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Abstract—The authors have recently defined the Rényi infor-
mation dimension rate d({Xt}) of a stationary stochastic process
{Xt, t ∈ Z} as the entropy rate of the uniformly-quantized
process divided by minus the logarithm of the quantizer step
size 1/m in the limit as m → ∞ (B. Geiger and T. Koch,
“On the information dimension rate of stochastic processes,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, June
2017). For Gaussian processes with a given spectral distribution
function FX , they showed that the information dimension rate
is given by the Lebesgue measure of the set of harmonics
where the derivative of FX is positive. This paper extends this
result to multivariate Gaussian processes with a given matrix-
valued spectral distribution function FX. It is demonstrated that
the information dimension rate equals the average rank of the
derivative of FX. As side results, it is shown that the scale and
translation invariance of information dimension carries over from
random variables to stochastic processes.

I. INTRODUCTION

In 1959, Rényi [1] proposed the information dimension
and the d-dimensional entropy to measure the information
content of general random variables (RVs). In recent years,
it was shown that the information dimension is of relevance
in various areas of information theory, including rate-distortion
theory, almost lossless analog compression, or the analysis of
interference channels. For example, Kawabata and Dembo [2]
showed that the information dimension of a RV is equal to its
rate-distortion dimension, defined as twice the rate-distortion
function R(D) divided by − log(D) in the limit as D ↓ 0.
Koch [3] demonstrated that the rate-distortion function of a
source with infinite information dimension is infinite, and
that for any source with finite information dimension and
finite differential entropy the Shannon lower bound on the
rate-distortion function is asymptotically tight. Wu and Verdú
[4] analyzed both linear encoding and Lipschitz decoding of
discrete-time, independent and identically distributed (i.i.d.),
stochastic processes and showed that the information dimen-
sion plays a fundamental role in achievability and converse
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results. Wu et al. [5] showed that the degrees of freedom of
the K-user Gaussian interference channel can be characterized
through the sum of information dimensions. Stotz and Bölcskei
[6] later generalized this result to vector interference channels.

In [7], [8], we proposed the information dimension rate as a
generalization of information dimension from RVs to univari-
ate (real-valued) stochastic processes. Specifically, consider
the stationary process {Xt, t ∈ Z}, and let {[Xt]m, t ∈ Z}
be the process obtained by uniformly quantizing {Xt} with
step size 1/m. We defined the information dimension rate
d({Xt}) of {Xt} as the entropy rate of {[Xt]m} divided by
logm in the limit as m→∞ [8, Def. 2]. We then showed that,
for any stochastic process, d({Xt}) coincides with the rate-
distortion dimension of {Xt} [8, Th. 5]. We further showed
that for stationary Gaussian processes with spectral distribution
function FX , the information dimension rate d({Xt}) equals
the Lebesgue measure of the set of harmonics on [−1/2, 1/2]
where the derivative of FX is positive [8, Th. 7]. This implies
an intuitively appealing connection between the information
dimension rate of a stochastic process and its bandwidth.

In this work, we generalize our definition of d({Xt}) to
multivariate processes. Consider the L-variate (real-valued)
stationary process {Xt}, and let {[Xt]m} be the process
obtained by quantizing every component process of {Xt}
uniformly with step size 1/m. As in the univariate case, the
information dimension rate d({Xt}) of {Xt} is defined as
the entropy rate of {[Xt]m} divided by logm in the limit as
m → ∞. Our main result is an evaluation of d({Xt}) for
L-variate Gaussian processes with spectral distribution matrix
FX. We demonstrate that for such processes d({Xt}) equals
the Lebesgue integral of the rank of the derivative of FX. As
a corollary, we show that the information dimension rate of
univariate complex-valued Gaussian processes is maximized
if the process is proper, in which case it is equal to twice the
Lebesue measure of the set of harmonics where the derivative
of its spectral distribution function FX is positive.

As side results, we show that d({Xt}) is scale and transla-
tion invariant. These properties are known for the information
dimension of RVs (cf. [9, Lemma 3]), but they do not directly
carry over to our definition of d({Xt}), which is why we state
them explicitly in this paper.

Due to space limitations, some of the proofs are only
sketched or omitted altogether. The full proofs appear in [10].
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II. NOTATION AND PRELIMINARIES

We denote by R, C, and Z the set of real numbers, the set
of complex numbers, and the set of integers, respectively. We
use a calligraphic font, such as F , to denote other sets, and
we denote complements as F c.

We denote RVs by upper case letters, e.g., X . For a finite
or countably infinite collection of RVs we abbreviate Xk

` ,
(X`, . . . , Xk−1, Xk), X∞` , (X`, X`+1, . . . ), and Xk

−∞ ,
(. . . , Xk−1, Xk). Univariate discete-time stochastic processes
are denoted as {Xt, t ∈ Z} or, in short, as {Xt}. For L-
variate stochastic processes we use the same notation but with
Xt replaced by Xt , (X1,t, . . . , XL,t). We call {Xi,t, t ∈ Z}
a component process.

We define the quantization of X with precision m as

[X]m , bmXc
m

(1)

where bac is the largest integer less than or equal to a.
Likewise, dae denotes the smallest integer greater than or
equal to a. We denote by [Xk

` ]m = ([X`]m, . . . , [Xk]m) the
component-wise quantization of Xk

` (and similarly for other
collections of RVs or random vectors). Likewise, for complex
RVs Z with real part R and imaginary part I , the quantization
[Z]m is equal to [R]m + ı[I]m where ı ,

√
−1.

Let H(·), h(·), and D(·‖·) denote entropy, differential
entropy, and relative entropy, respectively, and let I(·; ·) denote
the mutual information [11]. We take logarithms to base e ≈
2.718, so mutual informations and entropies have dimension
nats. The entropy rate of a discrete-valued, stationary, L-
variate stochastic process {Xt} is [11, Th. 4.2.1]

H ′({Xt}) , lim
k→∞

H(Xk
1)

k
. (2)

Rényi defined the information dimension of a collection of
RVs Xk

` as [1]

d(Xk
` ) , lim

m→∞
H([Xk

` ]m)

logm
(3)

provided the limit exists. If the limit does not exist, one
can define the upper and lower information dimension d(Xk

` )
and d(Xk

` ) by replacing the limit with the limit superior and
limit inferior, respectively. If a result holds for both the limit
superior and the limit inferior but it is unclear whether the
limit exists, then we shall write d(Xk

` ). We shall follow this
notation throughout this document: an overline (·) indicates
that the quantity in the brackets has been computed using the
limit superior over m, an underline (·) indicates that it has
been computed using the limit inferior, both an overline and
an underline (·) indicates that a result holds irrespective of
whether the limit superior or limit inferior over m is taken.

If H([Xk
` ]1) <∞, then [1, Eq. 7], [4, Prop. 1]

0 ≤ d(Xk
` ) ≤ d(Xk

` ) ≤ k − `+ 1. (4)

If H([Xk
` ]1) = ∞, then d(Xk

` ) = ∞. As shown in [9,
Lemma 3], information dimension is invariant under scaling
and translation, i.e., d(a · Xk

` ) = d(Xk
` ) and d(Xk

` + c) =
d(Xk

` ) for every a 6= 0 and c ∈ Rk−`+1.

III. INFORMATION DIMENSION
OF UNIVARIATE PROCESSES

In [7], [8], we generalized (3) by defining the information
dimension rate of a univariate stationary process {Xt} as

d({Xt}) , lim
m→∞

H ′({[Xt]m})
logm

= lim
m→∞

lim
k→∞

H([Xk
1 ]m)

k logm
(5)

provided the limit exists. (The limit over k exists by station-
arity.)

If H([X1]1) <∞, then [8, Lemma 4]

0 ≤ d({Xt}) ≤ d({Xt}) ≤ 1. (6)

If H([X1]1) = ∞, then d({Xt}) = ∞. Moreover, the
information dimension rate of the process cannot exceed the
information dimension of the marginal RV, i.e.,

d({Xt}) ≤ d(X1). (7)

Kawabata and Dembo [2, Lemma 3.2] showed that the
information dimension of a RV equals its rate-distortion di-
mension. By emulating the proof of [2, Lemma 3.2], we
generalized this result to stationary processes by demonstrating
that the information dimension rate is equal to the rate-
distortion dimension. Specifically, let R(Xk

1 , D) denote the
rate-distortion function of the k-dimensional source Xk

1 , i.e.,

R(Xk
1 , D) , inf

E[‖X̂k
1−Xk

1 ‖2]≤D
I(Xk

1 ; X̂
k
1 ) (8)

where the infimum is over all conditional distributions of X̂k
1

given Xk
1 such that E[‖X̂k

1 −Xk
1 ‖2] ≤ D (where ‖ · ‖ denotes

the Euclidean norm). The rate-distortion dimension of the
stationary process {Xt} is defined as

dimR({Xt}) , 2 lim
D↓0

lim
k→∞

R(Xk
1 , kD)

−k logD (9)

provided the limit as D ↓ 0 exists. By stationarity, the limit
over k always exists [12, Th. 9.8.1]. We showed that [8, Th. 5]

dimR({Xt}) = d({Xt}). (10)

This result directly generalizes to non-stationary process (pos-
sibly with the limit over k replaced by the limit superior or
limit inferior).

IV. INFORMATION DIMENSION
OF MULTIVARIATE PROCESSES

In this section, we generalize the definition of the informa-
tion dimension rate (5) to multivariate (real-valued) processes
and study its properties.

Definition 1 (Information Dimension Rate): The information
dimension rate of the stationary, L-variate process {Xt} is

d({Xt}) , lim
m→∞

H ′({[Xt]m})
logm

= lim
m→∞

lim
k→∞

H([Xk
1,1]m, . . . , [X

k
L,1]m)

k logm
(11)

provided the limit over m exists.
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We next summarize some basic properties of the information
dimension rate.

Lemma 1 (Finiteness and Bounds): Let {Xt} be a stationary,
L-variate process. If H([X1]1) <∞, then

0 ≤ d({Xt}) ≤ d(X1) ≤ L. (12)

If H([X1]1) =∞, then d({Xt}) =∞.
Proof: Suppose first that H([X1]1) < ∞. Then, the

rightmost inequality in (12) follows from (4). The leftmost
inequality follows from the nonnegativity of entropy. Finally,
the center inequality follows since conditioning reduces en-
tropy, hence H ′({[Xt]m}) ≤ H([X1]m).

Now suppose that H([X1]1) =∞. By stationarity and since
[X1]1 is a function of [Xk

1 ]m for every m and every k, we have

H([X1]1) ≤ H([Xk
1 ]m). (13)

This implies that H ′({[Xt]m}) =∞ and the claim d({Xt}) =
∞ follows from Definition 1.

It was shown in [9, Lemma 3] that information dimension
is invariant under scaling and translation. The same properties
hold for the information dimension rate.

Lemma 2 (Scale Invariance): Let {Xt} be a stationary, L-
variate process and let ai > 0, i = 1, . . . , L. Further let Yi,t ,
aiXi,t, i = 1, . . . , L, t ∈ Z. Then, d({Yt}) = d({Xt}).

Proof: The proof is based on [4, Lemma 16] and appears
in [10]. For brevity, let us focus on the case L = 2. The case
L > 2 follows analogously. For L = 2, we have

H([a1X
k
1,1]m, [a2X

k
2,1]m)

≤ H([Xk
1,1]m, [X

k
2,1]m) +H([a1X

k
1,1]m|[Xk

1,1]m)

+H([a2X
k
2,1]m|[Xk

2,1]m)

≤ H([Xk
1,1]m, [X

k
2,1]m)

+ k log(da1e+ 1) + k log(da2e+ 1) (14)

where the second step follows because, given [Xk
i,1]m,

[aiX
k
i,1]m can have at most daie + 1 possible values. By

following the same steps with ai replaced by 1/ai, we obtain
the reverse inequality

H([a1X
k
1,1]m, [a2X

k
2,1]m) ≥ H([Xk

1,1]m, [X
k
2,1]m)

− k log(d1/a1e+ 1)− k log(d1/a2e+ 1). (15)

The lemma then follows by dividing (14) and (15) by k logm
and by letting k and m tend to infinity.

Lemma 3 (Translation Invariance): Let {Xt} be a station-
ary, L-variate process and let {ct}, t ∈ Z be a sequence of
L-dimensional vectors. Then, d({Xt + ct}) = d({Xt}).

Proof: The lemma follows from [9, Lemma 30], which
states that

|H(UkL1 )−H(V kL1 )| ≤
kL∑

i=1

log(1 +Ai +Bi) (16)

for any collection of integer-valued RVs UkL1 and V kL1 satis-
fying almost surely −Bi ≤ Ui − Vi ≤ Ai, i = 1, . . . , kL.
Applying this result with U`L+j = bmX`,j + mc`,jc and

V`L+j = bmX`,jc+ bmc`,jc gives the desired result. Indeed,
we have that −1 ≤ U`L+j − V`L+j ≤ 2, so (16) yields

∣∣∣H([Xk
1 ]m)−H([Xk

1 + ck1 ]m)
∣∣∣ ≤ kL log(4). (17)

We thus obtain |d({Xt}) − d({Xt + ct})| = 0 by dividing
(17) by k logm and by letting k and m tend to infinity.

We finally observe that the information dimension rate of a
stationary stochastic process equals its rate-distortion dimen-
sion. This generalizes [8, Th. 5] to multivariate processes.

Theorem 1: Let {Xt} be a stationary, L-variate process.
Then,

d({Xt}) = dimR{Xt} (18)

where dimR{Xt} is defined as in (9) but with {Xt} replaced
by {Xt}.

Proof: The proof is analog to that of [2, Lemma 3.2] and
[8, Th. 5] and is therefore omitted.

V. INFORMATION DIMENSION
OF GAUSSIAN PROCESSES

Let {Xt} be a stationary, L-variate, real-valued Gaussian
process with mean vector µ and (matrix-valued) spectral
distribution function (SDF) θ 7→ FX(θ). Thus, FX is bounded,
non-decreasing, and right-continuous on [−1/2, 1/2], and it
satisfies [13, (7.3), p. 141]

KX(τ) =

∫ 1/2

−1/2
e−ı2πτθdFX(θ), τ ∈ Z (19)

where KX(τ) , E [(Xt+τ − µ)(Xt − µ)T] denotes the auto-
covariance function and (·)T denotes the transpose. It can be
shown that θ 7→ FX(θ) has a derivative almost everywhere,
which has positive semi-definite, Hermitian values [13, (7.4),
p. 141]. We shall denote the derivative of FX by F ′X.

For univariate stationary Gaussian processes with SDF FX ,
we have shown that the information dimension rate is equal to
the Lebesgue measure of the set of harmonics on [−1/2, 1/2]
where the derivative of FX is is positive [8, Th. 7], i.e.,

d({Xt}) = λ({θ: F ′X(θ) > 0}) (20)

where λ(·) denotes the Lebesgue measure on [−1/2, 1/2].
This result can be directly generalized to the multivariate
case where the component processes are independent. Indeed,
suppose that {Xt} is a collection of L independent Gaussian
processes {Xi,t, t ∈ Z} with SDFs FXi

. This corresponds
to the case where the (matrix-valued) SDF is a diagonal
matrix with the SDFs of the individual processes on the main
diagonal. For independent processes, the joint entropy rate can
be written as the sum of the entropy rates of the component
processes. It follows that

d({Xt}) =
L∑

i=1

d({Xi,t}) =
L∑

i=1

λ({θ : F ′Xi
(θ) > 0}). (21)

The expression on the right-hand side (RHS) of (21) can
alternatively be written as
∫ 1/2

−1/2

L∑

i=1

1{F ′Xi
(θ) > 0}dθ =

∫ 1/2

−1/2
rank(F ′X(θ))dθ (22)
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where 1{·} is the indicator function. Observe that it is imma-
terial at which frequencies the component processes contain
signal power. For example, the information dimension rate
of two independent Gaussian processes with bandwidth 1/4
equals 1 regardless of where the derivatives of their SDFs have
their support. The following theorem shows that this result
continuous to hold for general L-variate Gaussian processes.

Theorem 2: Let {Xt} be a stationary, L-variate Gaussian
process with mean vector µ and SDF FX. Then,

d({Xt}) =
∫ 1/2

−1/2
rank(F ′X(θ))dθ. (23)

Proof: Due to space limitations, we only provide a proof
outline. The full proof can be found in [10].

We first note that we can assume, without loss of optimality,
that {Xt} has zero mean and that every component process of
{Xt} has unit variance. Indeed, by Lemma 3, the information
dimension rate of {Xt} is translation invariant, so we can
subtract the mean without affecting the information dimension
rate. Likewise, by Lemma 2, the information dimension rate
of {Xt} is scale invariant, so any component process with
positive variance can be normalized to a unit-variance process
without affecting the information dimension rate. Furthermore,
zero-variance component processes can be omitted without
affecting neither the left-hand side (LHS) nor the RHS of (23).

We next write the entropy of [Xk
1 ]m as

H([Xk
1 ]m) = h(Wk

1) + kL logm (24)

where Wt , [Xt]m + Ut, t ∈ Z and {Ut} is a sequence
of i.i.d. random vectors that are uniformly distributed on the
L-dimensional hypercube [0, 1/m)L. Denoting by (Wk

1)G a
Gaussian vector with the same mean and covariance matrix
as Wk

1 , and denoting by fWk
1

and gWk
1

the probability
density functions of Wk

1 and (Wk
1)G, respectively, this can

be expressed as

H([Xk
1 ]m) = h

(
(Wk

1)G
)
+D(fWk

1
‖gWk

1
)+ kL logm. (25)

The entropy rate of a stationary, multivariate, Gaussian
process is given by [13, Th. 7.10]

lim
k→∞

h((Wk
1)G)

k
=

1

2

∫ 1/2

−1/2
log
(
2πedetF ′W(θ)

)
dθ. (26)

Furthermore, the relative entropy D(fWk
1
‖gWk

1
) is bounded

by [10, Lemma 6]

D(fWk
1
‖gWk

1
)

k
≤ L

(
log
(
2π(1 + 1

12 )
)

2
+

75

2
+

24

π

)
. (27)

Thus, dividing (25) by k logm, and letting first k and then m
tend to infinity yields

d({Xt}) = L+ lim
m→∞

∫ 1/2

−1/2

log detF ′W(θ)

2 logm
dθ. (28)

It remains to show that the RHS of (28) is equal to the RHS
of (23). To this end, we use that for zero-mean processes {Xt}

with unit-variance component processes the SDF of {[Xt]m}
can be expressed as [10, Lemma 4]

F[X]m(θ) = (2a− 1)FX(θ) + FN(θ) (29)

where a , E [X1,1[X1,1]m] and the diagonal elements of
FN(θ) satisfy ∫ 1/2

−1/2
dFNi

(θ) ≤ 1

m2
. (30)

We can thus express the derivative of the SDF of {Wt} as

F ′W(θ) = (2a− 1)F ′X(θ) + F ′N(θ) +
1

12m2
IL (31)

where IL denotes the L×L identity matrix. By performing an
analysis similar to that in [8, App. C-A], one can show that

lim
m→∞

∫ 1/2

−1/2

log detF ′W(θ)

2 logm
dθ = −

L∑

i=1

λ({θ : µi(θ) = 0})

(32)
where µi(θ) denotes the i-th eigenvalue of F ′X(θ). (For the
details, see [10, App. A].). Combining (32) with (28) gives

d({Xt}) =
L∑

i=1

[
1− λ({θ : µi(θ) = 0})

]

=

L∑

i=1

λ({θ : µi(θ) > 0}) (33)

which as in (21) and (22) can be shown to be equal to the
RHS of (23).

VI. INFORMATION DIMENSION
OF COMPLEX GAUSSIAN PROCESSES

Theorem 2 allows us to study the information dimension
of stationary, univariate, complex-valued Gaussian processes
by treating them as bivariate, real-valued processes. Let {Zt}
be a stationary, univariate, complex-valued, Gaussian process
with mean µ and SDF FZ , i.e.,

KZ(τ) =

∫ 1/2

−1/2
e−ı2πτθdFZ(θ), τ ∈ Z (34)

where KZ(τ) , E [(Zt+τ − µ)(Zt − µ)∗] is the autocovari-
ance function, and (·)∗ denotes complex conjugation.

Alternatively, {Zt} can be expressed in terms of its real
and imaginary part. Indeed, let Zt = Rt + ıIt, t ∈ Z. The
stationary, bivariate, real-valued process {(Rt, It), t ∈ Z} is
jointly Gaussian and has SDF

F(R,I)(θ) =

(
FR(θ) FRI(θ)
FIR(θ) FI(θ)

)
, −1

2
≤ θ ≤ 1

2
(35)

where FR and FI are the SDFs of {Rt} and {It}, respectively,
and FRI and FIR are the cross SDFs between {Rt} and {It}.
The derivatives of FZ and F(R,I) are connected as follows:

F ′Z(θ) = F ′R(θ) + F ′I(θ) + ı
(
F ′IR(θ)− F ′RI(θ)

)

= F ′R(θ) + F ′I(θ) + 2Im
(
F ′RI(θ)

)
(36)
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where the last equality follows because F ′(R,I) is Hermitian.
Here we use Im(·) to denote the imaginary part. It can be
further shown that θ 7→ F ′R(θ) and θ 7→ F ′I(θ) are real-valued
and symmetric, and that θ 7→ Im

(
F ′RI(θ)

)
is anti-symmetric.

A stationary, complex-valued process {Zt} is said to be
proper if its mean µ and its pseudo-autocovariance function

KZ(τ) , E [(Zt+τ − µ)(Zt − µ)] , τ ∈ Z
are both zero [14, Def. 17.5.4]. Since, by Lemma 3, the
information dimension rate is independent of µ, we shall
slightly abuse notation and say that a stationary, complex-
valued process is proper if its pseudo-autocovariance function
is identically zero, irrespective of its mean. Properness implies
that, for all θ, FR(θ) = FI(θ) and FRI(θ) = −FIR(θ). Since
θ 7→ F ′(R,I)(θ) is Hermitian, this implies that for a proper
process the function θ 7→ F ′RI(θ) is purely imaginary.

The following corollary to Theorem 2 shows that proper
Gaussian processes maximize information dimension. This
parallels the result that proper Gaussian vectors maximize
differential entropy [15, Th. 2].

Corollary 1: Let {Zt} be a stationary, complex-valued
Gaussian process with mean µ and SDF FZ . Then

d({Zt}) ≤ 2 · λ({θ: F ′Z(θ) > 0}) (37)

with equality if {Zt} is proper.
Proof: We know from Theorem 2 that

d({Zt}) =
∫ 1/2

−1/2
rank(F ′(R,I)(θ))dθ. (38)

For a given θ, the eigenvalues of F ′(R,I)(θ) are given by

F ′R(θ) + F ′I(θ)
2

±
√

(F ′R(θ)− F ′I(θ))2
4

+ |F ′RI(θ)|2. (39)

Since F ′(R,I)(θ) is positive semi-definite, these eigenvalues are
nonnegative and

F ′R(θ)F
′
I(θ) ≥ |F ′RI(θ)|2. (40)

The larger of these eigenvalues, say µ1(θ), is zero on

F1 , {θ : F ′R(θ) = F ′I(θ) = 0}. (41)

The smaller eigenvalue, µ2(θ), is zero on

F2 ,
{
θ : F ′R(θ)F

′
I(θ) = |F ′RI(θ)|2

}
. (42)

Clearly, F1 ⊆ F2. By (38), we have that

d({Zt}) = λ({θ: µ1(θ) > 0}) + λ({θ: µ2(θ) > 0})
= 1− λ(F1) + 1− λ(F1)− λ(F c

1 ∩ F2). (43)

We next note that, by (36) and (40), the derivative F ′Z(θ) is
zero if either F ′R(θ) = F ′I(θ) = 0 or if F ′R(θ) + F ′I(θ) > 0
and F ′R(θ) + F ′I(θ) = −2Im(F ′RI(θ)). Since θ 7→ F ′R(θ)
and θ 7→ F ′I(θ) are symmetric and θ 7→ Im(F ′RI(θ)) is anti-
symmetric, it follows that for any θ ∈ Fc1 satisfying F ′R(θ) +
F ′I(θ) = −2Im(F ′RI(θ)) we have that F ′R(−θ) + F ′I(−θ) =
2Im(F ′RI(−θ)). Thus, defining

F3 ,
{
θ : F ′R(θ) + F ′I(θ) = 2|Im(F ′RI(θ))|

}
(44)

we can express the Lebesgue measure of the set of harmonics
where F ′Z(θ) = 0 as

λ({θ: F ′Z(θ) = 0}) = λ(F1) +
1

2
λ(F c

1 ∩ F3). (45)

Combining (43) and (45), we obtain

d({Zt}) = 2λ({θ : F ′Z(θ) > 0})
+ λ(F c

1 ∩ F3)− λ(F c
1 ∩ F2). (46)

Since the arithmetic mean is greater than or equal to the
geometric mean, and with (40), we have that

(F ′R(θ) + F ′I(θ))
2 ≥ 4F ′R(θ)F

′
I(θ)

≥ 4|F ′RI(θ)|2 ≥ 4Im(F ′RI(θ))
2. (47)

Hence, F3 ⊆ F2 and the second line in (46) is less than or
equal to zero. This proves (37).

If {Zt} is proper, then we have F ′R(θ) = F ′I(θ) and
|F ′RI(θ)| = |Im(F ′RI(θ))|. In this case, F ′R(θ)F

′
I(θ) =

|F ′RI(θ)|2 implies F ′R(θ) + F ′I(θ) = 2|Im(F ′RI(θ))|, so
F2 ⊆ F3. It follows that F2 = F3 and the second line in
(46) is zero. Hence, (37) holds with equality.

Remark 1: There are also non-proper processes for which
(37) holds with equality. For example, this is the case for any
stationary Gaussian process for which real and imaginary parts
are independent and F ′R and F ′I have matching support but are
different otherwise.
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