due to Médard [2]:

C(P ) ≥ E

[
log

(
1 +

|Ĥ|2P
Ṽ P + σ2

)]
. (4)

It is derived by assuming a Gaussian channel input X and
by treating the term H̃X + Z as independent worst-case
(Gaussian) noise.

In [3], it was demonstrated that (4) can be sharpened by
a rate-splitting and successive decoding approach: writing the
input X = X1 + X2 as a sum of two independent Gaussian
random variables (referred to as layers) of respective powers
P1 and P2, using the chain rule

I(X;Y |Ĥ) = I(X1;Y |Ĥ) + I(X2;Y |Ĥ,X1) (5)
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and applying Médard’s bound on each term, we obtain a
lower bound that is strictly larger than (4) except in the trivial
cases where P1 = 0, P2 = 0, or Pr(ĤṼ = 0) = 1. This
rate-splitting approach can be generalized to more than two
layers. It was demonstrated that the supremum of all such
rate-splitting bounds is approached as the number of layers
tends to infinity and an integral expression of this supremum
was presented [3, Theorem 4].

The above rate-splitting approach is reminiscent of a rate-
splitting approach proposed by Rimoldi and Urbanke to
achieve points on the capacity region of the Gaussian multiple-
access channel [4]. For example, for the two-user Gaussian
MAC, Rimoldi and Urbanke showed that any point in the ca-
pacity region can be achieved by splitting one user, say User 1,
into two virtual users,2 and by decoding first the codeword
of the first virtual user while treating the codewords of the
second virtual user and of User 2 as noise, by then decoding
the codeword of User 2 upon subtracting the contribution of
the first virtual user and treating the codeword of the second
virtual user as noise, and by finally decoding the codeword of
the second virtual user upon subtracting the contributions of
the first virtual user and User 2.

In this paper, we blend the two rate-splitting approaches in
[3] and [4] to derive a novel inner bound on the capacity region
of the memoryless fading MAC with imperfect CSI. We show
that, irrespective of how we assign powers to each layer, the
supremum of all such rate-splitting bounds is approached as
the number of layers tends to infinity, and we derive an integral
expression for this supremum. We further derive an expression
for the best inner bound, maximized over the number of layers
and all power assignments.

II. CHANNEL MODEL AND CAPACITY REGION

We consider the multiple-access generalization of (1): the
time-k output Y [k], conditioned on the channel inputs X1[k] =
x1 ∈ C and X2[k] = x2 ∈ C corresponding to User 1 and
User 2, respectively, is

Y [k] = (Ĥ1[k] + H̃1[k])x1 + (Ĥ2[k] + H̃2[k])x2 + Z[k] (6)

where {Z[k]}k∈Z is as in Section I, and where, for each user
i = 1, 2, the fading processes {Ĥi[k]}k∈Z and {H̃i[k]}k∈Z
are sequences of i.i.d. complex random variables, the former
with mean µi and variance V̂i, and the latter with mean zero
and variance Ṽi. We assume that the processes {Ĥi[k]}k∈Z,
{H̃i[k]}k∈Z (i = 1, 2) and {Z[k]}k∈Z are independent of each
other and of the input sequences {Xi[k]}k∈Z, i = 1, 2. As
in Section I, we assume that both transmitter and receiver
are cognizant of the distributions of {Ĥi[k]}k∈Z, {H̃i[k]}k∈Z
(i = 1, 2) and {Z[k]}k∈Z, and that the receiver is, in addition,
cognizant of the realizations of {Ĥi[k]}k∈Z, i = 1, 2.

The capacity region of the above channel (6) under the
power constraints P1 and P2 is given by the closure of the

2The virtual users correspond to the layers in [3].

convex hull of all rates (R1, R2) satisfying

R1 ≤ I(X1;Y |X2, Ĥ) , I1|2 (7a)

R2 ≤ I(X2;Y |X1, Ĥ) , I2|1 (7b)

R1 +R2 ≤ I(X1, X2;Y |Ĥ) , IΣ (7c)

for some product distributions of (X1, X2) satisfying
E[|X1|2] ≤ P1 and E[|X2|2] ≤ P2 [5].

In [2, Equations (69)–(71)], an inner bound on the capacity
region was derived by assuming zero-mean real Gaussian
channel inputs and by lower-bounding the mutual informations
I1|2, I2|1 and IΣ using worst-case noise bounds like (4).
In the following, we will derive an improved capacity inner
bound (for complex signalling) by evaluating (7a)–(7c) for
zero-mean, circularly-symmetric, complex Gaussian channel
inputs of respective powers P1 and P2, and by using Médard’s
lower bound (4) together with the above presented rate-
splitting approaches. Specifically, we follow the approach by
Rimoldi and Urbanke [4] to characterize points (R1, R2) on
the dominant face of (7a)–(7c), i.e., points satisfying

[
R1

R2

]
= (1− α)

[
IΣ − I2|1
I2|1

]
+ α

[
I1|2

IΣ − I1|2

]
(8)

for some 0 ≤ α ≤ 1, by single-user constraints for each R1

and R2. We then follow the rate-splitting approach presented
in [3] to derive evaluable lower bounds on these single-user
constraints.

To illustrate this approach, let us split User 1 into two
virtual users, i.e., let X1 = X11 + X12, where X11 and X12

are independent, zero-mean, circularly symmetric, complex
Gaussian random variables of respective powers (1 − β)P1

and βP1. By performing successive decoding of X11, X2 and
X12 (in this order), we can achieve the rates

R11 = I(X11;Y |Ĥ) (9a)
R12 = I(X12;Y |Ĥ, X11, X2) (9b)
R2 = I(X2;Y |Ĥ, X11) (9c)

giving rise to the single-user constraints

R1 ≤ I(X11;Y |Ĥ) + I(X12;Y |Ĥ, X11, X2) (10a)
R2 ≤ I(X2;Y |Ĥ, X11). (10b)

The mutual informations on the right-hand side (RHS) of
(10a)–(10b) can then be lower-bounded following the rate-
splitting approach presented in [3]. In this example, we first
decode all layers of X11, then all layers of X2, and finally all
layers of X12. By introducing more than two virtual users, we
can construct different decoding orders that potentially give
rise to sharper inner bounds.

III. POWER ALLOCATIONS AND INNER BOUNDS

The most general rate-splitting scheme on the two-user
MAC can be represented as follows: the transmit signals of
User i = 1, 2 are written as sums of independent, zero-
mean, circularly-symmetric, complex Gaussian random vari-
ables Xi,`, ` = 1, . . . , L with respective powers Pi,` ≥ 0
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summing up to Pi, i.e.,

Xi =
∑

`∈L
Xi,` and Pi =

∑

`∈L
Pi,`. (11)

The signals are decoded in an alternating decoding order

X1,1, X2,1, X1,2, X2,2, . . . , X1,L, X2,L. (12)

This yields the rate pair

J1 =
∑L
`=1 I

(
X1,`;Y

∣∣ X`−1
1 ,X`−1

2 , Ĥ
)

(13a)

J2 =
∑L
`=1 I

(
X2,`;Y

∣∣ X`
1,X

`−1
2 , Ĥ

)
(13b)

where Xj
i stands for the collection Xi,1, . . . , Xi,j . Note that

this decoding order incurs no loss in generality, since setting
a power Pi,` to zero effectively suppresses the decoding step.
With the decoding order held fixed, any rate-splitting scheme
is fully described by the power allocations {Pi,`}. However,
we shall find it convenient to define power allocations via so-
called layering functions.

Definition 1. A continuous surjective non-decreasing function
Ki : [0; 1]→ [0; 1] is called a layering function for user i. The
set of layering functions is denoted as K.

We shall define a rate-splitting scheme by the pair of
layering functions K = (K1,K2) ∈ K2 and the number of
layers L. The corresponding power allocations can then be
obtained by

Pi,` = Pi

(
Ki

(
`
L

)
−Ki

(
`−1
L

))
. (14)

Note that K does not depend on L.

A. Infinite-layer rate region

Upon applying Médard’s bound on each summand
on the RHS of (13a)–(13b), a given rate-splitting
scheme (K, L) yields an achievable-rate pair
J(K, L) , (J1(K, L), J2(K, L)). The following theorem
shows that, for any K, the supremum over all rate pairs is
approached as L tends to infinity.

Theorem 1. For every pair of layering functions K, the
supremum of J i(K, L) over the number of layers is given
by the Lebesgue-Stieltjes integral

sup
L∈N

J i(K, L) = lim
L→∞

J i(K, L) =

∫ 1

0

fi(ζ) dKi(ζ) (15)

with

fi(ζ)=E

[
|Ĥi|2Pi

σ2+
∑2
j=1

[
ṼjPjKj(ζ)Ξj+(|Ĥj |2+Ṽj)PjK̄j(ζ)

]
]

where Ξ1 and Ξ2 are two independent unit-mean exponentially
distributed random variables, and K̄i(ζ) , 1−Ki(ζ). We shall
denote this infinite-layering limit (15) as J∞i (K).

Proof outline: The proof is a generalization of the
proof of [3, Theorem 4] and hinges on similar ideas. The
main difference is that, in the single-user setting in [3],
the achievable rate converges to an expression that does not

depend on the layering function. This allows for a simplified
analysis where L-variate power allocations are approximated
by N -variate (for N sufficiently large) equi-power allocations

P1 = . . . = PN =
P

N
. (16)

In contrast, for the fading MAC, the infinite-layering limit
(15) depends on the pair K of layering functions, so a refined
analysis is required.

Note that [3, Theorem 4] follows from Theorem 1 by setting
P2 = 0 and by the change of variable ξ = K1(ζ).

B. Vertices of the rate region

By a change of variable applied to the integral on the RHS
of (15), it can be shown that J∞i (K) can be written as

J∞i (K1,K2) = J∞i (K̃1, K̃2). (17)

where

K̃1(ζ) , ζ + Λ(ζ), ζ ∈ [0; 1] (18a)

K̃2(ζ) , ζ − Λ(ζ), ζ ∈ [0; 1] (18b)

for some function Λ : [0; 1]→
[
− 1

2 ; 1
2

]
satisfying

Λ(0) = Λ(1) = 0 (19a)

and
sup

0≤ζ1<ζ2≤1

|Λ(ζ2)− Λ(ζ1)|
ζ2 − ζ1

≤ 1. (19b)

This allows us to write J∞i (K) as a functional of one function
(Λ) instead of two (K1 and K2), i.e., J∞i (K) = J∞i (Λ).

Definition 2. A function Λ : [0; 1] →
[
− 1

2 ; 1
2

]
with border

values Λ(0) = Λ(1) = 0 satisfying the Lipschitz condition

sup
0≤ζ1<ζ2≤1

|Λ(ζ2)− Λ(ζ1)|
ζ2 − ζ1

≤ 1 (20)

is called a relative layering function. The set of relative
layering functions is denoted as L.

0 0.5 1
−0.5

0

0.5

ζ

Λ
(ζ

)

Λ

Λ+

Λ−

Fig. 1. Example of a relative layering function.

Figure 1 shows three examples of relative layering func-
tions. The relative layering function Λ has the following
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interpretation: having decoded a proportion ζ ∈ [0; 1] of the
overall signal power P1 + P2, the value 2Λ(ζ) quantifies the
power by which the first user precedes (or lags behind, if Λ(ζ)
is negative) the second user.

Writing the infinite-layering limit as a function of a rel-
ative layering function allows us to establish the following
monotonicity result, which will be used later to determine the
vertices of the best achievable-rate region J , maximized over
all number of layers and over all possible layering functions.

Theorem 2. Let the relative layering functions Λ and Λ̃ satisfy

Λ(ζ) ≤ Λ̃(ζ), 0 ≤ ζ ≤ 1 (21)

with the inequality being strict for at least one 0 ≤ ζ ≤ 1.
Then

J∞2 (Λ) ≤ J∞2 (Λ̃)

J∞1 (Λ) ≥ J∞1 (Λ̃).
(22)

Proof outline: Using a convexity argument, it can be
shown that there exists a partial ordering for the layering
functions according to which K1(ζ) ≤ K̃1(ζ) for all 0 ≤
ζ ≤ 1 implies J1(K1,K2) ≥ J1(K̃1,K2) and J2(K1,K2) ≤
J2(K̃1,K2). By an appropriate transformation (using variable
substitutions in the Lebesgue-Stieltjes integral), the property
is carried over to J∞i (Λ), i = 1, 2, yielding (22).

Theorem 2 suggests that successive decoding penalizes
users decoded first, while it benefits users decoded last.

A direct implication of Theorem 2 is that the vertices of the
rate region J are obtained for the extremal functions

Λ+(ζ) ,
{
ζ for 0 ≤ ζ ≤ 1

2

1− ζ for 1
2 ≤ ζ ≤ 1

(23)

and Λ−(ζ) = −Λ+(ζ), 0 ≤ ζ ≤ 1.

Corollary 1. The relative layering functions Λ+ and Λ−

satisfy

J2(Λ+) = sup
Λ∈L

J∞2 (Λ) (24a)

J1(Λ−) = sup
Λ∈L

J∞1 (Λ). (24b)

While Theorem 2 provides an easy handle on the vertices
of J , it is difficult to investigate the set of points in J of
maximal sum rate that are not vertices. To better understand
the behavior of these points, we define four families of relative
layering functions Λk,α, k = 1, . . . , 4 parametrized by a scalar
α where Λk,α is continuous in α and the extremal functions
Λ+ and Λ− are contained in each family. By varying α, we
can move from one vertex point to the other. It is unknown
whether any of these functions achieves the maximal sum rate
for α’s for which Λk,α is neither Λ+ nor Λ−.

We define Λk,α as integrals Λk,α(ζ) =
∫ ζ
0
Λ′k,α(z) dz over

their respective derivatives:

Λ′1,α(z) = α
(
I[0;1/2[(z)− I[1/2;1](z)

)
, α ∈ [−1; 1]

Λ′2,α(z) = I[0;α[∪[α+(1/2);1](z)− I[α;α+(1/2)[(z), α ∈ [0; 1
2 ]

Λ′3,α(z) = sgn(α)
(
I[0;|α|[(z)− I[1−|α|;1](z)

)
, α ∈ [− 1

2 ; 1
2 ]

Λ′4,α(z) = I[0;α[∪[1/2;1−α[(z)− I[α;1/2[∪[1−α;1](z), α ∈ [0; 1
2 ].

Here, sgn(·) denotes the sign function and IA denotes the
indicator function of the set A.

Figure 2 shows the sum rates achieved by Λk,α, k =
1, . . . , 4 for a symmetric fading MAC with parameters P1 =
P2 = 10 and σ2 = 1, plotted against R1. The channel
components Ĥi, i = 1, 2 are both zero-mean, circularly-
symmetric, complex Gaussian random variables with variance
1
2 . Moreover, we choose Ṽ1 = Ṽ2 = 1

2 . Observe that the sum
rate critically depends on the chosen rate-splitting scheme.
Further observe that Λ2,α does not achieve its largest sum
rate at a vertex point. Consequently, there exist rate pairs that
cannot be achieved by time sharing between the vertices.

0.4 0.45 0.5 0.55

0.956

0.958

R1 [bits/c.u.]

R
1
+
R

2
[b

its
/c

.u
.]

Λ1,α

Λ2,α

Λ3,α

Λ4,α

Fig. 2. Comparison of different relative layering functions.

IV. CONCLUSION

We have blended the rate-splitting approaches by [3] and [4]
in order to derive a novel inner bound on the capacity region of
the fading MAC with imperfect receiver CSI. We have shown
that, for every pair of layering functions K, the supremum of
this inner bound is approached as the number of layers tends
to infinity, and have derived an integral expression for this
supremum. In addition, we have determined the vertices of
the best inner bound, maximized over the number of layers
and all layering functions. Our analysis has revealed that, in
contrast to the setting with perfect receiver CSI, certain rate
pairs cannot be achieved by time sharing between the vertices.
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