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Abstract—We consider a Gaussian multiple-access channel
where the number of users grows with the blocklength n. For
this setup, the maximum number of bits per unit-energy that
can be transmitted reliably as a function of the order of growth
of the users is analyzed. For the per-user probability of error,
we show that if the number of users grows sublinearly with the
blocklength, then each user can achieve the capacity per unit-
energy of the Gaussian single-user channel. Conversely, if the
number of users grows at least linearly with the blocklength,
then the capacity per unit-energy is zero. Thus, there is a sharp
transition between orders of growth where interference-free
communication is feasible and orders of growth where reliable
communication at a positive rate per unit-energy is infeasible.
The same observation was made by Ravi and Koch (Proc. IEEE
Int. Symp. Inf. Theory, Jul. 2019) when the per-user probability
of error is replaced by the joint probability of error, with the
difference that the transition threshold is located at n/ logn
rather than at n. We further discuss the rates per unit-energy
that can be achieved if one allows for a non-vanishing error
probability.

I. INTRODUCTION

Recently, Chen et al. [1] introduced the many-access chan-
nel (MnAC) as a multiple-access channel (MAC) where the
number of users grows with the blocklength. The MnAC model
is motivated by systems consisting of a single receiver and
many transmitters, the number of which is comparable or even
larger than the blocklength. This situation may occur, e.g.,
in a machine-to-machine communication system with many
thousands of devices in a given cell. In [1], Chen et al. con-
sidered a Gaussian MnAC with kn users and determined the
number of messages Mn each user can transmit reliably with
a codebook of average power not exceeding P . Since then,
MnACs have been studied in various papers under different
settings. For example, Polyanskiy [2] considered a Gaussian
MnAC where the number of active users grows linearly in
the blocklength and each user’s payload is fixed. Zadik et al.
[3] presented improved bounds on the tradeoff between user
density and energy-per-bit of this channel. Generalizations to
quasi-static fading MnACs can be found in [4]–[7]. Shahi et
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al. [8] studied the capacity region of strongly asynchronous
MnACs. Ravi and Koch [9], [10] characterized the capacity
per unit-energy of Gaussian MnACs as a function of the order
of growth of the number of users.

Roughly, papers on the MnAC can be divided into two
groups: The first group, including [1], [8]–[10], considers a
classical information-theoretic setting where the number of
messages Mn transmitted by each user grows with n and the
probability of a decoding error is defined as

P
(n)
e,J , Pr{(Ŵ1, . . . , Ŵkn) 6= (W1, . . . ,Wkn)}. (1)

Here, Wi denotes the message transmitted by user i and Ŵi

denotes the decoder’s estimate of this message. The second
group, including [2]–[7], assumes that Mn is fixed and defines
the probability of a decoding error as

P
(n)
e,A ,

1

kn

kn∑
i=1

Pr{Ŵi 6= Wi}. (2)

The error probability P
(n)
e,A is sometimes referred to as per-

user probability of error. In this paper, we shall refer to it as
average probability of error (APE). In contrast, we shall refer
to P (n)

e,J as joint probability of error (JPE).
This paper aims at a better understanding of the implications

of the above assumptions on the capacity per unit-energy,
defined as the largest number of bits per unit-energy that
can be transmitted with vanishing error probability [11]. To
this end, we consider the APE and study the behavior of the
capacity per unit-energy of Gaussian MnACs as a function
of the order of growth of the number of users kn. We
demonstrate that, if the order of growth of kn is sublinear,
then each user can achieve the capacity per unit-energy log e

N0

of the single-user Gaussian channel (where N0/2 is the noise
power). Conversely, if the growth of kn is linear or superlinear,
then the capacity per unit-energy is zero. Thus, there is a
sharp transition between orders of growth where interference-
free communication is feasible and orders of growth where
reliable communication at a positive rate is infeasible. The
same behavior has been observed for the JPE, but with the
transition threshold located at n/ log n [9], [10]. Consequently,
relaxing the error probability from JPE to APE merely shifts
the transition threshold from n/ log n to n.



Our results imply that, when the number of users grows
linearly in n, as assumed, e.g., in [2]–[7], the capacity per
unit-energy is zero, irrespective of whether one considers the
APE or the JPE. We further show that, for the JPE, this holds
true even if we allow for a non-vanishing error probability. We
thus conclude that, when the number of users of the Gaussian
MnAC grows linearly in n, a positive rate per unit-energy can
be achieved only if one considers the APE and one allows for
a non-vanishing error probability.

The rest of the paper is organized as follows. In Section II,
we introduce the system model. In Section III, we characterize
the capacity per unit-energy of the Gaussian MnAC with APE
and compare it to the capacity per unit-energy of the Gaussian
MnAC with JPE obtained in [9], [10]. Section IV discusses
the rates per unit-energy that can be achieved if one allows
for a non-vanishing error probability. Section V concludes the
paper with a discussion of the obtained results.

II. PROBLEM FORMULATION AND DEFINITIONS

A. Model and Definitions

Suppose there are k users that wish to transmit their mes-
sages Wi, i = 1, . . . , k, which are assumed to be independent
and uniformly distributed on {1, . . . ,M (i)

n }, to one common
receiver. To achieve this, they send a codeword of n symbols
over the channel, where n is referred to as the blocklength. We
consider a many-access scenario where the number of users k
grows with n, hence, we denote it as kn. We further consider a
Gaussian channel model where, for kn users and blocklength
n, the received vector Y is given by

Y =

kn∑
i=1

Xi(Wi) + Z.

Here, Xi(Wi) is the length-n transmitted codeword by user
i for message Wi and Z is a vector of n i.i.d. Gaussian
components Zj ∼ N (0, N0/2) independent of Xi.

We next introduce the notion of an
(
n,
{
M

(·)
n

}
,
{
E

(·)
n

}
, ε
)

code. We use the subscripts “J” and “A” to indicate whether
the JPE or the APE is considered.

Definition 1: For 0 ≤ ε < 1, an
(
n,
{
M

(·)
n

}
,
{
E

(·)
n

}
, ε
)
J

code for the Gaussian MnAC consists of:
1) kn encoding functions fi : {1, . . . ,M (i)

n } → Xn, which
map user i’s message to the codeword Xi(Wi), satisfying
the energy constraint

n∑
j=1

x2ij(wi) ≤ E(i)
n . (3)

Here, xij is the jth symbol of the transmitted codeword.
2) A decoding function g : Yn → {M (·)

n }, which maps the
received vector Y to the messages of all users and whose
JPE, defined in (1), satisfies P (n)

e,J ≤ ε.
An

(
n,
{
M

(·)
n

}
,
{
E

(·)
n

}
, ε
)
A

code for the Gaussian MnAC
consists of the same encoding functions fi, i = 1, . . . , kn and
a decoding function g : Yn → {M (·)

n } whose APE, defined in
(2), satisfies P (n)

e,A ≤ ε.

We shall say that the (n, {M (·)
n }, {E(·)

n }, ε)ξ code
(ξ ∈ {J,A}) is symmetric if M (i)

n = Mn and E
(i)
n = En for

all i = 1, . . . , kn. For compactness, we denote a symmetric
code by (n,Mn, En, ε)ξ, ξ ∈ {J,A}. In this paper, we restrict
ourselves to symmetric codes.

Definition 2: Let ξ ∈ {J,A}. For a symmetric code, the
rate per unit-energy Ṙξ is said to be ε-achievable if for
every α > 0 there exists an n0 such that if n ≥ n0, then
an (n,Mn, En, ε)ξ code can be found whose rate per unit-
energy satisfies logMn

En
> Ṙξ − α. Furthermore, Ṙξ is said

to be achievable if it is ε-achievable for all 0 < ε < 1.
The ε-capacity per unit-energy Ċξε is the supremum of all
ε-achievable rates per unit-energy. Similarly, the capacity per
unit-energy Ċξ is the supremum of all achievable rates per
unit-energy.

Remark 1: In [11, Def. 2], a rate per unit-energy Ṙ is said
to be ε-achievable if for every α > 0 there exists an E0 such
that if E ≥ E0, then an (n,M,E, ε) code can be found whose
rate per unit-energy satisfies logM

E > Ṙ−α. Thus, the energy
E is supposed to be large rather than the blocklength n, as
required in Definition 2. For the MnAC, where the number
of users grows with the blocklength, we believe it is more
natural to impose that n→∞. Definition 2 is also consistent
with the definition of energy-per-bit in [2], [3]. Further note
that, for the capacity per unit-energy, where a vanishing error
probability is required, our definition is actually equivalent to
[11, Def. 2]. Indeed, as observed in [9, Lemma 1] for the
JPE, and as we argue below for the APE, a vanishing error
probability can only be achieved if En →∞ as n→∞.

B. Order Notations

Let {an} and {bn} be two sequences of nonnegative real
numbers. We write an = o(bn) if lim

n→∞
an
bn

= 0. We further
write an = Ω(bn) if lim inf

n→∞
an
bn

> 0 and an = ω(bn) if
lim
n→∞

an
bn

=∞.

III. CAPACITY PER UNIT-ENERGY OF
GAUSSIAN MANY-ACCESS CHANNELS

In this section, we discuss the behavior of the capacity per
unit-energy as a function of the growth of kn. Specifically,
in Subsection III-A we review the results for the case of JPE
that we originally presented in [9], [10]. In Subsection III-B,
we then present one of the main results of this paper, a
characterization of the capacity per unit-energy as a function
of the growth of the number of users for APE (Theorem 2).
The proof of Theorem 2 is given in Subsection III-C.

A. Joint Probability of Error

Theorem 1: The capacity per unit-energy ĊJ for JPE has
the following behavior:

1) If kn = o(n/ log n), then ĊJ = log e
N0

.
2) If kn = ω(n/ log n), then ĊJ = 0.

Proof: Part 1) is [9, Th. 2]. Part 2) is [9, Th. 1].
In words, if the order of growth is below n/ log n, then

each user can achieve the single-user capacity per unit-energy.



Conversely, for any order of growth above n/ log n, no positive
rate per unit-energy is achievable. Thus, there is a sharp
transition between orders of growth where interference-free
communication is feasible and orders of growth where reliable
communication at a positive rate per unit-energy is infeasible.

B. Average Probability of Error

Theorem 2: The capacity per unit-energy ĊA for APE has
the following behavior:

1) If kn = o(n), then ĊA = log e
N0

.
2) If kn = Ω(n), then ĊA = 0.

Proof: See Section III-C.
We observe a similar behavior as for JPE. Again, there is a

sharp transition between orders of growth where interference-
free communication is feasible and orders of growth where
reliable communication at a positive rate per unit-energy is
infeasible. The main difference is that the transition threshold
is shifted from n/ log n to n.

C. Proof of Theorem 2

Part 1): We first argue that P (n)
e,A → 0 only if En →∞, and

that in this case ĊA ≤ log e
N0

. Indeed, let Pi , Pr{Ŵi 6= Wi}
denote the probability that message Wi is decoded erroneously.
We then have that P (n)

e,A ≥ mini Pi. Furthermore, Pi is lower-
bounded by the error probability of the Gaussian single-user
channel, since a single-user channel can be obtained from the
MnAC if a genie informs the receiver about the codewords
transmitted by users j 6= i. By applying the lower bound [12,
eq. (30)] on the error probability of the Gaussian single-user
channel, we thus obtain

P
(n)
e,A ≥ Q

(√
2En
N0

)
, Mn ≥ 2. (4)

Hence P (n)
e,A → 0 only if En →∞. As mentioned in Remark 1,

when En tends to infinity as n → ∞, the capacity per unit-
energy ĊA coincides with the capacity per unit-energy defined
in [11], which for the Gaussian single-user channel is given
by log e

N0
[11, Ex. 3]. Furthermore, if P (n)

e,A → 0 as n → ∞,
then there exists at least one user i for which Pi → 0 as
n → ∞. By the above genie argument, this user’s rate per
unit-energy is upper-bounded by the capacity per unit-energy
of the Gaussian single-user channel. Since for the class of
symmetric codes considered in this paper each user transmits
at the same rate per unit-energy, we conclude that ĊA ≤ log e

N0
.

We next show that any rate per unit-energy ṘA < log e
N0

is
achievable. For a given 0 < ε < 1, let 0 < ε′ < ε, and define

An ,
1

kn

kn∑
i=1

1(Ŵi 6= Wi)

where 1(·) denotes the indicator function. Further define An ,
{0, 1/kn, . . . , 1} and Aε

′

n , {a ∈ An : a ≥ ε′}. Noting that

P
(n)
e,A = E[An], we then obtain that

P
(n)
e,A =

∑
a∈An

aPr{An = a}

=
∑

a∈An\Aε
′
n

aPr{An = a}+
∑
a∈Aε′n

aPr{An = a}

≤ ε′ +
∑
a∈Aε′n

Pr{An = a} (5)

where we used that a ≤ ε′ for a ∈ An \ Aε
′

n and a ≤ 1 for
a ∈ Aε

′

n . Next we show that if ṘA < log e
N0

, then

lim
n→∞

∑
a∈Aε′n

Pr{An = a} = 0. (6)

It then follows from (5) that P (n)
e,A ≤ ε for sufficiently large n

and all 0 < ε < 1. Thus, any rate per unit-energy ṘA < log e
N0

is achievable which proves Part 1) of Theorem 2.
To prove (6), we need the following lemma.
Lemma 1: For any arbitrary 0 < ρ ≤ 1, we have

Pr{An = a} ≤
(
kn
akn

)
Maknρ
n e−nE0(a,ρ), a ∈ An \ {0}

where

E0(a, ρ) ,
ρ

2
ln

(
1 +

a2knEn
n(ρ+ 1)N0

)
.

Proof: See [13, Th. 2].
Using Lemma 1, we can upper-bound the second term on

the right-hand side (RHS) of (5) as∑
a∈Aε′n

Pr{An = a}

≤

(
max
a∈Aε′n

exp
[
−nE0(a, ρ) + lnMaρkn

n

]) ∑
a∈Aε′n

(
kn
akn

)
≤ max
a∈Aε′n

exp [−Enfn(a, ρ)] (7)

where

fn(a, ρ) ,
nE0(a, ρ)

En
− aρkn lnMn

En
− kn ln 2

En
.

We next choose En = (ln(n/kn)kn/n)−1. This implies
that En → ∞ and Enkn/n → 0 as n → ∞ since, by the
theorem’s assumption, kn = o(n). We then show that, for
this choice of En and ṘA = log e

(1+ρ)N0
− δ (for some arbitrary

0 < δ < log e
(1+ρ)N0

), we have

lim inf
n→∞

min
a∈Aε′n

fn(a, ρ) > 0. (8)

Thus, for ṘA = log e
(1+ρ)N0

− δ, the RHS of (7) vanishes as
n→∞. Since 0 < ρ < 1 and δ > 0 are arbitrary, (6) follows.

To obtain (8), we first show that, for any fixed value of ρ
and our choices of En and ṘA,

lim inf
n→∞

dfn(a, ρ)

da
> 0, ε′ ≤ a ≤ 1. (9)



Hence

lim inf
n→∞

min
a∈Aε′n

fn(a, ρ) ≥ lim inf
n→∞

fn(ε′, ρ). (10)

Indeed, basic algebraic manipulations yield for ε′ ≤ a ≤ 1

dfn(a, ρ)

da
≥ ρkn

[
1

1 + 2knEn
n(ρ+1)N0

1

(1 + ρ)N0
− ṘA

log e

]
. (11)

Recall that, for the given choice of En, we have knEn
n → 0

as n→∞. It follows that the bracketed term in (11) tends to
δ

log e as n→∞. This proves (9).
We next show that the RHS of (10) is positive for every

0 < ρ < 1. Let

in(ε′, ρ) ,
nE0(ε′, ρ)

En

jn(ε′, ρ) ,
ε′ρknṘA

log e

hn ,
kn ln 2

En
.

For our choices of En and ṘA, we have that hn/jn(ε′, ρ)→ 0
as n→∞. Consequently,

lim inf
n→∞

fn(ε′, ρ) ≥ lim inf
n→∞

jn(ε′, ρ) lim inf
n→∞

fn(ε′, ρ)

jn(ε′, ρ)

= lim inf
n→∞

jn(ε′, ρ)

{
lim inf
n→∞

in(ε′, ρ)

jn(ε′, ρ)
− 1

}
.

Note that jn(ε′, ρ) ≥ ε′ρṘA/ log e, which is bounded away
from zero for our choice of ṘA and δ < log e

(1+ρ)N0
. The RHS

of (10) is thus positive if lim infn→∞ in(ε′, ρ)/jn(ε′, ρ) > 1,
which is what we show next. Indeed, we have for our choice
of En and kn = o(n) that

lim
n→∞

in(ε′, ρ)

jn(ε′, ρ)
=

log e

(1 + ρ)N0ṘA
.

For our choice of ṘA, this is strictly larger than 1. We thus
conclude that the RHS of (10) is positive, from which (8), and
hence also (6), follows. This proves Part 1) of Theorem 2.

Part 2): Fano’s inequality yields that

logMn ≤ 1 + Pi logMn + I(Wi; Ŵi)

for i = 1, . . . , kn. Averaging over all i’s then gives

logMn ≤ 1 +
1

kn

kn∑
i=1

Pi logMn +
1

kn
I(W;Ŵ)

≤ 1 + P
(n)
e,A logMn +

1

kn
I(X;Y)

≤ 1 + P
(n)
e,A logMn +

n

2kn
log

(
1 +

2knEn
nN0

)
(12)

where X , (X1,X2, . . . ,Xkn). Here, the first inequality fol-
lows because the messages Wi, i = 1, . . . , kn are independent
and because conditioning reduces entropy, the second inequal-
ity follows from the definition of P (n)

e,A and the data processing

inequality, and the third inequality follows by upper-bounding
I(X;Y) by n

2 log
(
1 + 2knEn

nN0

)
.

Dividing both sides of (12) by En, and solving the inequal-
ity for ṘA, we obtain the upper bound

ṘA ≤
1
En

+ n
2knEn

log(1 + 2knEn
nN0

)

1− P (n)
e,A

. (13)

As argued at the beginning of the proof of Part 1), we have
P

(n)
e,A → 0 only if En → ∞. If kn = Ω(n), then this implies

that knEn/n→∞ as n→∞. It thus follows from (13) that,
if kn = Ω(n), then ĊA = 0, which is Part 2) of Theorem 1.

IV. NON-VANISHING ERROR PROBABILITY

In this section, we briefly discuss how the largest achievable
rate per unit-energy changes if we allow for a non-vanishing
error probability. With the help of the following example, we
first argue that when the number of users is bounded in n, then
a simple orthogonal-access scheme achieves an ε-achievable
rate per unit-energy that can be strictly larger than the single-
user capacity per unit-energy log e

N0
.

Example 1: Consider a k-user Gaussian MAC with normal-
ized noise variance N0/2 = 1 and where the number of users
is independent of n. Suppose that each user transmits one
out of two messages (Mn = 2) with energy En = 1 by
following an orthogonal-access scheme where each user gets
one channel use and remains silent in the remaining channel
uses. In this channel use, each user transmits either +1 or −1
to convey its message. Since the access scheme is orthogonal,
the receiver can perform independent decoding for each user,
which yields Pi = Q(1). Consequently, we can achieve the
rate per unit-energy logMn

En
= 1 at APE P

(n)
e,A = Q(1) and

at JPE P
(n)
e,J = 1 − (1 − Q(1))k [9, eq. (6)]. Thus, for some

0 < ε < 1, we have that Ċξε >
log e
N0

, ξ ∈ {J,A}.
Remark 2: A crucial ingredient in the above scheme is that

the energy En is bounded in n. Indeed, it follows from [12,
Th. 3] that if En → ∞ as n → ∞, then the ε-capacity per
unit-energy of the Gaussian single-user channel is equal to
log e
N0

, irrespective of 0 < ε < 1. The genie argument provided
at the beginning of Section III-C then yields that the same is
true for the Gaussian MnAC.

In the rest of this section, we discuss the ε-capacity per
unit-energy when the number of users kn tends to infinity as
n tends to infinity. Specifically, in Subsection IV-A we discuss
the ε-capacity per unit-energy for JPE as a function of the
order of growth of the number of users. In Subsection IV-B,
we briefly discuss the ε-capacity per unit-energy for APE when
kn grows linearly in n.

A. Non-Vanishing JPE

Theorem 3: The ε-capacity per unit-energy ĊJε for JPE has
the following behavior:

1) If kn = ω(1) and kn = o(n/ log n), then ĊJε = log e
N0

for
every 0 < ε < 1.

2) If kn = ω(n/ log n), then ĊJε = 0 for every 0 < ε < 1.



Proof: We first prove Part 1). It follows from [9, eq. (20)]
that, for Mn ≥ 2,1

P
(n)
e,J ≥ 1− 64En/N0 + log 2

log kn
. (14)

This implies that P (n)
e,J tends to one unless En = Ω(log kn).

Since by the theorem’s assumption kn = ω(1), it follows
that En → ∞ is necessary to achieve a JPE strictly smaller
than one. As argued in Remark 2, if En → ∞ as n → ∞,
then the ε-capacity per unit-energy of the Gaussian MnAC
cannot exceed the single-user capacity per unit-energy log e

N0
.

Furthermore, by Theorem 1, if kn = o(n/ log n) then any rate
per unit-energy satisfying ṘJ < log e

N0
is achievable, hence it

is also ε-achievable. We thus conclude that, if kn = ω(1) and
kn = o(n/ log n), then ĊJε = log e

N0
for every 0 < ε < 1.

To prove Part 2), we use that, by Fano’s inequality, we can
upper-bound ṘJ as [9, eq. (2)]

ṘJ ≤
1

knEn
+ n

2knEn
log(1 + 2knEn

nN0
)

1− P (n)
e,J

. (15)

By (14), P (n)
e,J tends to one unless En = Ω(log kn). For kn =

ω(n/ log n), this implies that knEn/n→∞ as n→∞, so the
RHS of (15) vanishes as n tends to infinity. We thus conclude
that, if kn = ω(n/ log n), then ĊJε = 0 for every 0 < ε < 1.

B. Non-Vanishing APE

For the APE, we restrict ourselves to the case where
kn = µn for some µ > 0, since it is a common assumption in
the analysis of MnACs; see, e.g., [2]–[7]. By inspecting the
proof of Part 1) of Theorem 2, one can show that, for every
µ > 0 and 0 < ε′ < ε < 1, there exists an E independent of
n and a 0 < ρ ≤ 1 such that the RHS of (7) vanishes with n
for some positive ṘA. By (5), it then follows that P (n)

e,A ≤ ε
for sufficiently large n, hence, there exists a positive rate per
unit-energy ṘA that is ε-achievable.

While (5) and (7) yield an upper bound on P
(n)
e,A that is

sufficient to demonstrate the qualitative behavior of ĊAε , this
bound is looser than the bounds obtained in [2], [3]. Specif-
ically, [2], [3] derived bounds on the minimum energy-per-
bit E∗(M,µ, ε) required to send M messages at an APE not
exceeding ε when the number of users is given by kn = µn.
Since the rate per unit-energy is the inverse of the energy-
per-bit, these bounds also apply to ĊAε . The achievability and
converse bounds presented in [3] further suggest that there
exists a critical user density µ below which interference-free
communication is feasible. This conjectured effect can be
confirmed when each user sends only one bit (M = 2), since
in this case E∗(M,µ, ε) can be evaluated in closed form for
µ ≤ 1. For simplicity, assume that N0/2 = 1. Then,

E∗(2, µ, ε) =
(
max{0, Q−1(ε)}

)2
, 0 ≤ µ ≤ 1. (16)

Indeed, that E∗(2, µ, ε) ≥ (max{0, Q−1(ε)})2 follows
from (4). Furthermore, when µ ≤ 1, applying the

1A similar bound was presented in [14, p. 84] for the case where Mn = 2.

orthogonal-access scheme presented in Example 1 with energy
(max{0, Q−1(ε)})2 achieves P

(n)
e,A = ε. Observe that the

RHS of (16) does not depend on µ and agrees with the
minimum energy-per-bit required to send one bit over the
Gaussian single-user channel with error probability ε. Thus,
when µ ≤ 1, we can send one bit free of interference.

V. CONCLUSION

A common assumption in the analysis of MnACs is that
the number of users grows linearly with the blocklength.
Theorems 1 and 2 imply that in this case the capacity per
unit-energy is zero, irrespective of whether one considers the
APE or the JPE. Theorem 3 further demonstrates that, for
the JPE, this holds true even if we allow for a non-vanishing
error probability. The situation changes for the APE. Here a
positive rate per unit-energy can be achieved if one allows for
a non-vanishing error probability. Another crucial assumption
is that the energy En and payload logMn are bounded in
n. Indeed, for kn = µn, the RHS of (13) vanishes as En
tends to infinity, so when En →∞ no positive rate per unit-
energy is ε-achievable. Moreover, for kn = µn and a bounded
En, (12) implies that the payload logMn is bounded, too. We
conclude that the arguably most common assumptions in the
literature on MnACs—linear growth of the number of users,
a non-vanishing APE, and a fixed payload—are the only set
of assumptions under which a positive rate per unit-energy is
achievable, unless we consider nonlinear growths of kn.
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