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To my dad

I may not have gone where I intended to go,
but I think I have ended up where I intended to be.
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to put up with my good moods and my bad moods—and most of the
time I was driving her crazy by playing with my pen. I hope she
misses me a bit, too... A huge “thank you!” goes to the former and
current members of the “IT gang”: Dani, Ligong, Michèle, Natalia,
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Abstract

This dissertation studies two phenomena that affect the transmission
of data: heating up and fading. In particular, the effect of these phe-
nomena on channel capacity, which is the largest rate at which data
transmission with arbitrarily lower error probability is possible, is in-
vestigated.

Heating up is relevant in on-chip communication, where multiple termi-
nals that are located on the same microchip wish to communicate with
each other. It accounts for thermal coupling of data and noise. Indeed,
the data to be transmitted are corrupted by thermal noise, whose vari-
ance depends on the local temperature of the chip. Furthermore, the
transmission of data is associated with dissipation of energy into heat
and raises therefore the local temperature of the chip. This gives rise
to a channel model where the variance of the additive noise is data-
dependent. The capacity of this channel is studied at low and at high
transmit powers. At low transmit powers, the slope of the capacity-vs-
power curve at zero is computed, and it is shown that the heating-up
effect is beneficial. At high transmit powers, it is demonstrated that the
heating-up effect is detrimental. In fact, if the heat dissipates slowly
then the capacity is bounded in the transmit power, i.e., the capacity
does not tend to infinity as the allowed average power tends to infinity.
A sufficient condition and a necessary condition for the capacity to be
bounded is derived.

The results of the above analyses suggest that at low transmit powers
heat sinks are not only unnecessary, but they even reduce the capacity
by dissipating heat, which contains information about the transmitted
signal. The results further accentuate the importance of an efficient
heat sink at large transmit powers.

Fading occurs in wireless communication channels. In such channels
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the transmitted signal is not only corrupted by additive noise, but
also by multiplicative noise, which accounts for the variation of the
signal’s attenuation. This multiplicative noise is referred to as fading.
In contrast to many other information-theoretic studies, where it is
assumed that the receiver has perfect knowledge of the fading, in this
dissertation it is assumed that the transmitter and the receiver only
know the statistics of the fading but not its realization.

First, the capacity of multiple-input multiple-output (MIMO) Gaussian
flat-fading channels with memory is considered. Nonasymptotic upper
and lower bounds on the capacity are derived, and their asymptotic
behavior is analyzed in the limit as the signal-to-noise ratio (SNR)
tends to infinity. In particular, upper bounds on the fading number
(which is defined as the second-order term in the high-SNR expansion
of capacity) and on the capacity pre-log (which is defined as the limiting
ratio of capacity to log SNR as SNR tends to infinity) are computed.
Furthermore, an approach to derive lower bounds on the fading number
is proposed. This lower bound is applied to derive a lower bound on
the fading number of spatially IID, zero-mean, MIMO Gaussian fading
channels with memory. The derived upper and lower bounds on the
fading number demonstrate that when the number of receive antennas
does not exceed the number of transmit antennas, the fading number
of spatially IID, zero-mean, slowly-varying, Gaussian fading channels is
proportional to the number of degrees of freedom, i.e., to the minimum
of the number of transmit and receive antennas.

Second, the capacity pre-log of single-input single-output (SISO) flat-
fading channels with memory is studied. It is shown that, among all
stationary and ergodic fading processes of a given spectral distribution
function and whose law has no mass point at zero, the Gaussian process
gives rise to the smallest pre-log. It is further demonstrated that the
assumption that the fading law has no mass point at zero is essential
in the sense that there exist stationary and ergodic fading processes of
some spectral distribution function (and whose law has a mass point
at zero) that give rise to a smaller pre-log than the Gaussian process of
equal spectral distribution function. These results are then extended
to multiple-input single-output (MISO) fading channels with memory.

Finally, the capacity of multipath (frequency-selective) fading channels



Abstract ix

is studied. It is shown that if the delay spread is large in the sense that
the variances of the path gains decay exponentially or slower, then the
capacity is bounded in the SNR. Thus, in this case the capacity does
not grow to infinity as the SNR tends to infinity. In contrast, if the
variances of the path gains decay faster than exponentially, then the
capacity is unbounded in the SNR. It is further demonstrated that if
the number of paths is finite, then the capacity pre-loglog, which is
defined as the limiting ratio of capacity to log log SNR as SNR tends
to infinity, is 1, irrespective of the number of paths.

The conclusions that can be drawn from the above described analyses
of fading channels are manifold. First, the presence of multiple an-
tennas at the transmitter and receiver is very beneficial, even if the
receiver does not know the realization of the fading. Second, the Gaus-
sian fading assumption in the analysis of fading channels at high SNR
is conservative in the sense that for a large class of fading processes the
Gaussian process gives rise to the smallest capacity pre-log. Third, at
high SNR multipath fading channels with an infinite number of paths
should not be approximated by multipath fading channels with a fi-
nite number of paths, since these channels possess completely different
high-SNR capacity behaviors. And last but not least, the high-SNR
asymptotic behavior of the capacity of fading channels is very sensitive
to the employed channel model. Thus, in the information-theoretic
analysis of fading channels at high SNR and in the evaluation of the re-
sults thereof, one should attach great importance to the channel model.

Keywords: Information theory, channel capacity, capacity per unit
cost, channels with memory, high signal-to-noise ratio, on-chip com-
munication, wireless communication, flat-fading channels, multipath
fading channels.





Kurzfassung

Diese Dissertation behandelt zwei Phänomene, welche die Übertragung
von Daten beeinträchtigen: Erhitzung und Schwund. Insbesondere wird
untersucht, inwiefern diese Phänomene die Kanalkapazität, die definiert
ist als die grösste Datenrate mit welcher Daten mit beliebig kleiner
Fehlerwahrscheinlichkeit übertragen werden können, beeinflussen.

Das Problem der Erhitzung ist in der On-Chip Kommunikation von Be-
deutung, wo mehrere Datenstationen, welche sich auf dem selben Mi-
krochip befinden, miteinander kommunizieren. Die übertragenen Daten
werden üblicherweise durch thermisches Rauschen gestört, wobei die
Varianz dieses Rauschens von der Temperatur des Mikrochips abhängt.
Da bei der Datenübertragung Energie in Wärme umgewandelt wird,
welche dann den Chip erhitzt, hängt die Varianz des thermischen Rau-
schens von der Energie der bereits übertragenen Daten ab. In dieser
Dissertation wird die Kapazität dieses Kanals bei geringer Signalleis-
tung und bei grosser Signalleistung untersucht. Im ersten Fall (d.h. bei
geringer Signalleistung) wird die Steigung der Funktion, welche die Si-
gnalleistung auf die Kapazität abbildet, im Nullpunkt ermittelt, und es
wird gezeigt dass in diesem Fall Erhitzung von Vorteil ist. Im zweiten
Fall (d.h. bei grosser Signalleistung) wird aufgezeigt, dass sich Erhit-
zung nachteilig auf die Kapazität auswirkt: Wenn die Wärme nicht
genug schnell abgeführt werden kann, dann strebt die Kapazität mit
steigender Signalleistung nicht gegen Unendlich. Des Weiteren werden
eine hinreichende und eine notwendige Bedingung dafür dass die Ka-
pazität nicht gegen Unendlich strebt hergeleitet.

Die Resultate der oben beschriebenen Analyse deuten darauf hin, dass
bei geringer Signalleistung eine Wärmesenke nicht nur unnötig ist, son-
dern sogar die Kapazität verringert, da sie Wärme abführt, die Infor-
mation über die gesendeten Daten enthält. Des Weiteren heben die
Resultate die Wichtigkeit einer effizienten Wärmesenke bei grosser Si-
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gnalleistung hervor.

Schwund tritt in der drahtloser Kommunikation auf. Drahtlose
Übertragung wird häufig durch ein Kanalmodell beschrieben in wel-
chem das übertragene Signal nicht nur durch additives, sondern auch
durch multiplikatives Rauschen gestört wird. Dieses multiplikative Rau-
schen wird Fading genannt. Im Gegensatz zu vielen informationstheore-
tischen Arbeiten, wo angenommen wird, dass der Empfänger das Fading
perfekt kennt, wird in dieser Dissertation angenommen, dass sowohl
Sender als auch Empfänger lediglich die Wahrscheinlichkeitsverteilung
des Fadings kennen, aber nicht seine Realisation.

Zuerst wird die Kanalkapazität von Gauss’schen MIMO Flat-Fading
Kanälen mit Gedächtnis untersucht (MIMO ist neudeutsch für Mehr-
fachantennen). Es werden nichtasymptotische untere und obere Schran-
ken für die Kapazität hergeleitet sowie dessen asymptotisches Verhal-
ten untersucht wenn der Störabstand gegen Unendlich wächst. Insbe-
sondere werden obere Schranken für die Fading Number (welche defi-
niert ist als der Term zweiter Ordnung der asymptotischen Reihenent-
wicklung der Kanalkapazität bei hohem Störabstand) und den Pre-Log
(welcher definiert ist als das asymptotische Verhältnis der Kapazität
zum Logarithmus des Störabstandes wenn der Störabstand gegen Un-
endlich strebt) berechnet. Des Weiteren wird eine Methode zur Be-
rechnung von unteren Schranken für die Fading Number eingeführt.
Diese Methode wird angewendet, um eine untere Schranke für die
Fading Number von räumlich-IID, mittelwertfreien, Gauss’schen MI-
MO Fading Kanälen herzuleiten. Die hergeleiteten oberen und unte-
ren Schranken für die Fading Number zeigen, dass wenn die Anzahl
Antennen am Empfänger nicht grösser ist als die Anzahl Antennen
am Sender, dann ist die Fading Number von räumlich-IID, mittelwert-
freien, langsam-variierenden, Gauss’schen Fading Kanälen proportional
zur Anzahl Freiheitsgrade des Systems, d.h. zum Minimum der Anzahl
Sende- und der Anzahl Empfangsantennen.

In einem zweiten Schritt wird der Pre-Log von (nicht notwendigerweise
Gauss’schen) Flat-Fading Kanälen mit einer einzelnen Antenne am Sen-
der und am Empfänger untersucht. Es wird gezeigt, dass von allen stati-
onären und ergodischen Fading Prozessen mit einer gegebenen spektra-
len Verteilungsfunktion und einer (kumulative) Verteilungsfunktion die
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stetig im Nullpunkt ist, der Gauss’sche Prozess den kleinsten Pre-Log
ergibt. Weiter wird aufgezeigt, dass die Annahme einer im Nullpunkt
stetigen Verteilungsfunktion notwendig ist, sprich dass es stationäre
und ergodische Fading Prozesse gibt mit einer bestimmten spektralen
Verteilungsfunktion und einer (kumulativen) Verteilungsfunktion die
nicht stetig im Nullpunkt ist, welche einen kleineren Pre-Log ergeben
als der Gauss’sche Prozess mit derselben spektralen Verteilungsfunkti-
on. Schliesslich wird die obige Aussage für Fading Kanäle mit mehreren
Antennen am Sender und einer einzelnen Antenne am Empfänger er-
weitert.

Zum Schluss wird die Kanalkapazität von Fading Kanälen mit Mehr-
fachausbreitung untersucht. Es wird gezeigt, dass wenn der Delay
Spread gross ist, sprich wenn die Varianzen der einzelnen Ausbreitungs-
pfade exponentiell oder langsamer abfallen, dann strebt die Kanalka-
pazität mit steigendem Störabstand nicht gegen Unendlich. Anderer-
seits, wenn die Varianzen der einzelnen Ausbreitungspfade schneller als
exponentiell abfallen, dann strebt die Kanalkapazität mit steigendem
Störabstand gegen Unendlich. Des Weiteren wird gezeigt, dass wenn
die Anzahl Ausbreitungspfade endlich ist, dann ist der Pre-Loglog (wel-
cher definiert ist als das asymptotische Verhältnis der Kapazität zum
Logarithmus des Logarithmus des Störabstandes wenn der Störabstand
gegen Unendlich strebt), unabhängig von der Anzahl Pfade, immer 1.

Die Resultate der oben beschriebenen Analysen von Fading Kanälen
lassen folgende Schlüsse zu: Erstens, die Verwendung von mehreren
Antennen am Sender und am Empfänger ist sehr nutzbringend, selbst
wenn der Empfänger das Fading nicht perfekt kennt. Zweitens, die in in-
formationstheoretischen Arbeiten häufig getroffene Annahme dass das
Fading gaussverteilt ist, ist insofern konservativ, als in den meisten
Fällen Gauss’sches Fading den kleinsten Pre-Log ergibt. Drittens, man
sollte bei grossem Störabstand Mehrfachausbreitungskanäle mit einer
unendlichen Anzahl Ausbreitungspfade nicht durch Mehrfachausbrei-
tungskanäle mit einer endlich Anzahl Ausbreitungspfade annähern, da
die Kapazitäten dieser beiden Kanäle völlig unterschiedliche aysmpto-
tische Verhalten aufweisen. Und drittens, das asymptotische Verhalten
der Kanalkapazität (wenn der Störabstand gegen Unendlich strebt)
hängt stark vom gewählten Kanalmodell ab. Man sollte deshalb bei
der informationstheoretischen Analyse von Fading Kanälen und bei
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der Auswertung deren Resultate dem Kanalmodell grosse Beachtung
schenken.

Stichworte: Informationstheorie, Kanalkapazität, Capacity per Unit
Cost, Kanäle mit Gedächtnis, high SNR, On-Chip Kommunikation,
drahtlose Kommunikation, Fading Kanäle, Mehrfachausbreitung.
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Chapter 1

Introduction

1.1 Motivation

In this dissertation, we study two phenomena that affect the trans-
mission of data: heating up in on-chip communication and fading in
wireless communication. We aim to characterize the impact of these
phenomena on the information-theoretic limits of the above commu-
nication scenarios, i.e., we wish to characterize how these phenomena
affect channel capacity.

On-chip communication names the scenario where multiple terminals
that are located on the same microchip wish to communicate with each
other. The data that are transmitted from one terminal to another
are corrupted by thermal noise, and the variance of this noise depends
on the local temperature of the chip. Since the transmission of data
is associated with dissipation of energy into heat, it follows that the
local temperature of the chip depends on the energy of the transmitted
signal’s history, which in turn implies that the variance of the thermal
noise is data-dependent. We thus model on-chip communication by an
additive noise channel where the noise variance depends on the power
of the past channel inputs. This thermal coupling of noise and data is
expected to become a bottleneck in future technology; the more so as
it is the trend of modern microelectronics technology to pack more and
faster operations within the smallest possible physical area.

Wireless communication names the scenario where multiple terminals
communicate with each other without the aid of wires. Inter alia, the
absence of wires is beneficial because it raises the mobility of each ter-
minal and allows the operator of a wireless communication system more
flexibility in operating his system. The other side of the coin is that
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wireless links are more sensitive to the nature of its surroundings and
to disturbances thereof than wired links. This is modeled by a channel
where the channel input is not only corrupted by additive (thermal)
noise, but also by multiplicative noise. The multiplicative noise ac-
counts for the variation of the signal’s attenuation. We refer to it as
fading, and we refer to the corresponding channel as a fading channel.
To simplify analysis, information-theoretic studies often assume that
the receiver has perfect knowledge of the fading. This is usually justi-
fied by arguing that the fading varies typically slowly over time, and
one can therefore estimate it by transmitting a training-sequence at
the beginning of each transmission. However, this simplification yields
overly optimistic results, since the resources needed to estimate the fad-
ing are not taken into consideration. In this dissertation, we dispose of
the above assumption. Specifically, we study the information-theoretic
limits of fading channels when the receiver only knows the statistics of
the fading, but not its realization. We shall refer to models where the
realization of the fading is unknown to the transmitter and the receiver
as noncoherent channel models.

While on-chip communication and wireless communication seem to
have little in common, their channel models are very similar. Indeed,
the channel that models on-chip communication is an additive noise
channel whose noise variance depends on the channel inputs. Likewise,
when the realization of the fading is unknown at the receiver, a fading
channel is statistically equivalent to an additive noise channel (with-
out fading), where the law of the noise depends on the channel inputs.
Thus, both scenarios can be modeled by an additive noise channel with
input-dependent noise.

The dependence of the noise on the channel inputs makes it all but
impossible to obtain analytic results for the whole capacity-vs-transmit-
power curve. We therefore resort to asymptotic analyses of capacity in
the limit as the transmit power tends to zero and to infinity. These
analyses provide an indication of how capacity grows with the allowed
transmit power.



Chapter 1. Introduction 3

1.2 Outline and Contributions

This dissertation is organized as follows. Chapter 2 introduces the no-
tions of achievable rate and channel capacity. Chapter 3 addresses the
capacity of on-chip communication channels. Chapter 4 studies the ca-
pacity of multiple-input multiple-output (MIMO) Gaussian flat-fading
channels. Chapter 5 demonstrates that for single-input single-output
(SISO) flat-fading channels, Gaussian fading is (typically) the worst
fading. Chapter 6 investigates the capacity of multipath (frequency-
selective) fading channels. And Chapter 7 concludes with a summary
and discussion of our results.

In the following we summarize the main contributions of this disserta-
tion.

Channels that heat up (Chapter 3) We study a model for on-chip
communication and analyze its capacity. At low transmit powers,
we compute the capacity per unit cost, which describes the slope
of the capacity-vs-power curve at zero. At large transmit pow-
ers, we exhibit a necessary and a sufficient condition under which
the capacity is bounded in the transmit power, i.e., under which
the capacity does not tend to infinity as the available transmit
power tends to infinity. Our results accentuate the importance
of heat sinks at high transmit powers, while they suggest that
at low transmit powers heat sinks are not only unnecessary, but
that they even reduce channel capacity.

Degrees of freedom and the fading number (Chapter 4) We study
the capacity of noncoherent MIMO Gaussian flat-fading chan-
nels with memory. We propose nonasymptotic upper and lower
bounds on the capacity. The upper bounds are then used to an-
alyze the asymptotic behavior of capacity at high signal-to-noise
ratio (SNR): for the cases where the fading process is of finite
entropy rate we compute upper bounds on the fading number
(which is defined as the second-order term in the high-SNR ex-
pansion of capacity); for the cases where the entropy rate of the
fading process is infinite, we compute upper bounds on the ca-
pacity pre-log (which is defined as the limiting ratio of capacity
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to log SNR as SNR tends to infinity). We further propose an ap-
proach to derive lower bounds on the fading number of MIMO
fading channels. This approach is applied to derive a lower bound
on the fading number of spatially IID, zero-mean, MIMO Gaus-
sian fading channels with memory. Our upper and lower bounds
on the fading number demonstrate that when the number of re-
ceive antennas does not exceed the number of transmit antennas,
the fading number of spatially IID, zero-mean, slowly-varying,
MIMO Gaussian fading channels is proportional to the number
of degrees of freedom, i.e., to the minimum number of transmit
and receive antennas.

Gaussian fading is the worst fading (Chapter 5) We study a nonco-
herent SISO flat-fading channel with memory. We show that,
among all stationary and ergodic fading processes of a given spec-
tral distribution function and whose law has no mass point at
zero, the Gaussian process gives rise to the smallest capacity pre-
log. We further demonstrate that the assumption that the fading
has no mass point is zero is essential in the sense that there ex-
ist stationary and ergodic processes of some spectral distribution
function (and whose law has a mass point at zero) that give rise
to a smaller pre-log than the Gaussian process of equal spectral
distribution function. We then extend these results to multiple-
input single-output (MISO) fading channels with memory.

Multipath fading channels (Chapter 6) We study a noncoherent mul-
tipath (frequency-selective) fading channel. We demonstrate that
if the delay spread is large in the sense that the variances of the
path gains decay exponentially or slower, then the capacity is
bounded in the SNR. In contrast, if the variances of the path gains
decay faster than exponentially, then the capacity is unbounded
in the SNR. We further show that if the number of paths is finite,
then at high SNR capacity grows double-logarithmically with the
SNR, and the capacity pre-loglog (which is defined as the limiting
ratio of the capacity to log log SNR as SNR tends to infinity) is
1, irrespective of the number of paths.
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1.3 Notation

In the following we introduce the notation that is used throughout this
dissertation. Notation that is specific to a chapter will be introduced
there.

Unless otherwise stated, we use upper case letters from random quan-
tities and lower case letters for their realizations. We denote vectors
by boldface letters, and matrices by upper case letters of a special font,
e.g., A for a deterministic matrix and A for a random matrix. The
(j, �)-th entry of a random matrix A will be denoted by A(j, �), and its
realization will be denoted by a(j, �), where we implicitly assume that
the indices j and � are within the range of the matrix. Likewise, we
denote the j-th entry of a random vector A by A(j), and its realization
by a(j). We use ‖ · ‖ to denote the Euclidean norm of vectors or the
Euclidean operator norm of matrices, i.e.,

‖a‖ =
√∑

�

|a(�)|2,

‖A‖ = max
‖x̂‖=1

‖Ax̂‖.

Thus ‖A‖ is the maximal singular value of A.

We shall use det(·) to denote the determinant and tr (·) to denote the
trace of a matrix. We shall further use (·)∗ to denote conjugation,
(·)T to denote the transpose of a matrix, and (·)† to denote Hermitian
conjugation, i.e., A† =

(
A∗)T.

The Frobenius norm of matrices is denoted by ‖ · ‖F; it is given by

‖A‖F =
√

tr (A†A).

Note that for any matrix A

‖A‖ ≤ ‖A‖F.

We denote the n× n identity matrix by In.

We shall denote the indicator function by I {statement}. It is 1 if the
statement is true and 0 if it is false.
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The set R denotes the set of real numbers, C denotes the set of complex
numbers, Z denotes the set of integers, N denotes the set of positive
integers, and N0 denotes the set of nonnegative integers. We shall
denote the square-root of −1 by i, i.e., i =

√−1.

We denote the floor function by �·�, and the ceiling function by �·�.
Thus �a� denotes the largest integer that is less than or equal to a,
and �a� denotes the smallest integer that is greater than or equal to a.
We shall use a combination of superscripts and subscripts to address
sequences, e.g., An

m denotes the sequence Am, . . . , An. We shall denote
the limit superior by lim and the limit inferior by lim.

All rates specified in this dissertation are in nats per channel use. We
use log(·) to denote the natural logarithm function.



Chapter 2

Channel Capacity

2.1 Achievable Rates and Channel Capacity

This section provides the information-theoretic framework for studying
communication channels. Inter alia, we introduce the notions of an
achievable rate and of channel capacity.

We consider the communication system depicted in Figure 2.1. The
message M represents the data we wish to transmit. It could be, for
example, a file that we want to send to a friend, or music that we would
like to store on a harddrive. We assume that M is uniformly distributed
over the set M = {1, . . . , |M|}, where |M| is some positive integer. The
encoder maps the message to the length-n sequence X1, . . . , Xn, where
n is called the blocklength, and where the sequence takes place in X
(in this dissertation, X will be either the set of real numbers or the
set of complex numbers). In the absence of feedback, the sequence Xn

1

is a function of the message M , i.e., Xn
1 = φn(M) for some mapping

φn : M → Xn. If there is a feedback link, then Xk, k = 1, . . . , n is not
only a function of the message M but also of the past channel output
symbols Y k−1

1 , which take value in Y, i.e., Xk = ϕ
(k)
n (M,Y k−1

1 ) for
some mapping ϕ(k)

n : M ×Yk−1 → R. (Again, in this dissertation, Y
will be either the set of real numbers or the set of complex numbers.)
The receiver guesses the transmitted messageM based on the n channel
output symbols Y n

1 , i.e., M̂ = ψn(Y n
1 ) for some mapping ψn : Yn → M.

We describe the channel by the channel law W , where W
(· ∣∣ xk

1 , y
k−1
1

)
is the probability distribution of Yk corresponding to the present and
past channel inputs xk

1 and past channel outputs yk−1
1 . Roughly speak-

ing, W specifies with what probability we observe yk at the receiver
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Transmitter Channel Receiver

Delay

M M̂Xk Yk

Y k−1
1

Figure 2.1: A schema of the communication system.

when the transmitter emitted the sequence xk
1 and the receiver ob-

served so far the sequence yk−1
1 . The channel law defines the problem

we are studying, i.e, it determines whether we study, say, communi-
cation in electronic circuits or communication in fading channels. We
shall specify the considered channel law in each chapter.

Often the transmitter is permitted to transmit only sequences Xn
1

whose energy is smaller than a certain number. The practical rea-
son behind this constraint could be that the transmitter is driven by a
battery and one wishes to communicate in an efficient way so as to en-
sure that the battery does not discharge too soon or, as in the example
of wireless communication, that one would like to keep electromagnetic
emissions small in order to reduce electromagnetic pollution. When X
is the set of real or of complex numbers, common constraints are the
average-power constraint

1
n

n∑
k=1

E
[|Xk|2

] ≤ P (2.1)

(where the average is over all realizations of Xn
1 and Y n

1 ) or the peak-
power constraint

|Xk|2 ≤ A2, k = 1, . . . , n with probability one. (2.2)

We shall specify in each chapter which power constraint we impose.

A rate R (in nats per channel use) is said to be achievable if for every
δ > 0 there exist sequences of mappings {φn, n ∈ N} (without feed-
back) or

{(
ϕ

(1)
n , . . . , ϕ

(n)
n

)
, n ∈ N

}
(with feedback) and {ψn, n ∈ N}
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such that for each n ∈ N

log |M|
n

> R− δ,

and such that the error probability Pr
(
M̂ �= M

)
tends to zero as n goes

to infinity. The capacity is defined as the supremum of all achievable
rates. We shall denote it by C when there is no feedback, and we add
the subscript “FB” to indicate that there is a feedback link. Clearly

C ≤ CFB (2.3)

as we can always ignore the feedback.

In the absence of feedback, the information capacity is defined as [5,
Ch. 8]

CInfo � lim
n→∞

1
n

sup I(Xn
1 ;Y n

1 ), (2.4)

where the supremum is over all joint distributions on X1, . . . , Xn (pos-
sibly satisfying some power constraint). When there is a feedback link,
then we define the information capacity as

CInfo,FB � lim
n→∞

1
n

sup I(M ;Y n
1 ), (2.5)

where the supremum is over all mappings ϕ(1)
n , . . . , ϕ

(n)
n (possibly sat-

isfying some power constraint). By Fano’s inequality [5, Thm. 2.11.1]
no rate above CInfo and CInfo,FB is achievable, i.e.,

C ≤ CInfo and CFB ≤ CInfo,FB. (2.6)

We say that a channel is memoryless if for any k ∈ N and for any Borel
set B ⊆ Y
W
(
Yk ∈ B ∣∣ xk

1 , y
k−1
1

)
= W

(
Yk ∈ B ∣∣ xk

)
,
(
xk

1 ∈ X k, yk−1
1 ∈ Yk−1

)
.

For memoryless channels, it was shown by Shannon [40] that, in the
absence of feedback, the information capacity is equal to the capacity,
i.e.,

C = lim
n→∞

1
n

sup I(Xn
1 ;Y n

1 ) = sup I(X1;Y1).
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Shannon further showed that in this case feedback does not help, i.e.,
that CFB = C, see also [5, Sec. 8.12].

The channels we study in this thesis are not memoryless and it is there-
fore prima facie not clear whether the information capacity is equal to
the capacity. In the absence of feedback, this claim was shown to
hold for a class of channels that are called information stable; see [19,
Thm. 4.5.1] (Ihara refers to such channels as stable [19, Def. 4.5.2]).
Regrettably, the definition of this class of channels can be roughly para-
phrased by saying that a channel is information stable if the capacity
is equal to the information capacity. Thus, proving that a channel is
information stable is usually as hard as proving that CInfo is achievable.

In this dissertation we shall not resort to the notion of information
stability. We either derive achievable rates (as in Chapter 3), or we
present references for the achievability of the information capacity and
proceed by analyzing CInfo (as in Chapters 4 and 5), or we study the
information capacity and indicate under what conditions it is equal to
the capacity (as in Chapter 6). Since the information capacity consti-
tutes an upper bound on the capacity, it provides a good estimate on
what rates are supported by a channel.

2.2 A General Upper Bound on Mutual Information

Computing the information capacity is a difficult task: in the absence
of feedback one needs to maximize

1
n
I(Xn

1 ;Y n
1 )

for every n over all joint distributions on X1, . . . , Xn, so as to com-
pute the limit of this maximum as n tends to infinity; when there is a
feedback link, one needs to maximize

1
n
I(M ;Y n

1 )

for every n over all mappings ϕ(1)
n , . . . , ϕ

(n)
n , which is not likely to be

the easier task. Information theorists typically attack this problem
by deriving a lower bound and an upper bound on the information
capacity, and they are happy if these bounds coincide.
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Since any particular choice of distribution onX1, . . . , Xn (without feed-
back) or ϕ(1)

n , . . . , ϕ
(n)
n (with feedback) yields a lower bound, deriving

lower bounds is, in general, easier than deriving upper bounds. In the
following, we present a general upper bound on mutual information
that is useful in deriving upper bounds on the information capacity:

Theorem 2.1. Let the random variables X and Y take value in the
sets X and Y, let X be of law Q, and let the conditional law of Y ,
conditioned on X, be given by V . Assume that X and Y are separable
metric spaces, and assume that for any Borel set B ⊆ Y the mapping
x → V (B|x) from X to [0, 1] is Borel measurable. Then

I(X ;Y ) ≤
∫
D
(
V (·|x) ∥∥ R(·)) dQ(x), (2.7)

where D(·‖·) denotes relative entropy, i.e.,

D(P1‖P0) =

⎧⎨⎩
∫

log
dP1

dP0
dP1 if P1 � P0

+∞ otherwise,
(2.8)

and where R is any distribution on Y.

Proof. For general alphabets X and Y, this inequality was derived by
Lapidoth and Moser [28, Thm. 5.1]. When X and Y are finite, it follows
by Topsøe’s identity [44]; see also [6, Thm. 3.4].

Theorem 2.1 demonstrates that, for any choice of R, the right-hand side
of (2.7) yields an upper bound on the mutual information I(X ;Y ).
Thus, while choosing a distribution for X yields a lower bound on
the information capacity, an upper bound can be found by choosing a
distribution on Y . We use this technique in Chapters 3 and 6.





Chapter 3

Channels that Heat Up

3.1 Introduction

Heating in electronics is strongly related to performance limitation, ag-
ing, and reliability issues. High performance-density and small physical
size make heating important and challenging to address. This is rein-
forced by the trend of modern (micro-)electronics technology to pack
more and faster operations within the smallest possible physical area
in order to increase performance, reduce cost and size, and therefore
expand the potential applications of the product and make it more
profitable.

Electrical power dissipation into heat raises the local temperature of the
circuit, so the temperature depends on the circuit activity. The raised
temperature results in higher intrinsic noise in the circuit which in turn
reduces its effective communication and computation capacity. This
“negative” performance feedback is expected to become an important
issue in the years to come [1, 21, 46].

We aim to add this dimension to our understanding of the coupling
mechanism between communication and computation performance and
heating. To this end, a class of communication channels, whose noise
power depends dynamically on their activity, is introduced and studied.

To motivate the mathematical development of this new class of channels
we first discuss the underlying physical mechanism that connects circuit
activity with power consumption and heating. Heating is unavoidable
in electronic circuits since they convert part of the power they draw
from the power supply network (and other circuits they are connected
to) into heat.
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Every circuit is a three dimensional object embedded inside the sub-
strate and the surrounding packaging material. It generates heat, in
a distributed manner, that is diffused according to the heat diffusion
equation

Chv
∂T

∂t
= ∇ ·

(
k∇T

)
+ q̇. (3.1)

Here Chv is the volumetric heat capacity of the material, T is the point
temperature, k is the thermal conductivity, and q is the heat flux gener-
ated by the distributed conversion of electrical power into heat [15,31].
(If other heat sources exist in the volume of the circuit, they should be
included in the heat diffusion equation as well.)

In many cases, (3.1) can be simplified to the corresponding ordinary
differential equation (3.2) providing a lumped model of the thermal
dynamics

Ch
dT

dt
=

Te − T

Rth
+ Pth. (3.2)

Here Ch is the lumped heat capacity of the circuit (partially including
the substrate and packaging), Rth is the thermal resistance between the
circuit and the external heat-sinking environment (e.g., the air) whose
temperature is Te, and Pth is the instantaneous electrical power in the
circuit that is converted into heat.

Assuming that the environmental temperature Te is fixed and that
T(0) = Te, the solution of (3.2) is given by

T(t) = Te +
1

Ch

∫ t

0

e
ξ−t

RthCh Pth(ξ) dξ, t > 0. (3.3)

Now suppose that our circuit operates according to a reference clock
of period τ , i.e., it transmits an output value xk ∈ R at the beginning
of every clock period tk = kτ , k ∈ N. Further assume that the part of
the electrical energy converted into heat due to the transmission of xk

is (proportional to) x2
kτ—a typical case in circuits when xk is voltage

or current. Then (3.3) can be approximated by its discrete version

Tk = Te +
1

Ch

k−1∑
�=1

e
− τ

RthCh
(k−�)

τ x2
� , k ∈ N. (3.4)
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By defining

a� � τ

Ch
e
− τ

RthCh
�
, � ∈ N,

(3.4) becomes

Tk = Te +
k−1∑
�=1

ak−� x
2
� , k ∈ N. (3.5)

Equation (3.5) describes the relation between the local temperature of
the electronic circuit and the circuit activity. Note that (3.5), being
a general discrete-time convolution, also captures discretized versions
of higher-order lumped approximations of the diffusion equation (3.1).
It therefore represents a general model of the circuit-heating process,
despite the simplifying assumptions used in its derivation.

Every electronic circuit has some intrinsically generated noise, which
is added to the received signal and degrades its quality. In wideband
circuits, the dominant type of noise is typically thermal noise [10,37,45].
Thermal noise is stationary Gaussian, and in most applications it can
be considered white within the bandwidth of interest. The variance of
the thermal noise θ2 follows the Johnson-Nyquist formula

θ2 = η TW, (3.6)

where W is the circuit’s bandwidth, T is the absolute temperature of
the circuit, and η is a proportionality constant.

Applying (3.5) to (3.6), and assuming that the intrinsic noise is only
additive, yields a channel model where the variance θ2 of the additive
noise is determined by the history of the power of the transmitted
signal, i.e.,

θ2(x1, . . . , xk−1) = σ2 +
k−1∑
�=1

αk−�x
2
� , k ∈ N, (3.7)

where σ2 and {α�} are discussed in more detail in Section 3.2 (propor-
tionality constants like η are incorporated into the parameters σ and
{α�}).
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While in today’s microelectronics technology the increase in thermal
noise due to data transmission is often marginal compared to the signal
power and can therefore be neglected, there are scenarios where the
thermal coupling of data and noise becomes significant. For example,
consider a communication system where the transmission of data is
assisted by a repeater, which receives the transmitted signal, amplifies
it, and retransmits it. The signal at the repeater’s input is typically
corrupted by thermal noise, which is then amplified together with the
signal. When the repeater is a monolithic circuit, the temperature of
the repeater’s receiving end (input)—and hence also the variance of
the thermal noise—depends on the power of the signal sent out by the
repeater’s transmitting end (output), which in turn depends on the
power of the signal sent out by the transmitter. Since the signal power
at the repeater’s output is much larger than that at the repeater’s
input, the increase in thermal noise due to retransmission of data can
be significant compared to the repeater’s input-signal power.

We also expect that the above channel model will be relevant to the
next generation of nanoscale electronic technologies based on silicon
or biological substrates [21, 32], as well as to the interface between
nanocircuits and conventional microelectronics [53].

The rest of this chapter is organized as follows. Section 3.2 describes the
channel model in more detail. Section 3.3 discusses channel capacity
and lists some important properties thereof. Section 3.4 presents our
main results. Sections 3.5 and 3.6 provide the proofs of these results.
And Section 3.7 concludes with a summary and a discussion of our
results.

3.2 Channel Model

We consider the communication system described in Section 2.1. Con-
ditional on (X1, . . . , Xk) = (x1, . . . , xk) ∈ R

k, the time-k channel out-
put Yk ∈ R is given by

Yk = xk +

√√√√(σ2 +
k−1∑
�=1

αk−�x2
�

)
· Uk, k ∈ N, (3.8)
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where {Uk, k ∈ Z} is a zero-mean, unit-variance, stationary, weakly-
mixing random process, drawn independently of M , and being of finite
fourth moment and of finite differential entropy rate, i.e.,

E
[
U4

k

]
<∞ and h

({Uk}
)

� lim
n→∞

1
n
h(U1, . . . , Un) > −∞. (3.9)

See [35] for a definition of weak mixing. For example, {Uk, k ∈ Z} could
be a stationary ergodic Gaussian process [33] (see also [39, Sec. II]).
In particular, the case of most interest is when {Uk, k ∈ Z} are in-
dependent and identically distributed (IID), zero-mean, unit-variance
Gaussian random variables, and the reader is encouraged to focus on
this case.

The parameter σ2 is assumed to be positive. It accounts for the tem-
perature of the device when the transmitter is silent. The coefficients
α�, � ∈ N are nonnegative and bounded, i.e.,

α� ≥ 0, � ∈ N and sup
�∈N

α� <∞. (3.10)

They characterize the dissipation of the heat produced by transmitting
message M . (It seems reasonable to assume that the sequence {α�} is
monotonically nonincreasing, i.e., α� ≥ α�′ for � ≤ �′. This assumption
is, however, not required for the results that are derived in this chapter.)

An example of a heat dissipation profile that satisfies (3.10) is the
geometric heat dissipation profile where {α�} is a geometric sequence,
i.e.,

α� = ρ�, � ∈ N (3.11)

for some 0 < ρ < 1.

The heat dissipation depends inter alia on the efficiency of the heat sink
that is employed in order to absorb the produced heat. In the above
example (3.11), the heat sink’s efficiency is described by the parameter
ρ: the smaller ρ, the more efficient the heat sink. In general, an efficient
heat sink is modeled by a heat dissipation profile for which the sequence
{α�} decays fast.

We study the above channel under an average-power constraint on the
inputs, i.e., averaged over the message M and channel outputs Y n

1 , the
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sequence Xn
1 satisfies

1
n

n∑
k=1

E
[
X2

k

] ≤ P, (3.12)

and we define the signal-to-noise ratio (SNR) as

SNR � P

σ2
. (3.13)

Note 3.1. The results presented in this chapter do not change when
(3.12) is replaced by a per-message average-power constraint, i.e., when
for each message m ∈ M and for any given sequence of output symbols
Y n

1 = yn
1 , the sequence xn

1 satisfies

1
n

n∑
k=1

x2
k ≤ P. (3.14)

Indeed, all achievability results (which are based on schemes that ignore
the feedback) are derived under (3.14), whereas all converse results are
derived under (3.12). Since all mappings φn and ϕ

(1)
n , . . . , ϕ

(n)
n that

satisfy (3.14) also fulfill (3.12), this implies that the achievability results
as well as the converse results derived in this chapter hold irrespective
of whether constraint (3.12) or (3.14) is imposed.

The channel (3.8) is reminiscent of a multipath fading channel, when
the transmitter and the receiver are not aware of the realization of the
fading but only of its statistics. In fact, some of the techniques used this
chapter are extended in Chapter 6 to study the high-SNR asymptotic
behavior of the capacity of such channels.

3.3 Channel Capacity

The capacity C was defined in Section 2.1 as the supremum of all
achievable rates. We denote by C(SNR) the capacity under the input
constraint (3.12) when there is no feedback, and we add the subscript
“FB” to indicate that there is a feedback link. Clearly

C(SNR) ≤ CFB(SNR) (3.15)
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as we can always ignore the feedback.

In the absence of feedback, the information capacity CInfo(SNR) is
defined as (2.4)

CInfo(SNR) � lim
n→∞

1
n

sup I
(
Xn

1 ;Y n
1

)
, (3.16)

where the supremum is over all joint distributions on X1, . . . , Xn sat-
isfying (3.12). When there is a feedback link, the information capacity
is defined as (2.5)

CInfo,FB(SNR) � lim
n→∞

1
n

sup I
(
M ;Y n

1

)
, (3.17)

where the supremum is over all mappings ϕ(1)
n , . . . , ϕ

(n)
n satisfying (3.12)

(cf. Section 2.1). By Fano’s inequality we have (2.6)

C(SNR) ≤ CInfo(SNR) (3.18)

and
CFB(SNR) ≤ CInfo,FB(SNR). (3.19)

See [49] for conditions that guarantee that CInfo(SNR) is achievable.
Note that the channel (3.8) is not stationary1 since the variance of
the additive noise depends on the time-index k. It is therefore prima
facie not clear whether the inequalities in (3.18) and (3.19) hold with
equality.

In this paper, we shall investigate the capacities C(SNR) and
CFB(SNR) at low SNR and at high SNR. To study capacity at low
SNR, we compute the capacities per unit cost defined as [47]

Ċ(0) � sup
SNR>0

C(SNR)
SNR

(3.20)

and
ĊFB(0) � sup

SNR>0

CFB(SNR)
SNR

. (3.21)

1By a stationary channel we mean a channel where for any stationary sequence
of channel inputs {Xk, k ∈ Z} and corresponding channel outputs {Yk, k ∈ Z} the
pair {(Xk , Yk), k ∈ Z} is jointly stationary.
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It will become apparent later that the suprema in (3.20) and (3.21) are
attained when SNR tends to zero. Note that (3.15) implies

Ċ(0) ≤ ĊFB(0). (3.22)

At high SNR, we study conditions under which capacity is unbounded
in the SNR. Notice that when the allowed transmit power is large,
there is a trade-off between optimizing the present transmission and
minimizing the interference to future transmissions. Indeed, increas-
ing the transmission power may help to overcome the present ambient
noise, but it also heats up the chip and thus increases the noise vari-
ance in future receptions. We shall see that, as we increase the allowed
transmit power, the capacity does not necessarily tend to infinity.

3.4 Main Results

Our main results are presented in the following two sections. Sec-
tion 3.4.1 focuses on capacity at low SNR and presents our results on
the capacity per unit cost. Section 3.4.2 provides a sufficient condition
and a necessary condition on {α�} under which capacity is bounded in
the SNR.

3.4.1 Capacity per Unit Cost

The results presented in this section hold under the additional assump-
tions that {Uk, k ∈ Z} is IID and that

∞∑
�=1

α� <∞. (3.23)

To shorten notation we denote this sum by

α �
∞∑

�=1

α�. (3.24)

Proposition 3.1. Consider the above channel model, and assume addi-
tionally that the sequence {α�} satisfies (3.23) and that {Uk, k ∈ Z} is
IID. Then

sup
SNR>0

CInfo(SNR)
SNR

≥ sup
SNR>0

Cα=0(SNR)
SNR

, (3.25)
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where Cα=0(SNR) denotes the capacity of the channel

Yk = xk + σ Uk,

which is a special case of (3.8) for α = 0.

Proof. See Appendix A.1.

For α = 0, Equation (3.8) describes a channel with an ideal heat sink
or, equivalently, a channel that does not heat up. Proposition 3.1 thus
demonstrates that the heating up can only increase the information
capacity per unit cost. In other words, at low SNR the heating-up
effect is unharmful.

For Gaussian noise, i.e., when {Uk, k ∈ Z} is a sequence of IID, zero-
mean, unit-variance Gaussian random variables, the heating-up effect
is beneficial.

Theorem 3.2. Consider the above channel model. Assume additionally
that the sequence {α�} satisfies (3.23) and that {Uk, k ∈ Z} is a se-
quence of IID, zero-mean, unit-variance, Gaussian random variables.
Then, irrespective of whether feedback is available or not,

ĊFB(0) = Ċ(0) = lim
SNR↓0

C(SNR)
SNR

=
1
2

(
1 +

∞∑
�=1

α�

)
. (3.26)

Proof. See Section 3.5.

For example, for the geometric heat dissipation profile (3.11) we obtain
from Theorem 3.2

ĊFB(0) = Ċ(0) =
1
2

1
1 − ρ

, 0 < ρ < 1. (3.27)

Thus the capacity per unit cost is monotonically decreasing in ρ.
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The above result might be counterintuitive, because it suggests not
to use heat sinks at low SNR. Nevertheless it can be heuristically ex-
plained by noting that the heating-up effect increases the channel gain2.
Indeed, if we split up the channel output

Yk = Xk +

√√√√(σ2 +
k−1∑
�=1

αk−�X2
�

)
· Uk

into a data-dependent part

X̃k = Xk +

√√√√(k−1∑
�=1

αk−�X2
�

)
· Uk

and a data-independent part Zk (with {Zk, k ∈ Z} being a sequence
of IID, zero-mean, variance-σ2, Gaussian random variables drawn in-
dependently of {(Uk, Xk), k ∈ Z}), then the channel gain G for (3.8) is
given by

G � lim
n→∞ sup

∑n
k=1 E

[
X̃2

k

]
∑n

k=1 E[X2
k ]

= 1 +
∞∑

�=1

α�, (3.28)

where the supremum is over all joint distributions on X1, . . . , Xn sat-
isfying (3.12). Thus, in view of (3.28), Theorem 3.2 demonstrates that
the capacity per unit cost is determined by the channel gain G. This
result is not specific to (3.8) but has also been observed for other chan-
nel models. For example, the same is true for fading channels whenever
the additive noise is Gaussian [30, 48].

3.4.2 Conditions for Bounded Capacity

While at low SNR the heating-up effect is beneficial, at high SNR it
is detrimental. In fact, it turns out that the capacity can be bounded
in the SNR, i.e., the capacity does not necessarily tend to infinity as
the SNR tends to infinity. The following theorem provides a sufficient
condition and a necessary condition on {α�} for the capacity to be
bounded. Note that the results presented in this section do not require

2The channel gain is given by the ratio of the “desired” power at the channel
output to the “desired” power at the channel input.
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the additional assumptions made in Section 3.4.1: we neither assume
that the sequence {α�} satisfies (3.23) nor that {Uk, k ∈ Z} is IID.

Theorem 3.3. Consider the channel model described in Section 3.2.
Then

(i)
(

lim
�→∞

α�+1

α�
> 0
)

=⇒
(

sup
SNR>0

CFB(SNR) <∞
)

(3.29)

(ii)
(

lim
�→∞

α�+1

α�
= 0
)

=⇒
(

sup
SNR>0

C(SNR) = ∞
)
, (3.30)

where we define a/0 � ∞ for every a > 0 and 0/0 � 0.

Proof. See Section 3.6.

For example, for the geometric heat dissipation (3.11) we have

lim
�→∞

α�+1

α�
= ρ, 0 < ρ < 1

and it follows from Theorem 3.3 that the capacity is bounded. On the
other hand, for a supergeometric heat dissipation, i.e., when

α� = ρ�κ

, � ∈ N

for some 0 < ρ < 1 and κ > 1, we obtain

lim
�→∞

α�+1

α�
= lim

�→∞
ρ(�+1)κ−�κ

= 0

and Theorem 3.3 implies that the capacity is unbounded. Roughly
speaking, we can say that when the sequence of coefficients {α�} decays
not faster than geometrically, the capacity is bounded in the SNR, and
when the sequence of coefficients {α�} decays faster than geometrically,
the capacity is unbounded in the SNR.

Note 3.2. For Part (i) of Theorem 3.3, the assumptions that the process
{Uk, k ∈ Z} is weakly-mixing and that it has a finite fourth moment
are not needed. These assumptions are only needed for Lemma 3.5 in
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the proof of Part (ii). In Part (ii) of Theorem 3.3, the condition on the
left-hand side (LHS) of (3.30) can be replaced by

lim
�→∞

1
�

log
1
α�

= ∞. (3.31)

This condition (3.31) is weaker than the original condition (3.30) be-
cause (

lim
�→∞

α�+1

α�
= 0
)

=⇒
(

lim
�→∞

1
�

log
1
α�

= ∞
)
.

If neither the LHS of (3.29) nor the LHS of (3.30) holds, i.e.,

lim
�→∞

α�+1

α�
> 0 and lim

�→∞

α�+1

α�
= 0, (3.32)

then the capacity can be bounded or unbounded. Example 3.1 exhibits
a sequence {α�} satisfying (3.32) for which the capacity is bounded, and
Example 3.2 provides a sequence {α�} satisfying (3.32) for which the
capacity is unbounded. (The provided sequences {α�} are not monoton-
ically decreasing in �. Consequently, Examples 3.1 and 3.2 are rather of
mathematical than of practical interest. Nevertheless they show that
when neither condition of Theorem 3.3 is satisfied, then one can con-
struct simple examples yielding a bounded capacity or an unbounded
capacity, thus demonstrating the difficulty of finding conditions that
are necessary and sufficient for the capacity to be bounded.)

Example 3.1. Consider the sequence {α�} where all coefficients with
an even index are equal to 1, and where all coefficients with an odd
index are 0. It satisfies (3.32) because lim�→∞ α�+1/α� = ∞ and
lim�→∞ α�+1/α� = 0. Then the time-k channel output Yk correspond-
ing to the channel inputs (x1, . . . , xk) is given by

Yk = xk +

√√√√(σ2 +
	(k−1)/2
∑

�=1

x2
k−2�

)
· Uk, k ∈ N.

Thus at even times the output Y2k, k ∈ N only depends on the “even”
inputs (X2, X4, . . . , X2k), while at odd times the output Y2k+1, k ∈ N0

only depends on the “odd” inputs (X1, X3, . . . , X2k+1). By proceeding
along the lines of the proof of Part (i) of Theorem 3.3 while choosing
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in (3.62) β = 1/y2
k−2, it can be shown that the capacity of this channel

is bounded.3

Example 3.2. Consider the sequence {α�} where all coefficients with an
even positive index are 0, and where all other coefficients are 1. (Again,
we have lim�→∞ α�+1/α� = ∞ and lim�→∞ α�+1/α� = 0.) In this case
the time-k channel output Yk corresponding to (x1, . . . , xk) is given by

Yk = xk +

√√√√(σ2 +
	k/2
∑
�=1

x2
k−2�+1

)
· Uk, k ∈ N.

Using Gaussian inputs of power 2P at even times while setting the in-
puts to be zero at odd times, and measuring the channel outputs only at
even times, reduces the channel to a memoryless additive noise channel
and demonstrates (using the result of [23]) the achievability of

R =
1
4

log(1 + 2 SNR),

which is unbounded in the SNR.

The two seemingly-similar examples thus lead to completely different
capacity results. The crucial difference between Example 3.1 and Ex-
ample 3.2 is that in the former example at even times the interference is
caused by the past channel inputs at even times, whereas in the latter
example at even times the interference is caused by the past channel
inputs at odd times. Thus, in Example 3.2, setting all “odd” inputs
to zero cancels (at even times) the interference from past channel in-
puts and hence transforms the channel into an additive noise channel
whose capacity is unbounded. Evidently, this approach does not work
for Example 3.1.

3.5 Proof of Theorem 3.2

In Section 3.5.1 we derive an upper bound on the feedback capacity
CFB(SNR), and in Section 3.5.2 we derive a lower bound on the ca-

3Intuitively, with this choice of {α�} the channel can be divided into two parallel
channels, one connecting the inputs and outputs at even times, and the other con-
necting the inputs and outputs at odd times. As both channels have the coefficients
α̃0 = α̃1 = . . . = 1, it follows from Theorem 3.3 that the capacity of each parallel
channel is bounded, so the capacity of the original channel is bounded as well.
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pacity C(SNR) in the absence of feedback. These bounds are used in
Section 3.5.3 to derive an upper bound on ĊFB(0) and a lower bound on
Ċ(0), which are then both shown to be equal to 1/2 (1 + α). Together
with (3.22) this proves Theorem 3.2.

3.5.1 Converse

The upper bound on CFB(SNR) is based on (3.19) and on an upper
bound on 1

nI(M ;Y n
1 ), which for our channel can be expressed as

1
n
I
(
M ;Y n

1

)
=

1
n

n∑
k=1

(
h
(
Yk

∣∣ Y k−1
1

)− h
(
Yk

∣∣ Y k−1
1 ,M

))
=

1
n

n∑
k=1

(
h
(
Yk

∣∣ Y k−1
1

)− h
(
Yk

∣∣ Y k−1
1 ,M,Xk

1

))
=

1
n

n∑
k=1

(
h
(
Yk

∣∣ Y k−1
1

)− h(Uk) − 1
2
E

[
log
(
σ2 +

k−1∑
�=1

αk−�X
2
�

)])
,

(3.33)

where the first step follows from the chain rule for mutual information
[5, Thm. 2.5.2]; the second step follows because Xk

1 is a function of M
and Y k−1

1 ; and the last step follows from the behavior of differential
entropy under translation and scaling [5, Thms. 9.6.3 & 9.6.4], and
because Uk is independent of

(
Y k−1

1 ,M,Xk
1

)
.

Evaluating the differential entropy h(Uk) of a Gaussian random vari-
able, and using the trivial lower bound

E

[
log
(
σ2 +

k−1∑
�=1

αk−�X
2
�

)]
≥ log σ2,

we obtain the final upper bound

1
n
I
(
M ;Y n

1

) ≤ 1
n

n∑
k=1

(
h
(
Yk

∣∣ Y k−1
1

)− 1
2

log
(
2πeσ2

))
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≤ 1
n

n∑
k=1

1
2

log
(

1 +
k∑

�=1

αk−�E
[
X2

�

]
/σ2

)

≤ 1
2

log
(

1 +
1
n

n∑
k=1

k∑
�=1

αk−�E
[
X2

�

]
/σ2

)

=
1
2

log
(

1 +
1
n

n∑
k=1

E
[
X2

k

]
/σ2

n−k∑
�=0

α�

)

≤ 1
2

log
(

1 + (1 + α)
1
n

n∑
k=1

E
[
X2

k

]
/σ2

)
≤ 1

2
log
(
1 + (1 + α) SNR

)
, (3.34)

where we define α0 � 1. Here the second step follows because con-
ditioning cannot increase entropy and from the entropy maximizing
property of Gaussian random variables [5, Thm. 9.6.5]; the third step
follows from Jensen’s inequality; the fourth step by rewriting the dou-
ble sum; the fifth step follows because the coefficients are nonnegative
which implies that

∑n−k
�=0 α� ≤ ∑∞

�=0 α� = 1 + α; and the last step
follows from the power constraint (3.12).

3.5.2 Direct Part

As aforementioned, the above channel (3.8) is not stationary, and it
is therefore prima facie not clear whether CInfo(SNR) is achievable.
We shall sidestep this problem by studying the capacity of a different
channel whose time-k channel output Ỹk ∈ R is, conditional on the
sequence Xk = xk, Xk−1 = xk−1, . . ., given by

Ỹk = xk +

√√√√(σ2 +
k−1∑

�=−∞
αk−�x2

�

)
· Uk, k ∈ N, (3.35)

where {Uk, k ∈ Z} and {α�} are defined in Section 3.2. This chan-
nel has the advantage that it is stationary and ergodic in the sense
that when {Xk, k ∈ Z} is a stationary ergodic process, the pair
{(Xk, Ỹk), k ∈ Z} is jointly stationary ergodic. It follows that if the
sequences {Xk , k = 0,−1, . . .} and {Xk , k = 1, 2, . . .} are indepen-
dent of each other, and if the random variables Xk, k = 0,−1, . . . are
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bounded, then any rate that can be achieved over this new channel is
also achievable over the original channel. Indeed, the original channel
(3.8) can be converted into (3.35) by adding

Sk =

√√√√( 0∑
�=−∞

αk−�X2
�

)
· Vk, k ∈ N

to the channel output Yk (where {Vk, k ∈ Z} is a sequence of
IID, zero-mean, unit-variance, Gaussian random variables drawn in-
dependently of {(Uk, Xk), k ∈ Z}),4 and since the independence of
{Xk , k = 0,−1, . . .} and {Xk , k = 1, 2, . . .} ensures that the se-
quence {Sk , k ∈ N} is independent of the message M , it follows that
any rate achievable over (3.35) can be achieved over (3.8) by using
a receiver that generates {Sk, k ∈ N} and then guesses M based on
(Y1 + S1, . . . , Yn + Sn).5

We shall consider channel inputs {Xk, k ∈ Z} that are blockwise
IID in blocks of L symbols (for some L ∈ N). Thus, denoting
Xb = (XbL+1, . . . , X(b+1)L)T, we have that {Xb, b ∈ Z} is a sequence of
IID random length-L vectors with Xb taking on the value (ξ, 0, . . . , 0)T

with probability δ and (0, . . . , 0)T with probability 1−δ, for some ξ ∈ R.
Note that to satisfy the average-power constraint (3.12) we shall choose
ξ and δ so that

ξ2

σ2
δ = L SNR. (3.36)

Let Ỹb = (ỸbL+1, . . . , Ỹ(b+1)L)T. Noting that the pair {(Xb, Ỹb), b ∈ Z}
is jointly stationary ergodic, it follows from [49] that the rate

lim
n→∞

1
n
I
(
X	n/L
−1

0 ; Ỹ	n/L
−1
0

)
4The boundedness of the random variables Xk, k = 0,−1, . . . guarantees that

the quantity
P0

�=−∞ αk−�x
2
� is finite for any realization of {Xk , k = 0,−1, . . .}.

5This approach is specific to the case where {Uk, k ∈ Z} is a Gaussian pro-
cess. Indeed, it relies heavily on the fact that, given . . . , X−1 = x−1, X0 = x0,
X1 = x1, . . ., the additive noise term on the right-hand side of (3.35) can be writ-
ten as the sum of two independent random variables, of which one only depends
on {Xk , k = 0,−1, . . .} and the other only on {Xk , k = 1, 2, . . .}. This certainly
holds for Gaussian random variables, but it does not necessarily hold for other
distributions on {Uk, k ∈ Z}.
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is achievable over the new channel (3.35) and thus yields a lower bound
on the capacity C(SNR) of the original channel (3.8). We have

1
n
I
(
X	n/L
−1

0 ; Ỹ	n/L
−1
0

)
=

1
n

	n/L
−1∑
b=0

I
(
Xb; Ỹ

	n/L
−1
0

∣∣ Xb−1
0

)
≥ 1
n

	n/L
−1∑
b=0

I
(
Xb; Ỹb

∣∣ Xb−1
0

)
≥ 1
n

	n/L
−1∑
b=0

(
I
(
Xb; Ỹb

∣∣ Xb−1
−∞
)− I

(
X−1

−∞; Ỹb

∣∣ Xb
0

))
, (3.37)

where we use the chain rule and the nonnegativity of mutual informa-
tion. It is shown in Appendix A.2 that

lim
b→∞

I
(
X−1

−∞; Ỹb

∣∣ Xb
0

)
= 0. (3.38)

This together with a Cesáro-type theorem [5, Thm. 4.2.3] yields

lim
n→∞

1
n
I
(
X	n/L
−1

0 ; Ỹ	n/L
−1
0

)
≥ 1
L
I
(
X0; Ỹ0

∣∣ X−1
−∞
)

− 1
L

lim
n→∞

1
�n/L�

	n/L
−1∑
b=0

I
(
X−1

−∞; Ỹb

∣∣ Xb
0

)
=

1
L
I
(
X0; Ỹ0

∣∣ X−1
−∞
)
, (3.39)

where the first step follows by the stationarity of {(Xb, Ỹb), b ∈ Z},
which implies that the mutual information I(Xb; Ỹb|Xb−1

−∞) does not
depend on b, and by noting that

lim
n→∞

�n/L�
n

= 1/L.

We proceed to analyze I(X0; Ỹ0|X−1
−∞ = x−1

−∞) for a given sequence
X−1

−∞ = x−1
−∞. Making use of the canonical decomposition of mutual
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information (e.g., [47, Eq. (10)]), we have

I
(
X0; Ỹ0

∣∣ X−1
−∞ = x−1

−∞
)

= I
(
X1; Ỹ0

∣∣ X−1
−∞ = x−1

−∞
)

=
∫
D
(
PỸ0|X1=x,x−1

−∞

∥∥∥ PỸ0|X1=0,x−1
−∞

)
dPX1 (x)

−D
(
PỸ0|x−1

−∞

∥∥∥ PỸ0|X1=0,x−1
−∞

)
= δD

(
PỸ0|X1=ξ,x−1

−∞

∥∥∥ PỸ0|X1=0,x−1
−∞

)
−D

(
PỸ0|x−1

−∞

∥∥∥ PỸ0|X1=0,x−1
−∞

)
, (3.40)

where the first step follows because, for our choice of input distribution,
X2 = . . . = XL = 0 and hence X1 conveys as much information about
Ỹ0 as X0. Here D(·‖·) denotes relative entropy (2.8), PX1 denotes the
distribution of X1, and

PỸ0|X1=ξ,x−1
−∞

, PỸ0|X1=0,x−1
−∞

, and PỸ0|x−1
−∞

denote the distributions of Ỹ0 conditional on (X1 = ξ,X−1
−∞ = x−1

−∞),
(X1 = 0,X−1

−∞ = x−1
−∞), and X−1

−∞ = x−1
−∞, respectively. Thus

PỸ0|X1=ξ,x−1
−∞

is the law of an L-variate Gaussian random vector of

mean (ξ, 0, . . . , 0)T and of diagonal covariance matrix K
(ξ)

x−1
−∞

with diag-
onal entries

K
(ξ)

x−1
−∞

(1, 1) = σ2 +
−1∑

�=−∞
α−�Lx

2
�L+1

K
(ξ)

x−1
−∞

(i, i) = σ2 + αi−1ξ
2 +

−1∑
�=−∞

α−�L+i−1x
2
�L+1, i = 2, . . . , L;

PỸ0|X1=0,x−1
−∞

is the law of an L-variate, zero-mean, Gaussian random

vector of diagonal covariance matrix K
(0)

x−1
−∞

with diagonal entries

K
(0)

x−1
−∞

(i, i) = σ2 +
−1∑

�=−∞
α−�L+i−1x

2
�L+1, i = 1, . . . , L;
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and PỸ0|x−1
−∞

is given by

PỸ0|x−1
−∞

= δPỸ0|X1=ξ,x−1
−∞

+ (1 − δ)PỸ0|X1=0,x−1
−∞

.

In order to evaluate the first term on the right-hand side (RHS) of
(3.40) we note that the relative entropy of two real, L-variate, Gaussian
random vectors of means μ1 and μ2 and of covariance matrices K1 and
K2 is given by

D
(N (μ1,K1)

∥∥ N (μ2,K2)
)

=
1
2

log detK2 − 1
2

log detK1 +
1
2

tr
(
K1K

−1
2 − IL

)
+

1
2
(μ1 − μ2)

TK−1
2 (μ1 − μ2). (3.41)

The second term on the RHS of (3.40) is analyzed in the next subsec-
tion.

Let E
[
D
(
PỸ0|X−1

−∞

∥∥ PỸ0|X1=0,X−1
−∞

)]
denote the second term on the

RHS of (3.40) averaged over X−1
−∞, i.e.,

E
[
D
(
PỸ0|X−1

−∞

∥∥∥ PỸ0|X1=0,X−1
−∞

)]
= EX−1

−∞

[
D
(
PỸ0|x−1

−∞

∥∥∥ PỸ0|X1=0,x−1
−∞

)]
,

where EX−1
−∞

denotes expectation with respect to X−1
−∞. Then, using

(3.41) & (3.40) and taking expectations over X−1
−∞, we obtain, again

defining α0 � 1,

1
L
I
(
X0; Ỹ0

∣∣ X−1
−∞
)

=
δ

L

ξ2

σ2

1
2

L∑
i=1

E

[
αi−1

1 +
∑−1

�=−∞ α−�L+i−1X2
�L+1/σ

2

]

− δ

L

1
2

L∑
i=2

E

[
log

(
1 +

αi−1ξ
2

σ2 +
∑−1

�=−∞ α−�L+i−1X2
�L+1

)]
− 1
L

E
[
D
(
PỸ0|X−1

−∞

∥∥∥ PỸ0|X1=0,X−1
−∞

)]



32 3.5. Proof of Theorem 3.2

≥ δ

L

ξ2

σ2

1
2

L∑
i=1

αi−1

1 +
∑−1

�=−∞ α−�L+i−1E
[
X2

�L+1

]
/σ2

− δ

L

1
2

L∑
i=2

log
(
1 + αi−1ξ

2/σ2
)

− 1
L

E
[
D
(
PỸ0|X−1

−∞

∥∥∥ PỸ0|X1=0,X−1
−∞

)]
≥ 1

2
SNR

L∑
i=1

αi−1

1 + αL SNR

− 1
2
SNR

L∑
i=2

log
(
1 + αi−1ξ

2/σ2
)

ξ2/σ2

− 1
L

E
[
D
(
PỸ0|X−1

−∞

∥∥∥ PỸ0|X1=0,X−1
−∞

)]
, (3.42)

where the second step follows by applying Jensen’s inequality to the
convex function f(x) = 1/(1 + x), x > 0, and from the upper bound

E

[
log

(
1 +

αi−1ξ
2

σ2 +
∑−1

�=−∞ α−�L+i−1X2
�L+1

)]
≤ log

(
1 + αi−1ξ

2/σ2
)
;

and the third step follows from (3.36) and by upper bounding

−1∑
�=−∞

α−�L+i−1 ≤
∞∑

�=1

α� = α.

The final lower bound follows now by (3.42) and (3.39)

lim
n→∞

1
n
I
(
X	n/L
−1

0 ; Ỹ	n/L
−1
0

)
≥ 1

2
SNR

L∑
i=1

αi−1

1 + αL SNR

− 1
2
SNR

L∑
i=2

log
(
1 + αi−1ξ

2/σ2
)

ξ2/σ2

− 1
L

E
[
D
(
PỸ0|X−1

−∞

∥∥∥ PỸ0|X1=0,X−1
−∞

)]
(3.43)
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and by recalling that

C(SNR) ≥ lim
n→∞

1
n
I
(
X	n/L
−1

0 ; Ỹ	n/L
−1
0

)
. (3.44)

3.5.3 Asymptotic Analysis

We start with analyzing the upper bound (3.34). Using that

log(1 + x) ≤ x, x > −1

we have

CFB(SNR)
SNR

≤
1
2 log(1 + (1 + α) SNR)

SNR
≤ 1

2
(1 + α), (3.45)

and we thus obtain

ĊFB(0) � sup
SNR>0

CFB(SNR)
SNR

≤ 1
2
(1 + α). (3.46)

In order to derive a lower bound on Ċ(0) we first note that

Ċ(0) � sup
SNR>0

C(SNR)
SNR

≥ lim
SNR↓0

C(SNR)
SNR

(3.47)

and proceed by analyzing the limiting ratio of the lower bound (3.43)
to SNR as SNR tends to zero. To this end we first shall show that

lim
SNR↓0

E
[
D
(
PỸ0|X−1

−∞

∥∥∥ PỸ0|X1=0,X−1
−∞

)]
SNR

= 0. (3.48)

We recall that for any pair of distributions P0 and P1 satisfying P1 � P0

[47, p. 1023]

lim
β↓0

D (βP1 + (1 − β)P0‖P0)
β

= 0. (3.49)

Thus, for any X−1
−∞ = x−1

−∞, (3.49) together with δ = SNR L σ2/ξ2

implies that

lim
SNR↓0

D
(
PỸ0|x−1

−∞

∥∥∥ PỸ0|X1=0,x−1
−∞

)
SNR

= 0. (3.50)
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In order to show that this also holds when

D
(
PỸ0|x−1

−∞

∥∥∥ PỸ0|X1=0,x−1
−∞

)
is averaged over X−1

−∞, we derive in the following the uniform upper
bound

sup
x−1
−∞

D
(
PỸ0|x−1

−∞

∥∥∥ PỸ0|X1=0,x−1
−∞

)
= D

(
PỸ0|x−1

−∞

∥∥∥ PỸ0|X1=0,x−1
−∞

)∣∣∣∣
x−1
−∞=0

. (3.51)

The claim (3.48) follows then by upper bounding

E
[
D
(
PỸ0|X−1

−∞

∥∥∥ PỸ0|X1=0,X−1
−∞

)]
≤ D

(
PỸ0|x−1

−∞

∥∥∥ PỸ0|X1=0,x−1
−∞

)∣∣∣∣
x−1
−∞=0

and by (3.50).

To prove (3.51) we use that every Gaussian random vector can be
expressed as the sum of two independent Gaussian random vectors to
write the channel output Ỹ0 as

Ỹ0 = X0 + V + W, (3.52)

where, conditional on X0
−∞ = x0

−∞, V and W are L-variate, zero-
mean, Gaussian random vectors, drawn independently of each other
and having the respective diagonal covariance matrices KV|x0 and
KW|x−1

−∞
whose diagonal entries are given by

KV|x0(1, 1) = σ2

KV|x0(i, i) = σ2 + αi−1x
2
1, i = 2, . . . , L,

and

KW|x−1
−∞

(i, i) =
−1∑

�=−∞
α−�L+i−1x

2
�L+1, i = 1, . . . , L.
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Thus W is the portion of the noise due to X−1
−∞, and V is the portion

of the noise that remains after subtracting W. Note that X0 + V
and W are independent of each other because X0 is, by construction,
independent of X−1

−∞. The upper bound (3.51) follows now by

D
(
PỸ0|x−1

−∞

∥∥∥ PỸ0|X1=0,x−1
−∞

)
= D

(
PX0+V+W|x−1

−∞

∥∥∥ PX0+V+W|X1=0,x−1
−∞

)
≤ D

(
PX0+V

∥∥ PX0+V|X1=0

)
= D

(
PỸ0|x−1

−∞

∥∥∥ PỸ0|X1=0,x−1
−∞

)∣∣∣∣
x−1
−∞=0

, (3.53)

where PX0+V+W|x−1
−∞

and PX0+V+W|X1=0,x−1
−∞

denote the distri-

butions of X0 + V + W conditional on X−1
−∞ = x−1

−∞ and on
(X1 = 0,X−1

−∞ = x−1
−∞); PX0+V denotes the unconditional distribution

of X0 +V; and PX0+V|X1=0 denotes the distribution of X0 +V condi-
tional on X1 = 0. Here the inequality follows from the data processing
inequality [5, Sec. 2.9] and because X0 + V is independent of X−1

−∞.

Returning to the analysis of (3.43), we obtain from (3.47) and (3.48)

Ċ(0) ≥ lim
SNR↓0

C(SNR)
SNR

≥ lim
SNR↓0

1
2

L∑
i=1

αi−1

1 + αL SNR
− 1

2

L∑
i=2

log
(
1 + αi−1ξ

2/σ2
)

ξ2/σ2

=
1
2

L∑
i=1

αi−1 − 1
2

L∑
i=2

log
(
1 + αi−1ξ

2/σ2
)

ξ2/σ2
. (3.54)

By letting first ξ2 go to infinity while holding L fixed, and by letting
then L go to infinity, we obtain the desired lower bound

Ċ(0) ≥ lim
SNR↓0

C(SNR)
SNR

≥ 1
2
(1 + α). (3.55)

Thus (3.55), (3.22), and (3.46) yield

1
2
(1 + α) ≤ lim

SNR↓0
C(SNR)

SNR
≤ Ċ(0) ≤ ĊFB(0) ≤ 1

2
(1 + α), (3.56)

which proves Theorem 3.2.
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3.6 Proof of Theorem 3.3

3.6.1 Part (i)

In order to show that
lim

�→∞

α�+1

α�
> 0 (3.57)

implies that the feedback capacity CFB(SNR) is bounded, we derive an
upper bound on the capacity that is based on (3.19) and on an upper
bound on 1

nI(M ;Y n
1 ). Again we define α0 � 1.

We first note that, according to (3.57), we can find an �0 ∈ N and a
0 < ρ < 1 such that

α�0 > 0 and
α�+1

α�
≥ ρ, � ≥ �0. (3.58)

We continue with the chain rule for mutual information

1
n
I(M ;Y n

1 ) =
1
n

�0∑
k=1

I
(
M ;Yk

∣∣ Y k−1
1

)
+

1
n

n∑
k=�0+1

I
(
M ;Yk

∣∣ Y k−1
1

)
. (3.59)

Each summand in the first sum on the RHS of (3.59) is upper bounded
by

I
(
M ;Yk

∣∣ Y k−1
1

)
≤ h(Yk) − h

(
Yk

∣∣ Y k−1
1 ,M

)
= h(Yk) − 1

2
E

[
log
(
σ2 +

k−1∑
�=1

αk−�X
2
�

)]
− h
(
Uk

∣∣ Uk−1
1

)
≤ 1

2
log

(
2πe
(

1 +
k∑

�=1

αk−�

E
[
X2

�

]
σ2

))
− h
(
Uk

∣∣ Uk−1
1

)
≤ 1

2
log

(
2πe
(

1 + sup
�′∈N0

α�′

k∑
�=1

E
[
X2

�

]
σ2

))
− h
(
Uk

∣∣ Uk−1
1

)
≤ 1

2
log

(
2πe
(

1 + sup
�′∈N0

α�′ n SNR
))

− h
(
Uk

∣∣ Uk−1
1

)
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≤ 1
2

log

(
2πe
(

1 + sup
�′∈N0

α�′ n SNR
))

− h
({Uk}

)
. (3.60)

Recall that sup�′∈N0
α�′ and h({Uk}) are finite (3.10) & (3.9). Here the

first step follows because conditioning cannot increase entropy; the sec-
ond step follows because

(
Xk

1 , U
k−1
1

)
is a function of

(
M,Y k−1

1

)
, from

the behavior of entropy under translation and scaling [5, Thms. 9.6.3
& 9.6.4], and from the fact that, conditional on Uk−1

1 , the random vari-
able Uk is independent of

(
Xk

1 ,M, Y k−1
1

)
; the third step follows from

the entropy maximizing property of Gaussian random variables and by
lower bounding

E

[
log
(
σ2 +

k−1∑
�=1

αk−�X
2
�

)]
≥ log σ2;

the fourth step by upper bounding each coefficient α� by the supremum
of α�, � ∈ N0; the fifth step follows from the power constraint (3.12);
and the last step follows because conditioning cannot increase entropy
and because, by the stationarity of {Uk, k ∈ Z}, we have h(Uk|Uk−1

−∞ ) =
h({Uk}) [5, Thm. 4.2.1].

The summands in the second sum on the RHS of (3.59) are upper
bounded using the general upper bound for mutual information (The-
orem 2.1)

I(X ;Y ) ≤
∫
D
(
W (·|x) ∥∥ R(·)) dQ(x). (3.61)

For each k = �0 + 1, . . . , n, we upper bound I
(
M ;Yk

∣∣ Y k−1
1 = yk−1

1

)
for a given Y k−1

1 = yk−1
1 by choosing R(·) to be a Cauchy distribution

whose density is given by
√
β

π

1
1 + βy2

k

, yk ∈ R, (3.62)

where we choose β = 1/
(
β̃ y2

k−�0

)
with

β̃ = min

{
ρ�0−1 α�0

max0≤�′<�0 α�′
, ρ�0

}
,
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where 0 < ρ < 1 and �0 ∈ N are given by (3.58).6 Note that (3.58)
together with (3.10) implies that

0 < β̃ < 1 and β̃α� ≤ α�+�0 , � ∈ N0. (3.63)

Applying (3.62) to (3.61) yields

I
(
M ;Yk

∣∣ Y k−1
1 = yk−1

1

) ≤ E

[
log

(
1 +

Y 2
k

β̃ Y 2
k−�0

)∣∣∣∣∣ Y k−1
1 = yk−1

1

]
+

1
2

log
(
β̃ y2

k−�0

)
+ log π

− h
(
Yk

∣∣M,Y k−1
1 = yk−1

1

)
, (3.64)

and we thus obtain, averaging over Y k−1
1 ,

I
(
M ;Yk

∣∣ Y k−1
1

) ≤ log π − h
(
Yk

∣∣ Y k−1
1 ,M

)
+

1
2
E
[
log
(
β̃ Y 2

k−�0

)]
+ E

[
log
(
β̃ Y 2

k−�0 + Y 2
k

)]
− E

[
log
(
Y 2

k−�0

)]− log β̃. (3.65)

We evaluate the terms on the RHS of (3.65) individually. We begin
with

h
(
Yk

∣∣Y k−1
1 ,M

) ≥ 1
2
E

[
log
(
σ2 +

k−1∑
�=1

αk−�X
2
�

)]
+ h
({Uk}

)
, (3.66)

where we use the same arguments as in the second step in (3.60). The
next term is upper bounded by

E
[
log
(
β̃Y 2

k−�0

)]
= E

[
E
[
log
(
β̃
(
Xk−�0 + θ

(
Xk−�0−1

1

)
Uk−�0

)2) ∣∣∣ Xk−�0
1

]]
≤ E

[
log
(
β̃ E
[(
Xk−�0 + θ

(
Xk−�0−1

1

)
Uk−�0

)2 ∣∣∣ Xk−�0
1

])]
6When yk−�0 = 0 then with this choice of β the density of the Cauchy distribu-

tion (3.62) is undefined. However, this event is of zero probability and has therefore

no impact on the mutual information I
`
M ; Yk

˛
˛ Y k−1

1

´
.
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= E

[
log
(
β̃ X2

k−�0 + β̃ σ2 + β̃

k−�0−1∑
�=1

αk−�0−�X
2
�

)]

≤ E

[
log
(
σ2 +

k−�0∑
�=1

αk−�X
2
�

)]
, (3.67)

where we define, for a given Xk−1
1 = xk−1

1 ,

θ
(
xk−1

1

)
�

√√√√σ2 +
k−1∑
�=1

αk−� x2
� . (3.68)

Here the second step in (3.67) follows from Jensen’s inequality, and the
last step follows from (3.63). Similarly we use Jensen’s inequality along
with (3.63) to upper bound

E
[
log
(
β̃Y 2

k−�0 + Y 2
k

)]
≤ E

[
log
(
σ2 +

k−�0∑
�=1

αk−�X
2
� + σ2 +

k∑
�=1

αk−� X
2
�

)]

≤ log 2 + E

[
log
(
σ2 +

k∑
�=1

αk−� X
2
�

)]
. (3.69)

In order to lower bound E
[
log
(
Y 2

k−�0

)]
we need the following lemma:

Lemma 3.4. Let X be a random variable of density fX(x), x ∈ R.
Then for any 0 < δ ≤ 1 and 0 < η < 1

sup
c∈R

E
[
log |X + c|−1 I {|X + c| ≤ δ}] ≤ ε(δ, η) +

1
η
h−(X), (3.70)

where h−(X) is defined as

h−(X) �
∫
{x∈R:fX(x)>1}

fX(x) log fX(x) dx; (3.71)

and where ε(δ, η) > 0 tends to zero as δ ↓ 0.

Proof. See [28, Lemma 6.7].
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We write the expectation as

E
[
log
(
Y 2

k−�0

)]
= E

[
E

[
log
(
Xk−�0 + θ

(
Xk−�0−1

1

)
Uk−�0

)2
∣∣∣∣ Xk−�0

1

]]
and lower bound the conditional expectation for a givenXk−�0

1 = xk−�0
1

E

[
log
(
Xk−�0 + θ

(
Xk−�0−1

1

)
Uk−�0

)2
∣∣∣∣ Xk−�0

1 = xk−�0
1

]
= log θ2

(
xk−�0−1

1

)
− 2 E

⎡⎣ log

∣∣∣∣∣ Xk−�0

θ
(
Xk−�0−1

1

) + Uk−�0

∣∣∣∣∣
−1
∣∣∣∣∣∣ Xk−�0

1 = xk−�0
1

⎤⎦
≥ log θ2

(
xk−�0−1

1

)− 2ε(δ, η) − 2
η
h−(Uk−�0) + log δ2 (3.72)

for some 0 < δ ≤ 1 and 0 < η < 1. Here the inequality follows by
splitting the conditional expectation into the two expectations

E

⎡⎣log

∣∣∣∣∣ xk−�0

θ
(
xk−�0−1

1

) + Uk−�0

∣∣∣∣∣
−1
⎤⎦

= E

⎡⎣log

∣∣∣∣∣ xk−�0

θ
(
xk−�0−1

1

) + Uk−�0

∣∣∣∣∣
−1

I

{∣∣∣∣∣ xk−�0

θ
(
xk−�0−1

1

) + Uk−�0

∣∣∣∣∣ ≤ δ

}⎤⎦
+ E

⎡⎣log

∣∣∣∣∣ xk−�0

θ
(
xk−�0−1

1

) + Uk−�0

∣∣∣∣∣
−1

I

{∣∣∣∣∣ xk−�0

θ
(
xk−�0−1

1

) + Uk−�0

∣∣∣∣∣ > δ

}⎤⎦
and by upper bounding then the first expectation using Lemma 3.4 and
the second expectation by − log δ. Averaging (3.72) over Xk−�0

1 yields

E
[
log
(
Y 2

k−�0

)] ≥ E

[
log
(
σ2 +

k−�0−1∑
�=1

αk−�0−�X
2
�

)]

− 2ε(δ, η) − 2
η
h−(Uk−�0) + log δ2. (3.73)

Note that the fact that Uk−�0 is of unit variance together with [28,
Lemma 6.4] implies that h−(Uk−�0) is finite.
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Turning back to the upper bound (3.65), we obtain from (3.66), (3.67),
(3.69), and (3.73)

I
(
M ;Yk

∣∣ Y k−1
1

) ≤ log π − 1
2
E

[
log
(
σ2 +

k−1∑
�=1

αk−�X
2
�

)]
− h
({Uk}

)
+

1
2
E

[
log
(
σ2 +

k−�0∑
�=1

αk−�X
2
�

)]

+ log 2 + E

[
log
(
σ2 +

k∑
�=1

αk−� X
2
�

)]

− E

[
log
(
σ2 +

k−�0−1∑
�=1

αk−�0−�X
2
�

)]

+ 2 ε(δ, η) +
2
η
h−(Uk−�0) − log δ2 − log β̃

≤ E

[
log
(
σ2 +

k∑
�=1

αk−�X
2
�

)]

− E

[
log
(
σ2 +

k−�0−1∑
�=1

αk−�0−�X
2
�

)]
+ K, (3.74)

where
K � log

2π
β̃ δ2

− h
({Uk}

)
+

2
η
h−(Uk−�0) + 2 ε(δ, η)

is a finite constant, and where the last step in (3.74) follows because
we have with probability one

k−�0∑
�=1

αk−� X
2
� ≤

k−1∑
�=1

αk−�X
2
� .

Note that K does not depend on k since the process {Uk, k ∈ Z} is
stationary.

Turning back to the evaluation of the second sum on the RHS of (3.59),
we use that, for any sequences {ak} and {bk},

n∑
k=�0+1

(
ak − bk

)
=

n∑
k=n−2�0+1

(
ak − bk−n+3�0

)
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+
n−2�0∑

k=�0+1

(
ak − bk+2�0

)
. (3.75)

Defining

ak � E

[
log
(
σ2 +

k∑
�=1

αk−� X
2
�

)]
(3.76)

and

bk � E

[
log
(
σ2 +

k−�0−1∑
�=1

αk−�0−�X
2
�

)]
(3.77)

we have for the first sum on the RHS of (3.75)
n∑

k=n−2�0+1

(
ak − bk−n+3�0

)
=

n∑
k=n−2�0+1

E

[
log

(
σ2 +

∑k
�=1 αk−�X

2
�

σ2 +
∑k−n+2�0−1

�=1 αk−n+2�0−�X2
�

)]
≤ 2 �0 log

(
1 + sup

�∈N0

α� n SNR
)
, (3.78)

which follows by lower bounding the denominator by σ2, and by using
then Jensen’s inequality together with the last two steps in (3.60). For
the second sum on the RHS of (3.75) we have

n−2�0∑
k=�0+1

(
ak − bk+2�0

)
=

n−2�0∑
k=�0+1

E

[
log

(
σ2 +

∑k
�=1 αk−� X

2
�

σ2 +
∑k+�0−1

�=1 αk+�0−�X2
�

)]

≤
n−2�0∑

k=�0+1

E

[
log

(
σ2 +

∑k
�=1 αk+�0−�X

2
�

σ2 +
∑k+�0−1

�=1 αk+�0−�X2
�

)]
− (n− 3�0) log β̃

≤ −(n− 3�0) log β̃, (3.79)

where the second step follows by adding log β̃ to the expectation and
by upper bounding then β̃ σ2 ≤ σ2 and β̃ α� ≤ α�+�0 (3.63); and the
third step follows because we have with probability one

k∑
�=1

αk+�0−�X
2
� ≤

k+�0−1∑
�=1

αk+�0−�X
2
� .
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We combine now (3.74), (3.75), (3.78), and (3.79) to upper bound

1
n

n∑
�=�0+1

I
(
M ;Yk

∣∣ Y k−1
1

) ≤ n− �0
n

K +
2�0
n

log
(
1 + sup

�∈N0

α� n SNR
)

− n− 3�0
n

log β̃, (3.80)

which together with (3.59) and (3.60) yields

1
n
I
(
M ;Y n

1

) ≤ n− �0
n

K − n− 3�0
n

log β̃ +
�0
2n

log(2πe)

+
�0
n

5
2

log
(
1 + sup

�∈N0

α� n SNR
)
− �0
n
h
({Uk}

)
. (3.81)

This converges to K − log β̃ < ∞ as we let n tend to infinity, thus
proving that lim�→∞ α�+1/α� > 0 implies that the capacity CFB(SNR)
is bounded in the SNR.

3.6.2 Part (ii)

We show that
lim

�→∞
1
�

log
1
α�

= ∞ (3.82)

implies that the capacity C(SNR) is unbounded in the SNR. Part (ii)
of Theorem 3.3 follows then by noting that

lim
�→∞

α�+1

α�
= 0 =⇒ lim

�→∞
1
�

log
1
α�

= ∞.

We prove the claim by proposing a coding scheme that achieves an
unbounded rate. We first note that (3.82) implies that for any 0 < � < 1
we can find an �0 ∈ N such that

α� < ��, � ≥ �0. (3.83)

If there exists an �0 ∈ N such that α� = 0, � ≥ �0, then we can achieve
the (unbounded) rate

R =
1

2L
log(1 + L SNR), L ≥ �0
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by a coding scheme where {XkL+1, k ∈ N0} is a sequence of IID, zero-
mean, Gaussian random variables of variance LP, and where the other
inputs are deterministically zero. Indeed, by waiting L time-steps, the
chip’s temperature cools down to the ambient one, so the noise variance
is independent of the previous channel inputs and we can achieve—after
appropriate normalization—the capacity of the additive white Gaussian
noise (AWGN) channel [23].

For the more general case (3.83) we propose the following encoding
and decoding scheme. Let xn

1 (m), m ∈ M denote the codeword sent
out by the transmitter that corresponds to the message M = m. We
choose some L ≥ �0 and generate the components xkL+1(m), m ∈ M,
k = 0, . . . , �n/L� − 1 independently of each other according to a zero-
mean Gaussian law of variance P. The other components are set to
zero. (It follows from the weak law of large numbers that 1

n

∑n
k=1 x

2
k(m)

converges to P/L in probability as n tends to infinity. This guarantees
that the probability that a codeword does not satisfy the per-message
power constraint (3.14)—and hence also the average-power constraint
(3.12)—vanishes as n tends to infinity.)

The receiver uses a nearest neighbor decoder in order to guess M based
on the received sequence of channel outputs yn

1 . Thus it computes
‖y−x(m′)‖2 for each m′ ∈ M and decides on the message that satisfies

M̂ = arg min
m′∈M

‖y − x(m′)‖2, (3.84)

where ties are resolved with a fair coin flip. Here

y � (y1, yL+1, . . . , y(	n/L
−1)L+1)T

x(m′) � (x1(m′), xL+1(m′), . . . , x(	n/L
−1)L+1(m′))T.

We are interested in the average probability of error Pr
(
M̂ �= M

)
, av-

eraged over all codewords in the codebook, and averaged over all code-
books. By the symmetry of the codebook construction, the probability
of error corresponding to the m-th message Pr

(
M̂ �= M

∣∣M = m
)

does
not depend on m, and we thus conclude that

Pr
(
M̂ �= M

)
= Pr

(
M̂ �= M

∣∣M = 1
)
.
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We further note that

Pr
(
M̂ �= M

∣∣M = 1
)

≤ Pr

( |M|⋃
m′=2

‖Y − X(m′)‖2 ≤ ‖Z‖2

∣∣∣∣∣M = 1

)
, (3.85)

where

Z =

⎛⎜⎜⎜⎜⎜⎜⎝

θ
(
X1(1)

)
U1

θ
(
XL

1 (1)
)
UL+1

...

θ
(
X

(	n/L
−1)L
1 (1)

)
U(	n/L
−1)L+1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

which is, conditional on M = 1, equal to Y−X(1). In order to analyze
(3.85) we need the following lemma.

Lemma 3.5. Consider the channel described in Section 3.2, and assume
that {α�} satisfies (3.82). Further assume that {XkL+1 , k ∈ N0} is a
sequence of IID, zero-mean, Gaussian random variables of variance
P, and that Xk = 0 for k mod L �= 1. (Here k mod L denotes the
remainder upon dividing k by L). Let the set Dε be defined as

Dε �
{

(y, z) ∈ R
	n/L
 × R

	n/L
 :

∣∣∣∣ 1
�n/L�‖y‖

2 − (σ2 + P + α(L) P
)∣∣∣∣≤ ε,

∣∣∣∣ 1
�n/L�‖z‖

2 − (σ2 + α(L) P
)∣∣∣∣ ≤ ε

}
, (3.86)

where we define

α(L) �
∞∑

�=1

α�L. (3.87)

Then
lim

n→∞Pr
(
(Y,Z) ∈ Dε

)
= 1 (3.88)

for any ε > 0.
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Proof. See Appendix A.3.

In order to upper bound the RHS of (3.85) we proceed along the lines
of [23,30]. Using that, by the symmetry of the codebook construction,
the law of (Y,Z) does not depend on m, and using that the code-
words are independent so, conditional on M = 1, the distribution of(
X(2), . . . ,X(|M|)) does not depend on (y, z), we obtain

Pr

( |M|⋃
m′=2

‖Y − X(m′)‖2 ≤ ‖Z‖2

∣∣∣∣∣M = 1

)
≤ Pr

(
(Y,Z) /∈ Dε

)
+
∫
Dε

Pr

( |M|⋃
m′=2

‖y − X(m′)‖2 ≤ ‖z‖2

)
dP (y, z), (3.89)

where P (y, z) denotes the distribution of (Y,Z). It follows from
Lemma 3.5 that the first term on the RHS of (3.89) vanishes as n
tends to infinity. To evaluate the second term on the RHS of (3.89),
we note that by the union of events bound

Pr

( |M|⋃
m′=2

‖y − X(m′)‖2 ≤ ‖z‖2

)

≤
|M|∑

m′=2

Pr
(‖y − X(m′)‖2 ≤ ‖z‖2

)
. (3.90)

By upper bounding

‖z‖2 ≤ �n/L�(σ2 + α(L) P + ε
)
, (y, z) ∈ Dε,

by lower bounding

‖y‖2 ≥ �n/L�(σ2 + P + α(L) P − ε
)
, (y, z) ∈ Dε,

and by applying Chernoff’s bound [14, Sec. 5.4], we obtain for each
m′ = 2, . . . , |M| and for any s < 0

Pr
(‖y − X(m′)‖2 ≤ ‖z‖2

)
≤ exp

(
−s�n/L�(σ2 + α(L) P + ε

))
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× exp

(
s
�n/L�(σ2 + P + α(L) P − ε

)
1 − 2sP

)
× exp

(
−1

2
�n/L� log(1 − 2 sP)

)
, (y, z) ∈ Dε. (3.91)

Applying (3.90) and (3.91) to (3.89), it follows that

Pr

( |M|⋃
m′=2

‖Y − X(m′)‖2 ≤ ‖Z‖2

∣∣∣∣∣M = 1

)

tends to zero as n tends to infinity if for some s < 0 the rate R satisfies

R <
s

L

(
σ2 + α(L) P + ε

)
+

1
2L

log(1 − 2sP)

− s

L

σ2 + P + α(L) P − ε

1 − 2sP
. (3.92)

Hence, by choosing s = − 1
2

1
1+α(L) P

, it follows that any rate below

− 1
2L

σ2 + α(L) P + ε

1 + α(L) P
+

1
2L

log
(

1 +
P

1 + α(L) P

)
+

1
2L

σ2 + P + α(L) P − ε

1 + α(L) P

1
1 + P/

(
1 + α(L) P

)
is achievable. As P tends to infinity this converges to

1
2L

log
(

1 +
1

α(L)

)
>

1
2L

log
1

α(L)
. (3.93)

It remains to show that given (3.83) we can make − 1
2 L logα(L) arbi-

trarily large. Indeed, (3.83) implies that

α(L) =
∞∑

�=1

α�L <

∞∑
�=1

��L =
�L

1 − �L
,

and the RHS of (3.93) can therefore be further lower bounded by

1
2L

log
(
1 − �L

)
+

1
2

log
1
�
.
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Letting L tend to infinity yields then that we can achieve any rate
below

1
2

log
1
�
.

Since this can be made arbitrarily large by choosing � sufficiently small,
we conclude that lim�→∞ 1

� log 1
α�

= ∞ implies that the capacity is
unbounded.

3.7 Conclusion

We studied a model for on-chip communication with nonideal heat
sinks. To account for the heating-up effect we proposed a channel
model where the variance of the additive noise depends on a weighted
sum of the past channel input powers. The weights are related to the
efficiency of the heat sink.

To study the capacity of this channel at low SNR, we computed the
capacity per unit cost. We showed that, irrespective of the distribution
on the (IID) noise sequence {Uk, k ∈ Z}, the heating-up effect is un-
harmful in the sense that the capacity per unit cost cannot be smaller
than the capacity per unit cost of the channel with an ideal sink (i.e.,
for α = 0). We further showed that if the noise {Uk, k ∈ Z} is IID
Gaussian, then the heating-up effect is even beneficial in the sense that
the capacity per unit cost is larger than the capacity per unit cost of
the channel with an ideal heat sink. This suggests that at low SNR no
heat sinks should be used. (Of course, there may be other reasons to
use heat sinks.)

Studying capacity at high SNR, we derived a sufficient condition and
a necessary condition for the capacity to be bounded in the SNR. We
showed that when {α�} decays not faster than geometrically, then the
capacity is bounded in the SNR. On the other hand, if {α�} decays
faster than geometrically, then the capacity is unbounded in the SNR.
This result demonstrates the importance of an efficient heat sink at
high SNR.



Chapter 4

Gaussian Flat-Fading Channels

4.1 Introduction

The subject of this chapter is the capacity of multiple-input multiple-
output (MIMO), discrete-time, stationary and ergodic, Gaussian flat-
fading channels with memory. We study a noncoherent channel model
where transmitter and receiver are not aware of the realization of the
fading but only of its statistics. We focus on the capacity of this channel
at high signal-to-noise ratio (SNR).

The high-SNR asymptotic behavior of this channel’s capacity depends
highly on the ability of predicting the present fading from its past.
We shall refer to the case where the present fading cannot be pre-
dicted perfectly from its past as regular fading and to the case where
the present fading can be predicted perfectly from its past as non-
regular fading. Regular fading channels were studied by Lapidoth and
Moser [28]. They showed that in this case the capacity increases double-
logarithmically in the SNR, and they defined the fading number as the
second-order term in the high-SNR asymptotic expansion of capacity
in order to characterize the capacity at high SNR more accurately. Fur-
thermore, they computed the fading number for various scenarios: their
results include the fading numbers of single-input single-output (SISO),
single-input multiple-output (SIMO), and multiple-input single-output
(MISO) channels when the fading is memoryless, and the fading num-
ber of SISO fading channels with memory. The fading number of SIMO
fading channels with memory was later derived in [29].

Nonregular fading channels were studied by Lapidoth in the single-
antenna case. He showed that, at high SNR, capacity can increase in
various ways with the SNR. He further derived an expression for the ca-
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pacity pre-log, i.e., the limiting ratio of capacity to the logarithm of the
SNR as the SNR tends to infinity, when capacity grows logarithmically
with the SNR.

To the best of our knowledge, there exist only bounds on the fading
number and on the capacity pre-log of MIMO fading channels with
memory. To better understand the high-SNR capacity of such channels,
we present firm (nonasymptotic) upper bounds on channel capacity
and study their high-SNR asymptotic behavior to obtain bounds on
the fading number (for regular fading) and on the capacity pre-log (for
nonregular fading). We shall see that the notions of the fading number
and the number of degrees of freedom are closely tied.

Another commonly used model for flat-fading channels is the block-
constant fading model [34], see for example [34, 52] for results on the
capacity of this channel at high SNR. Note however that the block-
constant fading model is, in contrast to our channel model, not a sta-
tionary channel model. Thus the block-constant fading model and the
stationary fading model may give rise completely different capacity re-
sults.

Some of the results presented in this chapter were obtained in [22].
For the sake of completeness, we repeat the proofs of these results in
Appendix B.

4.2 Channel Model and Channel Capacity

We begin with a description of the channel model and with some defini-
tions. We envision a channel with nT transmit antennas and nR receive
antennas. Its time-k (k ∈ Z) output Yk ∈ CnR corresponding to the
time-k channel input xk ∈ C

nT is an nR-dimensional complex random
vector that is given by

Yk = Hkxk + Zk, k ∈ Z, (4.1)

where the random nR × nT complex matrix Hk ∈ CnR×nT denotes
the time-k fading matrix and the random vector Zk ∈ C

nR denotes the
additive noise. We assume throughout that the vectors {Zk, k ∈ Z} are
independent and identically distributed (IID) according to a circularly-
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symmetric, complex multi-variate Gaussian law of zero mean and of
covariance matrix σ2 InR with σ > 0.

The matrix valued fading process {Hk, k ∈ Z} is assumed to be sta-
tionary ergodic Gaussian and to satisfy the finite expected squared
Frobenius norm condition

E
[‖Hk‖2

F

]
<∞. (4.2)

The fading process {Hk, k ∈ Z} and the additive noise process {Zk, k ∈
Z} are independent of each other and of a joint law that does not depend
on the channel inputs {xk}.
The above conditions will be assumed throughout. Some theorems
will require additional assumptions. These are defined next. We shall
say that the fading process {Hk, k ∈ Z} is regular if it has a finite
differential entropy rate, i.e., if

h({Hk}) � lim
n→∞

1
n
h(H1, . . . ,Hn) > −∞. (4.3)

Otherwise, we shall say that it is nonregular. We say that the fading is
spatially independent if the nR nT processes {Hk(r, t), k ∈ Z} are inde-
pendent. We say that the fading is spatially IID if they are additionally
of the same law.

The capacity of this channel under an average-power constraint on the
inputs is given by (see, e.g., [20, Thm. 2] or [39, Sec. II])

CAvg(SNR) = lim
n→∞

1
n

sup I
(
Xn

1 ;Yn
1

)
, (4.4)

where the maximization is over all joint distributions on X1, . . . ,Xn

that satisfy
1
n

n∑
k=1

E
[‖Xk‖2

] ≤ P. (4.5)

Here the subscript “Avg” indicates that an average-power constraint
is imposed. For the peak-power A constrained capacity CPP(SNR) the
maximization is over all joint distributions under which with probability
one

‖Xk‖2 ≤ A2, k = 1, . . . , n, (4.6)
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where the subscript “PP” indicates that a peak-power constraint is
imposed. We shall follow this convention throughout this chapter: we
add a subscript “Avg” to indicate that an average-power constraint
is imposed, and we add a subscript “PP” to indicate that a peak-
power constraint is imposed. We omit the subscript if the distinction
is immaterial. Note that

CPP(SNR) ≤ CAvg(SNR) (4.7)

since any distribution on X1, . . . ,Xn satisfying the peak-power con-
straint satisfies also the average-power constraint. The signal-to-noise
ratio (SNR) is defined depending on whether an average- or a peak-
power constraint is imposed:

SNR � P

σ2
, for an average-power constraint (4.8)

and

SNR � A2

σ2
, for a peak-power constraint. (4.9)

For regular fading capacity grows double-logarithmically with the SNR
[28, Thm. 4.2], i.e.,

lim
SNR→∞

{
C(SNR) − log log SNR

}
<∞. (4.10)

In this case we define the fading number as

χ({Hk}) � lim
SNR→∞

{C(SNR) − log log SNR} . (4.11)

Note that, by (4.7), χPP({Hk}) ≤ χAvg({Hk}).
The exact calculation of the fading number for general (regular) fading
channels with memory is a difficult task. An exact expression for the
fading number for the SISO case (nR = nT = 1) is given in [28]

χ({Hk}) = log π + E
[
log |H1|2

]− h({Hk}). (4.12)

The SIMO case (nT = 1) was recently solved in [29]. Here we shall
present results for the MISO case (nR = 1) when the fading is spa-
tially independent. Specifically, Corollary 4.10 treats the case where
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the fading is spatially independent Gaussian with a zero mean-vector,
and Corollary 4.11 treats the case where {Hk − E[Hk] , k ∈ Z} is spa-
tially IID Gaussian. For MIMO channels we shall present lower bounds
(see Proposition 4.5 and Theorem 4.6) and upper bounds on the fading
number (see Corollaries 4.7 and 4.8).

For nonregular fading, capacity can grow with the SNR in various ways
[25, 26]. When it grows logarithmically in the SNR, the pre-log under
a peak-power constraint is defined as [26]

ΠPP = lim
SNR→∞

CPP(SNR)
log SNR

(4.13)

with an analogous definition for the pre-log ΠAvg under an average-
power constraint.

The pre-log for general MIMO fading channels is unknown. It was
computed under a peak-power constraint for the SISO Gaussian case in
[25,26] where it was shown that ΠPP is given by the Lebesgue measure
of the set of harmonics in the interval [−1/2, 1/2] where the derivative
of the spectral distribution function is zero:

ΠPP = μ ({λ : F ′(λ) = 0}) , (4.14)

where μ denotes the Lebesgue measure on the interval [−1/2, 1/2] and
F ′(·) is the derivative of the spectral distribution function characteriz-
ing the memory of the fading process, see Section 4.3.

Here we shall present an upper bound on ΠPP for MIMO Gaussian
fading in Theorem 4.13 and Corollary 4.14 and an exact expression for
ΠPP for spatially independent MISO Gaussian fading in Corollary 4.15.

The rest of this chapter is organized as follows. Section 4.3 discusses
the linear prediction problem. Section 4.4 presents firm upper and
lower bounds on the capacity. Section 4.5 addresses the fading num-
ber: new lower bounds, new upper bounds, and the MISO cases where
these bounds yield the exact fading number are presented. Section 4.6
deals with nonregular fading and the capacity pre-log: it includes up-
per bounds on the pre-log for nonregular MIMO fading as well as the
expression for the pre-log of spatially independent MISO fading chan-
nels. Section 4.7 addresses the capacity pre-loglog, which is defined
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as the limiting ratio of the capacity to log log SNR as SNR tends to
infinity. Section 4.8 provides the main proofs of this chapter. Sec-
tion 4.9 specializes our results to slowly-varying Gauss-Markov MIMO
fading channels. And Section 4.10 concludes with a discussion of the
relationship between the fading number and degrees of freedom.

4.3 Linear Prediction

In this section we recall some facts about the prediction problem for
Gaussian processes. We shall focus on the vector-valued case, i.e.,
we consider the prediction of the η-variate, zero-mean, stationary,
circularly-symmetric, complex Gaussian process {Ak, k ∈ Z} of finite
variance. The matrix-valued case can be reduced to the vector-valued
case by stacking the column vectors in one big vector.

The (matrix-valued) autocovariance function of {Ak, k ∈ Z} can be
described by the matrix-valued spectral distribution function F(·).
Thus for each λ ∈ [−1/2, 1/2] the matrix F(λ) is nonnegative definite
and Hermitian (i.e., F(λ)† = F(λ)), and the matrix-valued function
λ → F(λ) is monotonically nondecreasing on [−1/2, 1/2] and satis-
fies [50, Sec. 7]

E
[
Ak+mA†

k

]
=
∫ 1/2

−1/2

ei2πmλ dF(λ),
(
k ∈ Z, m ∈ Z

)
. (4.15)

(A matrix-valued function F(·) is said to be monotonically nondecreas-
ing if for λ ≤ λ′ the difference F(λ′)−F(λ) is nonnegative definite.) We
note here that F(·) has a derivative almost everywhere, which we de-
note by F′(·) and which is for almost every λ ∈ [−1/2, 1/2] nonnegative
definite and Hermitian [50, Sec. 7, (7.5)].

Our goal is to predict A0 from A−1, . . . ,A−k, i.e., we are aiming for a
predictor A

(k)

0 (which is a function of A−1
−k) that minimizes

E

[(
A0 − A

(k)

0

)†(
A0 − A

(k)

0

)]
.

(In the univariate case, the above expectation reduces to the mean-



Chapter 4. Gaussian Flat-Fading Channels 55

square error.) It is well known that this predictor is given by

A
(k)

0 = E
[
A0

∣∣A−1
−k

]
.

Note that, since {Ak, k ∈ Z} is a Gaussian process, A
(k)

0 is of the form

A
(k)

0 =
k∑

�=1

C�A−�,

hence the section title “Linear Prediction”. Further note that A
(k)

0 is
a Gaussian vector that is independent of A0 − A

(k)

0 [50, Lemma 5.8].
This implies that, conditional on A−1, . . . ,A−k, the prediction error

Ã(k)
0 = A0 − A

(k)

0

is a zero-mean Gaussian vector whose conditional covariance matrix,
conditional on A−1

−k = a−1
−k, does not depend on a−1

k−1, i.e.,

E

[
Ã(k)

0

(
Ã(k)

0

)† ∣∣∣∣ A−1
−k = a−1

−k

]
= E

[
Ã(k)

0

(
Ã(k)

0

)†]
. (4.16)

By [50, Lemmas 5.7(b) & 5.10(c)] the prediction error in predicting A0

from A−1, . . . ,A−k converges to the prediction error in predicting A0

from A−1,A−2, . . ., i.e.,

lim
k→∞

E

[
Ã(k)

0

(
Ã(k)

0

)†]
= E

[
Ã0Ã

†
0

]
, (4.17)

where Ã0 denotes the prediction error in predicting A0 from
A−1,A−2, . . ., i.e.,

Ã0 = A0 − E
[
A0

∣∣A−1
−∞
]
.

Let Σ denote the covariance matrix of Ã0. It was shown by Wiener
and Masani [50, Main Thm. I, p. 145] that if the spectral distribution
function satisfies ∫ 1/2

−1/2

log detF′(λ) dλ > −∞, (4.18)
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then Σ is given by

detΣ = exp

(∫ 1/2

−1/2

log detF′(λ) dλ

)
. (4.19)

We shall refer to Σ as the prediction error covariance matrix or, in
short, the prediction error. In the univariate case (η = 1) we shall
denote the prediction error by ε2, i.e.,

ε2 = exp

(∫ 1/2

−1/2

logF ′(λ) dλ

)
. (4.20)

Equation (4.19) implies that all processes satisfying (4.18) yield a posi-
tive determinant det Σ (and hence also a positive entropy rate h

({Ak}
)
)

and are thus regular. To study nonregular processes we shall analyze
the noisy prediction problem: Let {Wk, k ∈ Z} be a sequence of IID,
zero-mean, circularly-symmetric, complex Gaussian random vectors of
covariance matrix Iη. The noisy prediction problem is to predict A0

from a noisy observation of its past A−1+δW−1, A−2+δW−2, . . . Let
Σ(·) denote the covariance matrix of the prediction error of the noisy
prediction problem. Then, by extending the derivations in [26, Sec. III]
to the multivariate case, we have

det
(
Σ(δ)+δ Iη

)
= exp

(∫ 1/2

−1/2

log det
(
F′(λ)+δ Iη

)
dλ

)
, δ ≥ 0. (4.21)

We shall refer to Σ(·) as the noisy prediction error. In the univariate
case, we shall denote the noisy prediction error by ε2(·), i.e.,

ε2(δ) = exp

(∫ 1/2

−1/2

log
(
F ′(λ) + δ

)
dλ

)
− δ, δ ≥ 0. (4.22)

We finally note that δ → log det
(
Σ(δ) + δ

)
is monotonically decreasing

in δ and that for all F(·) satisfying (4.18) we have

lim
δ↓0

log det
(
Σ(δ) + δ

)
= log detΣ.
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4.4 Nonasymptotic Bounds

4.4.1 SISO Fading Channels

The asymptotic capacity of SISO fading channels with memory is well
understood. For instance, the fading number of a (regular) mean-d,
unit-variance, SISO Gaussian fading channel with spectral distribution
function F (·) is given by [28, Cor. 4.42]

χ({Hk}) = log |d|2 − Ei
(−|d|2)− 1 + log

1
ε2
, (4.23)

where Ei(·) denotes the exponential integral function, i.e.,

Ei(−x) = −
∫ ∞

x

e−t

t
dt, x > 0, (4.24)

and where ε2 is given in (4.20). If we view the fading number as an
indication of the maximal rate at which power-efficient communication
is achievable (cf. [28, Sec. IV-C]), then it follows from (4.23) that this
maximal rate only depends on the memory of the channel through the
(noiseless) prediction error.

Nonasymptotic upper and lower bounds on the capacity of SISO Gaus-
sian fading channels with memory under a peak-power constraint on
the inputs were given in [26]. It was shown that the capacity is upper
bounded by

CPP(SNR) ≤ C
(IID)
PP (SNR) + log

1
ε2(1/SNR)

, (4.25)

where C(IID)
PP (SNR) denotes the capacity in the memoryless fading case,

and where ε2(·) is given in (4.22). The capacity is lower bounded by

CPP(SNR) ≥ log
1

ε2(4/SNR) + 8
5 SNR

+ log |d|2

− Ei
(
− |d|2

1 − ε2(4/SNR)

)
− log

5e
6
. (4.26)

By evaluating the second term on the right-hand side (RHS) of [26,
Eq. (28)] instead of further upper bounding it (as it is done in [26]),
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the upper bound (4.25) can be tightened to

CPP(SNR) ≤ C
(IID)
PP (SNR) + log

1 + 1/SNR
ε2(1/SNR) + 1/SNR

. (4.27)

The capacity of the memoryless SISO Rayleigh-fading channel (i.e.,
zero-mean Gaussian fading) can be upper bounded by [28, Eq. (141)]

C
(IID)
PP (SNR) ≤ inf

α,β′>0
inf
δ′≥0

{
−1 + α log β′ + log Γ

(
α, δ′/β′)

+
1 + SNR

β′ +
δ′

β′ + (1 − α)
(
log δ′ − eδ′

Ei(−δ′)
)}

. (4.28)

The lower bound (4.26) can be improved by considering inputs that are
IID and uniformly distributed over the set {z ∈ C : αA ≤ |z| ≤ A} with
0 < α < 1 (instead of considering inputs that are uniformly distributed
over the set {z ∈ C : A/2 ≤ |z| ≤ A} as in [26]), and by maximizing
over α:

CPP(SNR) ≥ sup
0<α<1

{
− log

e(1 + α2)
2(1 − α2)

− exp

(
ε2(ξ) + 2

SNR(1+α2)

1 − ε2(ξ)

)
Ei

(
−
ε2(ξ) + 2

SNR(1+α2)

1 − ε2(ξ)

)}
,

(4.29)

where ξ = 1
α2 SNR . However, the gap between (4.27) and (4.29) is

still substantial. Moreover, for regular fading the lower bound (4.29)
does not tend to infinity as the SNR tends to infinity. The follow-
ing proposition presents a lower bound on the capacity that behaves
comparably to (4.29) at low and moderate SNR, and that achieves the
correct asymptotic behavior at high SNR.

Proposition 4.1. Consider a mean-d, SISO Gaussian fading channel
where the fading process is such that {Hk − d, k ∈ Z} is a zero-mean,
unit-variance, stationary and ergodic, circularly-symmetric, complex
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Gaussian process of spectral distribution function F (·). Then

CPP(SNR) ≥ sup
0<α<1

{
log

1
ε2(ξ) + ξ

+ log
1
α

+ log
1

SNR

− exp
(

e

log(1/α2)α SNR

)
Ei
(
− e

log(1/α2)α SNR

)}
,

(4.30)

where ξ = 1
α2 SNR .

Proof. See Section 4.8.1.

This lower bound will be used later to compute the capacity pre-loglog
ΛPP (i.e., the limiting ratio of capacity to log log SNR as SNR tends
to infinity), when the fading is such that capacity increases double-
logarithmically in the SNR (Theorem 4.16). It can also be used to
compute the capacity pre-log of SISO Gaussian fading channels (4.14)
as well as the fading number (4.23) for zero-mean Gaussian fading.

A better lower bound can be found numerically as follows. Let

CSI@Rx

(
x2

min

σ2
,
x2

max

σ2
, ξ2
)

� sup I(X ; (D + H̃)X + Z|D), (4.31)

where the maximization is over all input distributions on X (indepen-
dent of D) under which with probability one

xmin ≤ |X | ≤ xmax, (4.32)

and where D, H̃ , and Z are zero-mean, circularly-symmetric, complex
Gaussian random variables, independent of each other and of X and of
variances 1− ξ2, ξ2, and σ2, respectively. The capacity of a zero-mean,
unit-variance, SISO Gaussian fading channel is lower bounded by

CPP(SNR) ≥ sup
x2
min≤A2

CSI@Rx

(
x2

min

σ2
, SNR, ε2

(
σ2

x2
min

))
. (4.33)

This lower bound (4.33) can be computed numerically [51].
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Figure 4.1: Bounds on the capacity of a zero-mean, unit-variance,
SISO Gaussian fading channel with memory. Depicted are the
capacity upper bound (4.27); the lower bound (4.29); the lower
bound (4.30); the numerical lower bound (4.33); the asymptotic
expansion log

(
1+log(1+SNR)

)
+χ({Hk}); and the fading number

χ({Hk}).
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Figure 4.1 depicts the above analytic bounds (4.27), (4.29), and (4.30)
together with the numerical lower bound (4.33) for a fading process
whose spectral distribution function is of the form

F ′(λ) =

⎧⎨⎩ γ1, for |λ| ≤ γ3

γ2, for γ3 < |λ| ≤ 1
2 ,

(4.34)

where γ1 and γ2 are positive real numbers, and where γ3 is a positive
real number satisfying 0 < γ3 < 1/2. Additionally, the asymptotic
expansion

log
(
1 + log(1 + SNR)

)
+ χ({Hk})

and the fading number

χ({Hk}) = −1 − γ + log
1
ε2

(where γ ≈ 0.577 denotes Euler’s constant) are plotted in order to
illustrate at which SNR the approximation

C(SNR) ≈ log
(
1 + log(1 + SNR)

)
+ χ({Hk})

is reasonable.

In the following we consider two spectral distribution functions F1(·)
and F2(·) of the form (4.34), where the parameters γ1, γ2, and γ3 are
chosen so that ∫ 1/2

−1/2

F ′
�(λ) dλ = 1, � = 1, 2 (4.35)

and

ε2� = exp

{∫ 1/2

−1/2

logF ′
�(λ) dλ

}
=

1
100

, � = 1, 2. (4.36)

Thus we consider two unit-variance Gaussian fading processes with the
same (noiseless) prediction error (of 1/100), but with different spectral
densities. By controlling γ1 while maintaining (4.35) and (4.36), we
can control the sensitivity of the noisy prediction error with respect to
the variance of the noise corrupting the observations.
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Figure 4.2: Bounds on the capacity of a zero-mean, unit-variance,
SISO Gaussian fading channel with memory. Depicted are the
upper bound (4.27) and the lower bound (4.30) for the spectral
distribution functions F1(·) and F2(·); the asymptotic expansion
log
(
1+log(1+SNR)

)
+χ({Hk}); and the fading number χ({Hk}).
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Figure 4.2 depicts upper and lower bounds on the capacity of zero-
mean, unit-variance, SISO Gaussian fading channels with memory for
the two spectral distribution functions F1(·) and F2(·). The high-SNR
asymptotic capacities corresponding to the two fading laws are identi-
cal, because these asymptotics are determined by the (noiseless) predic-
tion error, which is identical for the two. At lower SNR the behaviors
are, however, very different. The capacity lower bound corresponding
to F1(·) enters the power-inefficient regime at about 45 dB whereas the
capacity upper bound corresponding to F2(·) achieves this regime at
far higher SNR, namely at about 90 dB. Thus, while the high-SNR
expansion of channel capacity depends on the fading memory only via
its (noiseless) prediction error, the moderate-SNR behavior depends
on the memory more finely, namely, via the functional dependence of
the noisy prediction error on the variance of the noise corrupting the
observations.

This demonstrates that while the (noiseless) prediction error can some-
times indicate the rates above which communication becomes power-
inefficient, it cannot indicate the corresponding SNR. For the latter one
needs the functional dependence of the noisy prediction error on the
variance of the corrupting noise.

4.4.2 MIMO Fading Channels

In the following we present nonasymptotic upper bounds on the capac-
ity of MIMO fading channels.

Theorem 4.2. Consider a mean-D, spatially independent, MIMO Gaus-
sian fading channel where the fading process is such that {Hk(r, t) −
d(r, t), k ∈ Z} is a zero-mean, unit-variance, stationary and ergodic,
circularly-symmetric, complex Gaussian process of spectral distribution
function Fr,t(·). Then

CPP(SNR)

≤ C
(IID)
PP (SNR) + max

‖x̂‖=1

nR∑
r=1

log
1 + 1

SNR∑nT
t=1 |x̂(t)|2 ε2r,t

(
1

SNR

)
+ 1

SNR

, (4.37)

where C(IID)
PP (SNR) denotes the capacity in the memoryless fading case,
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and where ε2r,t(·) denotes the error in predicting the (r, t)-th component
of the fading matrix from a noisy observation of its past (4.22).

Proof. See [22, Thm. 5.14]. A proof can be found in Appendix B.1.

When the fading process {Hk−D, k ∈ Z} is spatially IID, (4.37) reduces
to the following upper bound:

Corollary 4.3. Consider a mean-D, MIMO Gaussian fading channel
where the fading process is such that {Hk − D, k ∈ Z} is spatially IID
with each component being a zero-mean, unit-variance, stationary and
ergodic, circularly-symmetric, complex Gaussian process of spectral dis-
tribution function F (·). Then, denoting ε2r,t(·) by ε2(·),

CPP(SNR) ≤ C
(IID)
PP (SNR) + nR log

1 + 1/SNR
ε2(1/SNR) + 1/SNR

. (4.38)

Proof. Follows directly from Theorem 4.2 by noting that, since the
process {Hk − D, k ∈ Z} is spatially IID, ε2r,t(·) does not depend on
(r, t).

An upper bound on the capacity of spatially independent MISO fading
channels can be found by using Theorem 4.2 with nR = 1. The follow-
ing theorem generalizes this bound to channels where the fading is not
spatially independent.

For convenience we shall write the MISO fading process as a column
vector and not as a row vector. The time-k channel output Yk is given
by

Yk = HT

kxk + Zk, k ∈ Z. (4.39)

Theorem 4.4. Consider a mean-d, MISO Gaussian fading channel
where {Hk − d, k ∈ Z} is a zero-mean, stationary and ergodic,
circularly-symmetric, complex Gaussian process of matrix-valued spec-
tral distribution function F(·). Further assume that the covariance ma-
trix

K = E
[
(Hk − d)(Hk − d)†

]
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is nonsingular. Then

CPP(SNR) ≤ C
(IID)
PP (SNR) + log

‖K‖ + 1/SNR
λmin(1/SNR) + 1/SNR

, (4.40)

where λmin(·) denotes the smallest eigenvalue of the (matrix-valued)
noisy prediction error Σ(·).

Proof. See [22, Thm. 5.12]. A proof can be found in Appendix B.2.

4.5 The Fading Number

In this section we present lower and upper bounds on the fading num-
ber (4.11) of MIMO fading channels. We will assume throughout this
section that the fading satisfies the finite differential entropy rate con-
dition (4.3), i.e., that the fading is regular.

4.5.1 Lower Bounds

Proposition 4.5. Consider a stationary and ergodic fading process
{Hk, k ∈ Z} that satisfies (4.2) and (4.3). For any nT-variate station-
ary and ergodic process {Vk, k ∈ Z} that is independent of {Hk, k ∈ Z}
and that satisfies

lim
k→∞

I
(
Vk;Vk−1

1

)
<∞ (4.41)

and

E
[‖Vk‖2

]
<∞ and E

[
log ‖Vk‖2

]
> −∞, (4.42)

the fading number χAvg({Hk}) is lower bounded by

χAvg({Hk}) ≥ χ({HkVk}) + lim
n→∞

1
n
I
(
Vn

1 ; {HkVk}n
k=1

)
, (4.43)

where χ({HkVk}) is the fading number of a SIMO channel with fading
{HkVk, k ∈ Z}. (For SIMO fading, peak-power and average-power
constraints yield the same fading number [29]. Note that the limit in
(4.41) exists because {Vk, k ∈ Z} is stationary.)
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Moreover, if {Vk, k ∈ Z} additionally satisfies

Pr(‖Vk‖ > Υ) = 0, for some Υ > 0, (4.44)

then the lower bound holds also for the fading number χPP({Hk}) under
a peak-power constraint.

Proof. See Section 4.8.2.

Note 4.1. The assumption that the fading is Gaussian is not necessary.
Proposition 4.5 holds for any stationary and ergodic fading process that
satisfies (4.2) and (4.3).

An exact expression for the fading number χ({HkVk}) of the SIMO
fading {HkVk, k ∈ Z} is given in [29]. However, this expression is not
easy to evaluate. It can always be lower bounded by considering linear
combining at the receiver, which reduces the SIMO channel to a SISO
channel for which the fading number is easier to compute (4.12)

χ({HkVk}) ≥ χ({αT
HkVk}), α ∈ C

nR deterministic, (4.45)

or by ignoring the memory in {HkVk, k ∈ Z}

χ({HkVk}) ≥ χ(IID)(H1V1), (4.46)

or by applying both reductions

χ({HkVk}) ≥ χ(IID)(αT
H1V1), α ∈ C

nR deterministic, (4.47)

where χ(IID) denotes the fading number in the memoryless case with
equal marginals. The advantage of (4.46) and (4.47) is that it only
depends on the marginal law of {Hk, k ∈ Z}.
Note 4.2. For SIMO fading the lower bound (4.43) is tight, i.e., for
any stationary and ergodic process {Vk, k ∈ Z} that is independent of
{Hk, k ∈ Z} and that satisfies (4.41) and (4.42), the RHS of (4.43) is
equal to the SIMO fading number χ({Hk}).

Proof. See Section 4.8.3.
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We can use Theorem 4.5 to establish the following result on slowly-
varying Gaussian fading channels:

Theorem 4.6. Let the MIMO fading {Hk, k ∈ Z} be spatially IID with
each component of {Hk, k ∈ Z} being a zero-mean, unit-variance, sta-
tionary and ergodic, circularly-symmetric, complex Gaussian process of
temporal autocorrelation function

K(ν) = E[Hk+ν(r, t)H∗
k (r, t)] , ν ∈ Z.

Let nmin = min{nR, nT}, and let

ε2max � max
1≤ν≤nmin+2

E
[∣∣Hν(r, t) −H0(r, t)

∣∣2]
= 2 max

1≤ν≤nmin+2

(
1 − Re

(
K(ν)

))
,

where Re
(
K(ν)

)
denotes the real part of K(ν). (Note that K and ε2max

do not depend on (r, t) because the fading is spatially IID.) Then

χPP({Hk}) ≥ nmin log
1

ε2max

+ Δ(nmin), (4.48)

where the correction term Δ(nmin) depends only on nmin and not on
the temporal autocorrelation function K.

Proof. See Section 4.8.4.

4.5.2 Upper Bounds

Corollary 4.7. Let the mean-D, spatially independent, MIMO Gaussian
fading channel be such that {Hk(r, t) − d(r, t), k ∈ Z} is a zero-mean,
unit-variance, stationary and ergodic, circularly-symmetric, complex
Gaussian process of spectral distribution function Fr,t(·). Then

χAvg({Hk}) ≤ χ
(IID)
Avg (H1) + max

‖x̂‖=1

nR∑
r=1

log
1∑nT

t=1 |x̂(t)|2ε2r,t

, (4.49)

where ε2r,t = ε2r,t(0) in (4.37).
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Proof. Follows directly from Theorem 4.2 by computing the difference
between the RHS of (4.37) and log log SNR in the limit as SNR tends
to infinity.

When the fading process {Hk−D, k ∈ Z} is spatially IID, (4.49) reduces
to the following upper bound:

Corollary 4.8. Let the mean-D, MIMO Gaussian fading channel be such
that the process {Hk − D, k ∈ Z} is spatially IID with each component
being a zero-mean, unit-variance, stationary and ergodic, circularly-
symmetric, complex Gaussian process of spectral distribution function
F (·). Then, denoting ε2r,t by ε2,

χ({Hk}) ≤ χ
(IID)
Avg (H1) + nR log

1
ε2
. (4.50)

Proof. Follows directly from Corollary 4.7 by noting that, since the
fading process {H−D, k ∈ Z} is spatially IID, ε2r,t does not depend on
(r, t).

Note that χ(IID)
Avg (H1) is unknown for general fading matrices H1. How-

ever, it is known in the case where H1 is rotation commutative. General
and specific upper bounds on χ(IID)

Avg (H1) for the case where the nR×nT

matrix H1 is of the form H1 = D+H̃1 (where D is deterministic and H̃1

is spatially IID with each component of H̃1 being a zero-mean, unit-
variance, circularly-symmetric, complex Gaussian random variable) are
given in [28, Sec. IV-D].

4.5.3 MISO Fading

An upper bound on the fading number of spatially independent MISO
Gaussian channels follows from Corollary 4.7 by recalling that [28,
Cor. 4.28]

χ(IID)(H1) = −1 + log d2
 − Ei

(−d2


)
, (4.51)

where

d = max
‖x̂‖=1

|E[HT

k] x̂|√
Var(HT

kx̂)
. (4.52)
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Corollary 4.9. Let the mean-d, spatially independent, MISO Gaussian
fading channel be such that {H(t) − d(t), k ∈ Z} is a zero-mean, unit-
variance, stationary and ergodic, circularly-symmetric, complex Gaus-
sian process of spectral distribution function Ft(·). Then

χ({Hk}) ≤ −1 + log d2
 − Ei

(−d2


)
+ log

1
ε2min

, (4.53)

where

ε2min = min
1≤t≤nT

exp
(∫ 1/2

−1/2

logF ′
t (λ) dλ

)
. (4.54)

Proof. Follows immediately from Corollary 4.7 and (4.51) by noting
that

max
‖x̂‖=1

log
1∑nT

t=1 |x̂(t)|2 ε2t
= log

1
ε2min

.

For some special cases this upper bound is tight:

Corollary 4.10. Consider a zero-mean, spatially independent, MISO
Gaussian fading channel where the fading process is such that
{H(t), k ∈ Z} is a zero-mean, unit-variance, stationary and ergodic,
circularly-symmetric, complex Gaussian process of spectral distribution
Ft(·). Then

χ({Hk}) = −1 − γ + log
1
ε2min

. (4.55)

Moreover, this fading number can be achieved by transmitting from the
antenna that yields the smallest prediction error, while keeping the other
antennas silent.

Proof. The upper bound follows from Corollary 4.9 by noting that [28,
Eqs. (210)–(213)]

log d2
 − Ei

(−d2


)
= −γ.

To derive a lower on the fading number, we define

t � arg min
1≤t≤nT

exp
(∫ 1/2

−1/2

logF ′
t (λ) dλ

)
.
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By transmitting only from antenna t while keeping the other antennas
silent, we obtain the fading number of a zero-mean, SISO Gaussian
fading channel of spectral distribution function Ft�(·), which is given
by (4.23)

−1 − γ + log
1
ε2t�

.

Corollary 4.11. Consider a mean-d, MISO Gaussian fading channel
where the fading process is such that {Hk − d, k ∈ Z} is spatially
IID with each of its components being a zero-mean, unit-variance, sta-
tionary and ergodic, circularly-symmetric, complex Gaussian process of
spectral distribution function F (·). Then

χ({Hk}) = −1 + log ‖d‖2 − Ei
(−‖d‖2

)
+ log

1
ε2
. (4.56)

Moreover, this fading number is achievable with beam forming, i.e., by
transmitting signals of the form

Xk = d∗Xk,

where the process {Xk, k ∈ Z} takes value in C.

Proof. We first note that if the fading process is of covariance matrix
InT , then d2

 = ‖d‖2. We further note that if {Hk − d, k ∈ Z} is
spatially IID, then we have for any ‖x̂‖ = 1

E
[
(Hk+m − d)Tx̂ x̂†(Hk − d)∗

]
= E[(Hk+m(1) − dTx̂)(Hk(1) − dTx̂)∗]

and the process {HT

kx̂, k ∈ Z} is thus of spectral distribution function
F (·). By transmitting signals of the form d∗Xk we therefore achieve
the fading number of a mean-‖d‖, Gaussian SISO fading channel of
spectral distribution function F (·), which is given by (4.23).

An upper bound on the fading number of spatially independent MISO
fading channels can be found using Corollary 4.7 with nR = 1. The
following corollary generalizes this bound to channels where the fading
is not spatially independent.
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Corollary 4.12. Let the mean-d, MISO Gaussian fading channel be such
that the process {Hk−d, k ∈ Z} is a zero-mean, stationary and ergodic,
circularly-symmetric, complex Gaussian process of covariance matrix K
and of (matrix-valued) spectral distribution function F(·). Then

χAvg({Hk}) ≤ −1 + log d2
 − Ei

(−d2


)
+ log

‖K‖
λmin

, (4.57)

where λmin denotes the smallest eigenvalue of Σ. (Note that the as-
sumption that the fading is regular implies that Σ is nonsingular.)

Proof. Follows directly from Theorem 4.4 by computing the difference
between the RHS of (4.40) and log log SNR in the limit as SNR tends
to infinity.

4.6 The Pre-Log

In this section we extend the results on the capacity pre-log of SISO
fading channels [25, 26] to the multi-antenna case. In particular, we
present upper bounds on the capacity pre-log of spatially independent
MIMO fading channels, as well as the expression for the pre-log of
spatially independent MISO fading channels.

Theorem 4.13. Consider a mean-D, spatially independent, MIMO
Gaussian fading channel where the fading process is such that
{Hk(r, t) − d(r, t), k ∈ Z} is a zero-mean, unit-variance, stationary
and ergodic, circularly-symmetric, complex Gaussian process of spec-
tral distribution function Fr,t(·). Then

ΠPP ≤ max
1≤t≤nT

nR∑
r=1

μ
({
λ : F ′

r,t(λ) = 0
})
. (4.58)

Proof. See [22, Cor. 5.15]. A proof can be found in Appendix B.3.

Corollary 4.14. Consider a mean-D, MIMO Gaussian fading channel
where the fading process is such that {Hk − D, k ∈ Z} is spatially IID
with each component being a zero-mean, unit-variance, stationary and
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ergodic, circularly-symmetric, complex Gaussian process of spectral dis-
tribution function F (·). Then

ΠPP ≤ nR μ ({λ : F ′(λ) = 0}) . (4.59)

Proof. Follows directly from Theorem 4.13 by noting that if the fading
process {Hk − D, k ∈ Z} is spatially IID, then Fr,t(·) does not depend
on (r, t).

For spatially independent MISO Gaussian fading channels, the upper
bound provided in Theorem 4.13 is tight.

Corollary 4.15. Let the mean-d, spatially independent, MISO Gaussian
fading channel be such that {Hk(t)− d(t), k ∈ Z} is a zero-mean, unit-
variance, stationary and ergodic, circularly-symmetric, complex Gaus-
sian process of spectral distribution function Ft(·). Then

ΠPP = max
1≤t≤nT

μ ({λ : F ′
t (λ) = 0}) . (4.60)

Moreover, this pre-log can be achieved by transmitting from the antenna
that achieves the largest pre-log, while keeping the other antennas silent.

Proof. The upper bound follows directly from Theorem 4.13. To derive
a lower bound on the pre-log, we define

t � arg max
1≤t≤nT

μ ({λ : F ′
t (λ) = 0}) .

By transmitting from antenna t while keeping the other antennas
silent, we achieve the pre-log of a Gaussian SISO fading channel of
spectral distribution function Ft�(·), which is given by (4.14)

μ
({
λ : F ′

t�
(λ) = 0

})
.

4.7 The Pre-LogLog

Lapidoth showed that the capacity grows double-logarithmically with
the SNR if, and only if, [26, Sec. VII]

lim
δ↓0

− ∫ 1/2

1/2
log
(
F ′(λ) + δ

)
dλ

log log 1
δ

<∞.
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An expression for the capacity pre-loglog, which is defined as

ΛPP � lim
SNR→∞

C(SNR)
log log SNR

,

was later derived in [22, Cor. 5.11].

Theorem 4.16. Consider a mean-d, SISO Gaussian fading channel
where the fading process is such that {Hk − d, k ∈ Z} is a zero-mean,
unit-variance, stationary and ergodic, circularly-symmetric, complex
Gaussian process of spectral distribution function F (·). Then

ΛPP = 1 + lim
δ↓0

− ∫ 1/2

−1/2
log
(
F ′(λ) + δ

)
dλ

log log 1
δ

. (4.61)

Proof. An upper bound on ΛPP follows by computing the limiting ratio
of the upper bound (4.27) to log log SNR as SNR tends to infinity. A
lower bound on ΛPP follows from Proposition 4.1 by evaluating the
RHS of (4.30) for

α2 = SNR−(1−β) for some 0 < β < 1,

and by computing then the limiting ratio of this lower bound to
log log SNR as SNR tends to infinity. The details are carried out in
Appendix B.4.

4.8 Proofs

This section exhibits the main proofs of this chapter. Proposition 4.1
is proven in Section 4.8.1, Proposition 4.5 is proven in Section 4.8.2,
Note 4.2 is proven in Section 4.8.3, and Theorem 4.6 is proven in Sec-
tion 4.8.4.

4.8.1 Proof of Proposition 4.1

To derive a lower bound on CPP(SNR), we evaluate I(Xn
1 ;Y n

1 ) for
{Xk, k ∈ Z} being a sequence of IID, zero-mean, circularly-symmetric,
complex random variables with log |Xk|2 uniformly distributed over
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[2 log(αA), 2 log A]. To this end we use the chain rule and a Cesàro-
type theorem [5, Thm. 4.2.3] to lower bound

lim
n→∞

1
n
I
(
Xn

1 ;Y n
1

)
= lim

n→∞
1
n

n∑
k=1

I
(
Xk;Y n

1

∣∣ Xk−1
1

)
≥ lim

n→∞
1
n

n∑
k=1

I
(
Xk;Y k

1

∣∣ Xk−1
1

)
≥ lim

k→∞
I
(
Xk;Y k

1

∣∣ Xk−1
1

)
. (4.62)

Let {Wk, k ∈ Z} be a sequence of IID, zero-mean, unit-variance,
circularly-symmetric, complex Gaussian random variables, drawn in-
dependently of {(Xk, Hk, Zk), k ∈ Z}. Using that for our choice of
input distribution |Xk| ≥ αA, we obtain

I
(
Xk;Y k

1

∣∣ Xk−1
1

)
= I

(
Xk;Yk,

{
Y�

X�
− d

}k−1

�=1

∣∣∣∣∣ Xk−1
1

)

= I

(
Xk;Yk,

{
H� +

Z�

X�

}k−1

�=1

∣∣∣∣∣ Xk−1
1

)

= I

(
Xk;Yk,

{
H� +

Z�

|X�|
}k−1

�=1

∣∣∣∣∣ Xk−1
1

)

= I

(
Xk;Yk,

{
H� +

Z�

|X�| + σ

√|X�|2 − (αA)2

|X�|αA
W�

}k−1

�=1

,W k−1
1

∣∣∣∣∣Xk−1
1

)

≥ I

(
Xk;Yk,

{
H� +

Z�

|X�| + σ

√|X�|2 − (αA)2

|X�|αA
W�

}k−1

�=1

∣∣∣∣∣ Xk−1
1

)

= I

(
Xk;Yk,

{
H� +

σ

αA
W�

}k−1

�=1

∣∣∣∣ Xk−1
1

)
= I

(
Xk;Yk

∣∣∣∣ {H� +
σ

αA
W�

}k−1

�=1

)
, (4.63)

where the third step follows because Z� is circularly-symmetric, which
implies that, conditional on X�, the random variable Z�/|X�| has the
same law as Z�/X�; the fifth step follows because reducing the number
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of observables cannot increase mutual information; the sixth step fol-
lows because {Zk, k ∈ Z} and {Wk, k ∈ Z} are both IID and Gaussian,
and because the sum of two Gaussian random variables is itself a Gaus-
sian random variable; and the last step follows because {Xk, k ∈ Z} is
IID and drawn independently of {(Hk,Wk), k ∈ Z}.
We shall express the present fading as

Hk = Hk + H̃k, (4.64)

where

Hk = E

[
Hk

∣∣∣∣ {H� +
σ

αA
W�

}k−1

�=1

]
. (4.65)

We have

I

(
Xk;Yk

∣∣∣∣ {H� +
σ

αA
W�

}k−1

�=1

)
= h

(
HkXk + Zk

∣∣∣∣ {H� +
σ

αA
W�

}k−1

�=1

)
− h

((
Hk + H̃k

)
Xk + Zk

∣∣∣∣ Xk,
{
H� +

σ

αA
W�

}k−1

�=1

)
= h

(
HkXk + Zk

∣∣∣∣ {H� +
σ

αA
W�

}k−1

�=1

)
− h

(
H̃kXk + Zk

∣∣∣∣ Xk,
{
H� +

σ

αA
W�

}k−1

�=1

)
≥ h

(
HkXk + Zk

∣∣∣∣ {H� +
σ

αA
W�

}k−1

�=1

)
− h
(
H̃kXk + Zk

∣∣ Xk

)
, (4.66)

where the second step follows because differential entropy is invariant
under deterministic translation; and the last step follows because con-
ditioning cannot increase entropy.

The second entropy on the RHS of (4.66) can be evaluated using the
scaling property of differential entropy

h
(
H̃kXk + Zk

∣∣ Xk

)
= E

[
log |Xk|2

]
+ h

(
H̃k +

Zk

Xk

∣∣∣∣ Xk

)
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= E
[
log |Xk|2

]
+ log(πe) + E

[
log
(
ε2k(ξ) +

σ2

|Xk|2
)]

≤ E
[
log |Xk|2

]
+ log(πe) + log

(
ε2k(ξ) + ξ

)
= log

(
αA2

)
+ log(πe) + log

(
ε2k(ξ) + ξ

)
, ξ = σ2/(αA)2, (4.67)

where ε2k(ξ) denotes the mean-square error in predicting Hk from
Hk−1 +

√
ξ Wk−1, . . . , H1 +

√
ξ W1 (4.22). Here the second step follows

by noting that, conditional on Xk, the random variable H̃kXk + Zk is
Gaussian, and by evaluating the entropy of a Gaussian random vari-
able; the third step follows by lower bounding |Xk| by αA; and the last
step follows by computing the expected value of a random variable that
is uniformly distributed on [2 log(αA), 2 log A].

The first entropy on the RHS of (4.66) can be lower bounded as

h

(
HkXk + Zk

∣∣∣∣ {H� +
σ

αA
W�

}k−1

�=1

)
≥ h

(
HkXk + Zk

∣∣∣∣ Hk,
{
H� +

σ

αA
W�

}k−1

�=1

)
= h

(
HkXk + Zk

∣∣ Hk

)
, (4.68)

where the first step follows because conditioning cannot increase en-
tropy; and where the second step follows because{

H� +
σ

αA
W�

}k−1

�=1
�−−Hk�−−HkXk + Zk

forms a Markov chain. We lower bound the RHS of (4.68) by applying,
for each given Hk = hk, the entropy power inequality [5, Thm. 16.6.3],
and by averaging then over Hk

h
(
HkXk + Zk

∣∣ Hk

) ≥ EHk

[
log
(
eh(HkXk|Hk=hk) + eh(Zk)

)]
= E

[
log
(
elog |Hk|2+h(Xk) + eh(Zk)

)]
= E

[
log
(
elog |Hk|2+h(Xk) + πeσ2

)]
, (4.69)

where EHk
denotes expectation with respect to Hk. Here the second

step follows from the scaling property of differential entropy and be-
cause Xk is independent of Hk; and the last step follows by evaluating
the entropy of the Gaussian random variable Zk.
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Evaluating the differential entropy h
(
Xk

)
for our choice of input dis-

tribution yields

h
(
Xk

)
= h

(
log |Xk|2

)
+ E

[
log |Xk|2

]
+ log π

= log log
1
α2

+ E
[
log |Xk|2

]
+ log π

= log log
1
α2

+ log
(
αA2

)
+ log π

= log
(

log
(
1/α2

)
αA2π

)
, (4.70)

where the first step follows from the circular symmetry of Xk [28, Lem-
mas 6.15 & 6.16]; and the second step follows by evaluating the ex-
pected value of a random variable that is uniformly distributed over
[2 log(αA), 2 log A].

By applying (4.70) to (4.69), we obtain

E

[
log
(
elog |Hk|2+h(Xk) + πeσ2

)]
= E

[
log
(
elog |Hk|2+log

(
log(1/α2) αA2π

)
+ πeσ2

)]
= E

[
log
(
|Hk|2 log

(
1/α2

)
αA2π + πeσ2

)]
= log

(
log
(
1/α2

)
αA2π

)
+ E

[
log
(
|Hk|2 +

eσ2

log
(
1/α2

)
αA2

)]
. (4.71)

By noting that |Hk|2 is stochastically larger than |Hk − d|2 [28,
Lemma 6.2b)], and by noting that, for every α > 0, the function
f(x) = log(α+ x), x > 0 is monotonically increasing, the second term
on the RHS of (4.71) can be lower bounded by

E

[
log
(
|Hk|2 +

eσ2

log
(

1
α2

)
αA2

)]

≥ E

[
log
(
|Hk − d|2 +

eσ2

log
(

1
α2

)
αA2

)]
; (4.72)

see [28, Sec. VI-B] on stochastic ordering.
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We note that |Hk − d|2 has an exponential distribution of mean 1, so
the expectation on the RHS of (4.72) can be evaluated as [16, p. 568,
Sec. 4.337]

E

[
log
(
|Hk − d|2 +

eσ2

log
(
1/α2

)
αA2

)]
= log

eσ2

log
(
1/α2

)
αA2

− exp
(

eσ2

log
(
1/α2

)
αA2

)
Ei

(
− eσ2

log
(
1/α2

)
αA2

)
. (4.73)

Combining (4.68)–(4.73) yields

h

(
HkXk + Zk

∣∣∣∣ {H� +
σ

αA2W�

}k−1

�=1

)
≥ log

(
log
(
1/α2

)
αA2π

)
+ log

eσ2

log
(
1/α2

)
αA2

− exp
(

eσ2

log
(
1/α2

)
αA2

)
Ei

(
− eσ2

log
(
1/α2

)
αA2

)

= log
(
πeσ2

)− exp
(

eσ2

log
(
1/α2

)
αA2

)
Ei

(
− eσ2

log
(
1/α2

)
αA2

)
, (4.74)

which in turn, along with (4.66) and (4.67), yields

I

(
Xk;Yk

∣∣∣∣ {H� +
σ

αA
W�

}k−1

�=1

)
≥ log

(
πeσ2

)− exp
(

eσ2

log
(
1/α2

)
αA2

)
Ei

(
− eσ2

log
(
1/α2

)
αA2

)
− log

(
αA2

)− log(πe) − log
(
ε2k(ξ) + ξ

)
= log

1
ε2k(ξ) + ξ

+ log
1
α

+ log
1

SNR

− exp
(

e

log
(
1/α2

)
αSNR

)
Ei

(
− e

log
(
1/α2

)
αSNR

)
, (4.75)

where ξ = 1
α2 SNR .
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We finally obtain from (4.4), (4.62), and (4.75)

CPP(SNR)

≥ lim
n→∞

1
n
I
(
Xn

1 ;Y n
1

)
≥ lim

k→∞
I

(
Xk;Yk

∣∣∣∣ {H� +
σ

αA
W�

}k−1

�=1

)
≥ lim

k→∞
log

1
ε2k(ξ) + ξ

+ log
1
α

+ log
1

SNR

− exp
(

e

log
(
1/α2

)
αSNR

)
Ei

(
− e

log
(
1/α2

)
αSNR

)
= log

1
ε2(ξ) + ξ

+ log
1
α

+ log
1

SNR

− exp
(

e

log
(
1/α2

)
αSNR

)
Ei

(
− e

log
(
1/α2

)
αSNR

)
, (4.76)

where ξ = 1
α2 SNR . Here the last step follows by extending (4.17) to the

noisy prediction problem.

Proposition 4.1 follows now by maximizing the RHS of (4.76) over α.

4.8.2 Proof of Proposition 4.5

In order to derive a lower bound on the fading number, we consider
channel inputs of the form

Xk = Vk Rk, k ∈ Z,

where {Vk, k ∈ Z} is stationary ergodic and satisfies (4.41) and
(4.42); where {Rk, k ∈ Z} is a sequence of IID, zero-mean, circularly-
symmetric, complex random variables with log |Rk|2 being uniformly
distributed on

[
log r2min, log

(
P/E

[‖V1‖2
])]

, i.e,

log |Rk|2 ∼ U
([

log r2min, log
P

E[‖V1‖2]

])
, k ∈ Z (4.77)

for some positive and real rmin; and where {Vk, k ∈ Z} and
{Rk, k ∈ Z} are independent of each other. Note that with this choice
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{Xk, k ∈ Z} satisfies the average-power constraint (4.5). If (4.44)
holds, then {Xk, k ∈ Z} can be chosen such that the peak-power con-
straint is satisfied by choosing log |Rk|2 to be uniformly distributed on[
log r2min, 2 log

(
A/Υ

)]
, i.e,

log |Rk|2 ∼ U
([

log r2min, log
A2

Υ2

])
, k ∈ Z.

The rest of the proof does not depend on whether an average-power or
a peak-power constraint is imposed on the channels inputs.

Recall that the fading number is defined as (4.11)

χ({Hk}) = lim
SNR→∞

{
C(SNR) − log log SNR

}
. (4.78)

To lower bound the fading number, we derive a lower bound on C(SNR)
by evaluating 1

nI(X
n
1 ;Yn

1 ) for {Xk, k ∈ Z} being distributed as de-
scribed above. We have

1
n
I
(
Xn

1 ;Yn
1 ) ≥ 1

n
I
(
Rn

1 ,V
n
1 ;Yn

1

)
=

1
n
I
(
Rn
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1

)
+

1
n
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(
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1 ;Yn
1

∣∣ Rn
1

)
=

1
n
I
(
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1 ; {H�V�R� + Z�}n
�=1

)
+

1
n
I
(
Vn

1 ; {H�V�R� + Z�}n
�=1

∣∣ Rn
1

)
, (4.79)

where the first step follows from the data processing inequality [5,
Thm. 2.8.1]; and where the second step follows from the chain rule
for mutual information.

We continue by lower bounding the second term on the RHS of (4.79)

1
n
I
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Vn
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)
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)
=

1
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1

)
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=
1
n
I

(
Vn

1 ;

{
H�V� +

Z�

|R�| + σ

√|R�|2 − r2min

|R�| rmin
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)
, (4.80)

where {Wk, k ∈ Z} is a sequence of IID, zero-mean, unit-variance,
circularly-symmetric, complex Gaussian nR-variate vectors, drawn in-
dependently of {(Vk,Hk,Zk), k ∈ Z}. Here the first step follows
by dividing Yk by Rk; the second step follows because {Zk, k ∈ Z}
is IID and circularly-symmetric, which implies that, conditional on
Rn

1 , the sequence Z1/R1, . . . ,Zn/Rn has the same joint law as
Z1/|R1|, . . . ,Zn/|Rn|; the third step follows by adding the noise W�,
which is known and does therefore not change the mutual information;
the fourth step follows because reducing observations cannot increase
mutual information; and the last step follows because {Zk, k ∈ Z}
and {Wk, k ∈ Z} are both IID Gaussian, and because the sum of two
Gaussian random vectors is again a Gaussian random vector.

We fix some positive integer κ. The chain rule for mutual information
yields

1
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− 1
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where the second step follows from the chain rule for mutual informa-
tion; the third step follows from the nonnegativity of mutual informa-
tion; the fourth step follows by reducing the number of observables; the
fifth step follows again from the chain rule of mutual information; and
the last step follows from the stationarity of the channel.

Writing mutual information in terms of differential entropies, we obtain
for the first term on the RHS of (4.81)(
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. (4.82)

Here the second step follows because conditioning cannot increase dif-
ferential entropy; and the third step follows from the invariance of
differential entropy under deterministic translation.

We continue by lower bounding the first mutual information on the
RHS of (4.82). We have
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)
≥ 1
κ

κ∑
k=1

I
(
Vk; {H�V�}κ

�=1,V
k−1
1

)− I
(
Vκ+1;Vκ

1

)
=

1
κ

κ∑
k=1

(
I
(
Vk; {H�V�}κ

�=1

∣∣ Vk−1
1

)
+ I
(
Vk;Vk−1

1

))− I
(
Vκ+1;Vκ

1

)
=

1
κ
I
(
Vκ

1 ; {H�V�}κ
�=1

)
+

1
κ

κ∑
k=1

I
(
Vk;Vk−1

1

)− I
(
Vκ+1;Vκ

1

)
, (4.83)

where the first step follows from the chain rule for mutual information;
the third step follows from the stationarity of the channel; the fourth
step follows by reducing the number of observables; and the fifth and
the sixth step follow again from the chain rule for mutual information.
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We next show that the second term on the RHS of (4.82) tends to zero
as rmin tends to infinity, i.e.,

lim
rmin→∞ I

({
H�V� +

Z�

rmin

}2κ+1

�=1

;Z2κ+1
1

∣∣∣∣∣ Vκ+1
1

)
= 0. (4.84)

To this end, we first note that

I

({
H�V� +

Z�

rmin

}2κ+1

�=1

;Z2κ+1
1

∣∣∣∣∣ Vκ+1
1

)
≥ 0. (4.85)

We further have

I

({
H�V� +

Z�

rmin

}2κ+1

�=1

;Z2κ+1
1

∣∣∣∣∣ Vκ+1
1

)

= I

({
H�V� +

Z�

rmin

}2κ+1

�=1

,Vk+1
1 ;Z2κ+1

1

)

≤ I

({
H�V� +

Z�

rmin

}2κ+1

�=1

,V2κ+1
1 ;Z2κ+1

1

)

= I

({
H�V� +

Z�

rmin

}2κ+1

�=1

;Z2κ+1
1

∣∣∣∣∣ V2κ+1
1

)

= I

({
H�V̂� +

Z�

rmin ‖V�‖
}2κ+1

�=1

;Z2κ+1
1

∣∣∣∣∣ V2κ+1
1

)
, (4.86)

where V̂� = V�/‖V�‖. Here the first step follows because Z2κ+1
1 and

Vκ+1
1 are independent; the second step follows by adding observables;

the third step follows because Z2κ+1
1 and V2κ+1

1 are independent; and
the last step follows by dividing H�V� + Z�/rmin by ‖V�‖. (If we eval-
uate the mutual information in the third step of (4.86) for a particular
v2κ+1

1 , and if v� = 0 for at least one � = 1, . . . , 2κ+1, then this mutual
information is infinite. However, by (4.42), this event has probability
zero and does therefore not influence the mutual information when av-
eraged over V2κ+1

1 . Without loss of generality, we can thus assume
that v� �= 0, � = 1, . . . , 2κ+1, which also ensures that we do not divide
by zero in the last step of (4.86).)

To show that the RHS of (4.86) tends to zero as SNR tends to infinity,
we need to following lemma.
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Lemma 4.17. Let T be a random nR-dimensional vector that satisfies

E
[‖T‖2

]
<∞ and h(T) > −∞. (4.87)

Let Z be a zero-mean, circularly-symmetric, complex Gaussian vector
of dimension nR and of covariance matrix InR , drawn independently of
T. Then

lim
σ↓0

I
(
T + σ Z;Z

)
= 0. (4.88)

Proof. See [28, Lemma 6.11a)].

We apply Lemma 4.17 to show that for a given v2κ+1
1 (v� �= 0,

� = 1, . . . , 2κ+ 1)

lim
rmin→∞ I

({
H�V̂� +

Z�

rmin ‖V�‖
}2κ+1

�=1

;Z2κ+1
1

∣∣∣∣∣ V2κ+1
1 = v2κ+1

1

)
= 0.

(4.89)

To this end, we have to demonstrate that the vector

T =

⎛⎜⎝ H1v̂1

...
H2κ+1v̂2κ+1

⎞⎟⎠
satisfies (4.87). Its second moment is upper bounded by

E
[‖T‖2

]
=

2κ+1∑
�=1

E
[‖H�v̂�‖2

] ≤ 2κ+1∑
�=1

E
[‖H�‖2

F

] ‖v̂�‖2︸ ︷︷ ︸
=1

<∞, (4.90)

where the second step follows from the Cauchy-Schwarz inequality; and
the last step follows from (4.2). To show that T is of finite differential



86 4.8. Proofs

entropy, we use the chain rule for mutual information

h(T) = h(H1v̂1, . . . ,H2κ+1v̂2κ+1)

=
2κ+1∑
k=1

h
(
Hkv̂k

∣∣ {H�v̂�}k−1
�=1

)
≥

2κ+1∑
k=1

h
(
Hkv̂k

∣∣ {H�v̂�}k−1
�=1 ,H

k−1
1

)
=

2κ+1∑
k=1

h
(
Hkv̂k

∣∣ H
k−1
1

)
, (4.91)

where the third step follows because conditioning cannot increase en-
tropy; and the last step follows because

{H�v̂�}k−1
�=1 �−−H

k−1
1 �−−Hkv̂k

forms a Markov chain. The claim follows then by noting that

h
(
Hk

∣∣ H
k−1
1

) ≥ h({Hk}) >∞,

and from a conditional version of Lemma 6.6 in [28]. Here the first in-
equality follows from [5, Thms. 4.2.1 & 4.2.2], and the second inequality
follows because, by the propositions assumption, the fading is regular.

In order to show that (4.89) also holds when averaged over V̂2κ+1
1 , we

shall use the Monotone Convergence Theorem [38, Thm. 1.26]. To this
end, we show that for every v2κ+1

1 (v� �= 0, � = 1, . . . , 2κ + 1) the
mutual information

I

({
H�v̂� +

Z�

rmin ‖v�‖
}2κ+1

�=1

;Z2κ+1
1

)
is monotonically nonincreasing in rmin. Indeed, we have for every rmin

and α > 0

I

({
H�v̂� +

Z�

(rmin + α) ‖v�‖
}2κ+1

�=1

;Z2κ+1
1

)

= h

({
H�v̂� +

Z�

(rmin + α) ‖v�‖
}2κ+1

�=1

)
− h
({

H�v̂�

}2κ+1

�=1

)
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= h

({
H�v̂� +

Z�

(rmin + α) ‖v�‖ + ςW�

}2κ+1

�=1

∣∣∣∣∣W2κ+1
1

)
− h
({

H�v̂�

}2κ+1

�=1

)
≤ h

({
H�v̂� +

Z�

(rmin + α) ‖v�‖ + ςW�

}2κ+1

�=1

)
− h
({

H�v̂�

}2κ+1

�=1

)
= h

({
H�v̂� +

Z�

rmin ‖v�‖
}2κ+1

�=1

)
− h
({

H�v̂�

}2κ+1

�=1

)
= I

({
H�v̂� +

Z�

rmin ‖v�‖
}2κ+1

�=1

;Z2κ+1
1

)
, (4.92)

where

ς = σ

√
(rmin + α)2 − r2min

rmin(rmin + α) ‖v�‖
and where {Wk, k ∈ Z} is as in (4.80). Here the second step follows
because differential entropy is invariant under deterministic translation;
the third step follows because conditioning cannot increase entropy; and
the fourth step follows because {Zk, k ∈ Z} and {Wk, k ∈ Z} are both
IID Gaussian, and because the sum of two Gaussian vectors is again a
Gaussian vector.

Equations (4.85)–(4.92) combine to prove (4.84). We return to the
analysis of the fading number (4.78). We summarize the main steps of
the proof to obtain the final lower bound

χ({Hk})
� lim

SNR→∞
{
C(SNR) − log log SNR

}
≥ lim

SNR→∞

{
lim

n→∞
1
n
I
(
Rn

1 ; {H�V�R� + Z�}n
�=1

)− log log SNR
}

+ lim
SNR→∞

lim
n→∞

1
n
I
(
Vn

1 ;Yn
1

∣∣ Rn
1

)
= χ({HkVk}) + lim

SNR→∞
lim

n→∞
1
n
I
(
Vn

1 ;Yn
1

∣∣ Rn
1

)
≥ χ({HkVk})

+ lim
n→∞

(
1 − 2κ

n

)(
I
(
Vκ+1;

{
H�V�

}2κ+1

�=1

∣∣∣ Vκ
1

)
+ I
(
Vκ+1;Vκ

1

))
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− lim
n→∞

1
n

n∑
k=1

I
(
Vk;Vk−1

1

)
− lim

n→∞

(
1 − 2κ

n

)
I

({
H�V� +

Z�

rmin

}2κ+1

�=1

;Z2κ+1
1

∣∣∣∣∣ Vκ+1
1

)
= χ({HkVk}) + I

(
Vκ+1;

{
H�V�

}2κ+1

�=1

)
+ I
(
Vκ+1;Vκ

1

)
− lim

n→∞
1
n

n∑
k=1

I
(
Vk;Vk−1

1

)
− I

({
H�V� +

Z�

rmin

}2κ+1

�=1

;Z2κ+1
1

∣∣∣∣∣ Vκ+1
1

)

≥ χ({HkVk}) +
1
κ
I
(
Vκ

1 ; {H�V�}κ
�=1

)
+

1
κ

κ∑
k=1

I
(
Vk;Vk−1

1

)
− I
(
Vκ+1;Vκ

1

)
+ I
(
Vκ+1;Vκ

1

)− lim
n→∞

1
n

n∑
k=1

I
(
Vk;Vk−1

1

)
− I

({
H�V� +

Z�

rmin

}2κ+1

�=1

;Z2κ+1
1

∣∣∣∣∣ Vκ+1
1

)
= χ({HkVk}) +

1
κ
I
(
Vκ

1 ; {H�V�}κ
�=1

)
+

1
κ

κ∑
k=1

I
(
Vk;Vk−1

1

)− lim
n→∞

1
n

n∑
k=1

I
(
Vk;Vk−1

1

)
− I

({
H�V� +

Z�

rmin

}2κ+1

�=1

;Z2κ+1
1

∣∣∣∣∣ Vκ+1
1

)
, (4.93)

where the second step follows from (4.79); the third step by noting
that the distribution of Rn

1 achieves the fading number of the SIMO
fading channel with fading {HkVk, k ∈ Z}; the fourth step follows from
(4.80)–(4.82) and by noting that the mutual informations on the RHS
of (4.80)–(4.82) do not depend on the SNR; and the sixth step follows
from (4.83). (It follows from (4.41) and Cesáro’s mean [5, Thm. 4.2.3]
that the limit of 1

n

∑n
k=1 I

(
Vk;Vk−1

1

)
exists and is finite.)

Proposition 4.5 follows now from (4.84) by letting first rmin tend to
infinity while holding κ fixed, and by letting then κ tend to infinity.
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4.8.3 Proof of Note 4.2

The fading number of SIMO fading channels with memory was com-
puted by Lapidoth and Moser [29]. It is given by

χ({Hk}) = hλ

(
Ĥ0 e

iΦ0
)− h(H0) + nRE

[
log ‖H0‖2

]− log 2

+ I
(
H0;H−1

−∞
)− I

(
Ĥ0 e

iΦ0 ;
{
Ĥ� e

iΦ�
}−1

�=−∞
)
, (4.94)

where Ĥ� = H�

‖H�‖ ; where {Φk, k ∈ Z} is a sequence of IID random
variables with Φk uniformly distributed over the interval (−π, π] and
drawn independently of {Hk, k ∈ Z}; and where hλ(·) is defined in [28,
Eq. (323)].

In the following we show that

χ({HkVk}) + lim
n→∞

1
n
I
(
V n

1 ; {H�V�}n
�=1

)
(4.95)

yields the same result. Here {Vk, k ∈ Z} is any stationary and ergodic
process that is independent of {Hk, k ∈ Z} and that satisfies (4.41)
and (4.42).

We start by using the chain rule for mutual information to evaluate the
second term in (4.95) by

1
n
I
(
V n

1 ; {H�V�}n
�=1

)
=

1
n

n∑
k=1

I
(
V n

1 ;HkVk

∣∣ {H�V�}k−1
�=1

)
=

1
n

n∑
k=1

(
I
(
V n

1 , {H�V�}k−1
�=1 ;HkVk

)− I
(
HkVk; {H�V�}k−1

�=1

))
=

1
n

n∑
k=1

(
I
(
V k

1 , {H�V�}k−1
�=1 ;HkVk

)− I
(
HkVk; {H�V�}k−1

�=1

))
=

1
n

n∑
k=1

(
I
(
V k

1 , {H�V�}k−1
�=1 ,H

k−1
1 ;HkVk

)− I
(
HkVk; {H�V�}k−1

�=1

))
=

1
n

n∑
k=1

(
I
(
Hk−1

1 , Vk;HkVk

)− I
(
HkVk; {H�V�}k−1

�=1

))



90 4.8. Proofs

=
1
n

n∑
k=1

(
I
(
Vk;HkVk

)
+ I
(
Hk−1

1 ;HkVk

∣∣ Vk

)
− I
(
HkVk; {H�V�}k−1

�=1

))
=

1
n

n∑
k=1

(
I
(
Vk;HkVk

)
+ I
(
Hk−1

1 ;Hk

)− I
(
HkVk; {H�V�}k−1

�=1

))
, (4.96)

where the third step follows because the channel has no feedback in
which case

V n
k+1�−−({H�V�}k−1

�−1 , V
k
1

)
�−−HkVk

forms a Markov chain; the fourth step follows by dividing H�V� by V�;
the fifth step follows because({H�V�}k−1

�=1 , V
k−1
1

)
�−−(Hk−1

1 , Vk

)
�−−HkVk

forms a Markov chain; and the last step follows by dividing HkVk by
Vk.

Note that {Hk, k ∈ Z} (by (4.2) and (4.3)) and {HkVk, k ∈ Z} are
finite-variance, stationary random processes of finite entropy rate, so
the limit

lim
k→∞

{
I
(
Vk;HkVk

)
+ I
(
Hk−1

1 ;Hk

)− I
(
HkVk; {H�V�}k−1

�=1

)}
(4.97)

exists and is finite. Indeed, {HkVk, k ∈ Z} is stationary because any
(time-invariant) function of stationary processes is again a stationary
process. Furthermore, it is of finite variance because

E
[‖HkVk‖2

]
= E

[‖Hk‖2
]
E
[|Vk|2

]
,

which is, by (4.2) and (4.42), finite; and it is of finite entropy rate
because

lim
n→∞

1
n
h
(
H1V1, . . . ,HnVn

)
= lim

n→∞h
(
HnVn

∣∣ {H�V�}n−1
�=1

)
≥ lim

n→∞h
(
HnVn

∣∣ Hn−1
1 , Vn

)
= nRE

[
log |V1|2

]
+ lim

n→∞ h
(
Hn

∣∣Hn−1
1

)
,

which is, by (4.42) and (4.3), finite. Here the first step follows because
{HkVk, k ∈ Z} is stationary [5, Thm. 4.2.1]; the second step follows
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by conditioning the entropy additionally on
(
Hn−1

1 , Vn

)
, and by noting

that
{H�V�}n−1

�=1 �−−(Hn−1
1 , Vn

)
�−−HnVn

forms a Markov chain; and the last step follows from the behavior of dif-
ferential entropy under scaling and from the stationarity of {Vk, k ∈ Z}.
Since the limit in (4.97) exists, we can make use of Cesáro’s mean [5,
Thm. 4.2.3] to obtain

lim
n→∞

1
n
I
(
V n

1 ; {H�V�}n
�=1

)
= lim

n→∞
1
n

n∑
k=1

(
I
(
Vk;HkVk

)
+ I
(
Hk−1

1 ;Hk

)− I
(
HkVk;H�V�}k−1

�=1

))
= I
(
V0;H0V0

)
+ I
(
H−1

−∞;H0

)− I
(
H0V0; {H�V�}−1

�=−∞
)
. (4.98)

The first term in (4.95) can be computed from (4.94)

χ({HkVk}) = hλ

(
Ĥ0V̂0 e

iΦ0
)− h

(
H0V0

)
+ nRE

[
log ‖H0V0‖2

]
− log 2 + I

(
H0V0; {H�V�}−1

�=−∞
)

− I
(
Ĥ0V̂0 e

iΦ0 ; {Ĥ�V̂� e
iΦ�}−1

�=−∞
)
, (4.99)

where V̂� = V�/|V�|. Combining (4.98) and (4.99) yields

χ({HkVk}) + lim
n→∞

1
n
I
(
V n

1 ; {HkVk}n
k=1

)
= hλ

(
Ĥ0V̂0 e

iΦ0
)− h(H0V0) + nRE

[
log ‖H0V0‖2

]− log 2

+ I
(
H0V0; {H�V�}−1

�=−∞
)− I

(
Ĥ0V̂0 e

iΦ0 ; {Ĥ�V̂� e
iΦ�}−1

�=−∞
)

+ I
(
V0;H0V0

)
+ I
(
H−1

−∞;H0

)− I
(
H0V0; {H�V�}−1

�=−∞
)

= hλ

(
Ĥ0V̂0 e

iΦ0
)− h

(
H0V0

)
+ nRE

[
log ‖H0V0‖2

]− log 2

− I
(
Ĥ0V̂0 e

iΦ0 ; {Ĥ�V̂� e
iΦ�}−1

�=−∞
)

+ I
(
V0;H0V0

)
+ I
(
H−1

−∞;H0

)
= hλ

(
Ĥ0V̂0 e

iΦ0
)− h

(
H0V0

)
+ nRE

[
log ‖H0V0‖2

]− log 2

−I(Ĥ0V̂0 e
iΦ0 ; {Ĥ�V̂� e

iΦ�}−1
�=−∞

)
+ h
(
H0V0

)− h
(
H0V0

∣∣ V0

)
+ I
(
H−1

−∞;H0

)
= hλ

(
Ĥ0V̂0 e

iΦ0
)

+ nRE
[
log ‖H0V0‖2

]− log 2

− I
(
Ĥ0V̂0 e

iΦ0 ; {Ĥ�V̂� e
iΦ�}−1

�=−∞
)− h

(
H0V0

∣∣ V0

)
+ I
(
H−1

−∞;H0

)
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= hλ

(
Ĥ0V̂0 e

iΦ0
)

+ nRE
[
log ‖H0‖2

]
+ nRE

[
log |V0|2

]− log 2

− I
(
Ĥ0V̂0 e

iΦ0 ; {Ĥ�V̂� e
iΦ�}−1

�=−∞
)− h

(
H0

)− nRE
[
log |V0|2

]
+ I
(
H−1

−∞;H0

)
= hλ

(
Ĥ0V̂0 e

iΦ0
)− h

(
H0

)
+nRE

[
log ‖H0‖2

]− log 2

+ I
(
H−1

−∞;H0

)−I(Ĥ0V̂0 e
iΦ0 ; {Ĥ�V̂� e

iΦ�}−1
�=−∞

)
= hλ

(
Ĥ0 e

iΦ0
)− h

(
H0

)
+nRE

[
log ‖H0‖2

]− log 2

+ I
(
H−1

−∞;H0

)−I(Ĥ0 e
iΦ0 ; {Ĥ� e

iΦ�}−1
�=−∞

)
= χ({Hk}), (4.100)

where the fifth step follows from the behavior of differential entropy
under scaling; and where the seventh step follows because {Φk, k ∈ Z}
is a sequence of IID random variables that are uniformly distributed
over the interval (π, π], drawn independently of {V̂k, k ∈ Z}, which
implies that {V̂k e

iΦk , k ∈ Z} has the same law as { eiΦk , k ∈ Z}.
This concludes the proof of Note 4.2.

4.8.4 Proof of Theorem 4.6

Without loss of generality, we assume that nmin = nR = nT. (When
nR > nT, we can ignore nR −nT receive antennas, and when nT > nR,
we can transmit only from nR transmit antennas. This yields in both
cases a lower bound.)

To derive the lower bound (4.48), we use the general lower bound on
the fading number (4.43), namely

χPP({Hk}) ≥ χ({HkVk}) + lim
n→∞

1
n
I
(
Vn

1 ; {H�V�}n
�=1

)
, (4.101)

where {Vk, k ∈ Z} is a stationary ergodic process that is independent
of {Hk, k ∈ Z}, and that satisfies

lim
k→∞

I
(
Vk;Vk−1

1

)
<∞, (4.102)

E
[‖Vk‖2

]
<∞ and E

[
log ‖Vk‖2

]
> −∞, (4.103)

and
Pr(‖Vk‖ > Υ) = 0, for some Υ > 0. (4.104)
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The assumption (4.104) ensures that the peak-power constraint is sat-
isfied. (The limit in (4.103) exists because {Vk, k ∈ Z} is stationary.)

We shall evaluate the RHS of (4.101) for {Vk, k ∈ Z} being a sequence
of IID random vectors satisfying (4.103) and (4.104). (This choice
certainly satisfies (4.102) because I

(
Vk;Vk−1

1

)
= 0, k ∈ N.)

We first lower bound χ({HkVk}). An exact expression for the fading
number of SIMO fading with memory can be found in [29], but this
expression is not easy to evaluate. We therefore lower bound it by
considering a linear combining at the receiver, and by ignoring the
memory in {HkVk, k ∈ Z}, i.e.,

χ({HkVk}) ≥ χ(IID)(αT
H1V1), α ∈ C

nT deterministic. (4.105)

We note that the fading number for IID SISO fading is given by [28,
Thm. 4.16]

χ(H1) = log π + E
[
log |H1|2

]− h(H1). (4.106)

We thus have

χ({HkVk})
≥ log π + E

[
log
∣∣αT

H1V1

∣∣2]− h
(
αT

H1V1

)
≥ log π + E

[
log
∣∣αT

H1V1

∣∣2]− log
(
πeE

[∣∣αT
H1V1

∣∣2]), (4.107)

where the second step follows from the entropy maximizing property
of Gaussian random variables. Using that Hk is spatially IID, it fol-
lows that, conditional on Vk = vk, the random variable αT

Hkvk is a
zero-mean, circularly-symmetric, complex Gaussian random variable of
variance ‖α‖2 ‖vk‖2. We thus have

E
[∣∣αT

H1V1

∣∣2] = ‖α‖2 E
[‖V1‖2

]
and

E
[
log
∣∣αT

H1V1

∣∣2] = E
[
E
[
log
∣∣αT

H1V1

∣∣2 ∣∣∣ V1 = v1

]]
= E

[
log
(‖α‖2 ‖V1‖2

)]− γ,

where the second step follows from [16, p. 567, Sec. 4.331]. The fading
number χ({HkVk}) is thus lower bounded by

χ({HkVk}) ≥ E
[
log ‖V1‖2

]− log E
[‖V1‖2

]− γ − 1. (4.108)
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It follows from (4.103) that the RHS of (4.108) is finite. Note that it
only depends on the statistics of V1 and not on the memory of the
fading process.

We turn now to the second term on the RHS of (4.101). We use the
chain rule for mutual information to obtain

1
n
I
(
Vn

1 ; {H�V�}n
�=1

)
=

1
n

n∑
k=1

I
(
Vk; {H�V�}n

�=1

∣∣ Vk−1
1

)
≥ 1
n

n∑
k=1

I
(
Vk; {H�V�}k

�=1

∣∣ Vk−1
1

)
=

1
n

n∑
k=1

I
(
Vk; {H�V�}k

�=1,V
k−1
1

)
, (4.109)

where the last step follows because {Vk, k ∈ Z} is IID. Using a Cesáro-
type theorem, we obtain

lim
n→∞

1
n
I
(
Vn

1 ; {H�V�}n
�=1

)
≥ lim

k→∞
I
(
Vk; {H�V�}k

�=1,V
k−1
1

)
≥ lim

k→∞
I
(
Vk; {H�V�}k

�=k−nmin−2,V
k−1
k−nmin−2

)
= I
(
V0; {H�V�}0

�=−nmin−2,V
−1
−nmin−2

)
, (4.110)

where the second step follows by reducing the number of observables,
and where the last step follows because the processes {Vk, k ∈ Z} and
{Hk, k ∈ Z} are stationary.

Since Gaussian random variables are comparably easy to handle, we
wish to analyze the RHS of (4.110) for V−nmin−2, . . . ,V0 being a se-
quence of IID, zero-mean, circularly-symmetric, complex Gaussian vec-
tors of covariance matrix Inmin . Unfortunately, Gaussian vectors do not
satisfy the boundedness condition (4.104), and we have to dig into our
bag of mathematical tricks to sidestep this problem: instead of Gaus-
sian vectors we shall consider vectors of a truncated Gaussian distri-
bution, whose density is a normalized version of the Gaussian density
for ‖vk‖ ≤ Υ, and whose density is zero for ‖vk‖ > Υ. We then show
that, for sufficiently large Υ, the fading number that can be achieved
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by vectors of a truncated Gaussian law cannot be much smaller than
the fading number that can be achieved by vectors of a Gaussian law.
In other words, by evaluating the RHS of (4.110) for Gaussian vec-
tors, we obtain a valid lower bound on the fading number, even though
condition (4.104) is not satisfied.

In the following we make the above argument rigorous. Note that con-
dition (4.104) is only necessary to ensure that the channel inputs satisfy
the peak-power constraint. So those readers who are only interested in
the fading number under an average-power constraint might want to
skip this part and continue with Equation (4.119).

Let V−nmin−2, . . . ,V0 be a sequence of IID complex random vectors of
a truncated zero-mean, circularly-symmetric, complex Gaussian distri-
bution of covariance matrix Inmin , whose density is given by

fVk
(vk) =

exp(−‖vk‖2)
πnmin ζ(Υ)

I {‖vk‖ ≤ Υ} , vk ∈ C
nmin (4.111)

for some Υ > 0, where

ζ(Υ) =
∫
‖ξ‖≤Υ

1
πnmin

exp
(−‖ξ‖2

)
dξ.

The random vectors V−nmin−2, . . . ,V0 satisfy (4.104). In the fol-
lowing we demonstrate that they also satisfy (4.103). This is a di-
rect consequence of Lemma 4.18 ahead. Lemma 4.19 shows then
that, for sufficiently large Υ, the RHS of (4.110) evaluated for V�,
� = −nmin − 2, . . . , 0 being of the truncated Gaussian distribution
(4.111) cannot be much smaller than the same term evaluated for V�,
� = −nmin − 2, . . . , 0 being of a zero-mean, circularly-symmetric, com-
plex Gaussian distribution of covariance matrix Inmin .

Lemma 4.18. Let V be distributed according to the truncated Gaus-
sian distribution given in (4.111), and let U be distributed according
to a nmin-variate, zero-mean, circularly-symmetric, complex Gaussian
distribution of covariance matrix Inmin . Then

lim
Υ→∞

E
[
log ‖V‖2

]
= E

[
log ‖U‖2

]
(4.112)

and
lim

Υ→∞
E
[‖V‖2

]
= E

[‖U‖2
]
. (4.113)
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Proof. We first note that

lim
Υ→∞

ζ(Υ) = lim
Υ→∞

∫
‖ξ‖≤Υ

1
πnmin

exp
(−‖ξ‖2

)
dξ = 1, (4.114)

which follows from the Monotone Convergence Theorem [38,
Thm. 1.26]. To prove (4.112), i.e.,

lim
Υ→∞

1
πnminζ(Υ)

∫
‖v‖≤Υ

exp
(−‖v‖2

)
log ‖v‖2 dv

=
∫

exp
(−‖v‖2

)
log ‖v‖2 dv,

we further note that, in view of (4.114), it suffices to show that

lim
Υ→∞

∫
‖v‖≤Υ

exp
(−‖v‖2

)
log ‖v‖2 dv =

∫
exp
(−‖v‖2

)
log ‖v‖2 dv.

But this follows from

lim
Υ→∞

∫
‖v‖≤Υ

exp
(−‖v‖2

)
log ‖v‖2 dv

=
∫
‖v‖<1

exp
(−‖v‖2

)
log ‖v‖2 dv

+ lim
Υ→∞

∫
1≤‖v‖≤Υ

exp
(−‖v‖2

)
log ‖v‖2 dv

=
∫
‖v‖<1

exp
(−‖v‖2

)
log ‖v‖2 dv +

∫
‖v‖≥1

exp
(−‖v‖2

)
log ‖v‖2 dv

=
∫

exp
(−‖v‖2

)
log ‖v‖2 dv,

where the second step follows from the Monotone Conver-
gence Theorem. (Note that

∫
‖v‖<1

exp
(−‖v‖2

)
log ‖v‖2 dv and∫

‖v‖≥1
exp
(−‖v‖2

)
log ‖v‖2 dv are both finite.)

To prove (4.113), i.e.,

lim
Υ→∞

1
πnmin ζ(Υ)

∫
‖v‖≤Υ

‖v‖2 exp
(−‖v‖2

)
dv

=
1

πnmin

∫
‖v‖2 exp

(−‖v‖2
)
dv,
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it suffices, by (4.114), to show that

lim
Υ→∞

∫
‖v‖≤Υ

‖v‖2 exp
(−‖v‖2

)
dv =

∫
‖v‖2 exp

(−‖v‖2
)
dv. (4.115)

But this follows again from the Monotone Convergence Theorem.

Thus, since a circularly-symmetric, complex Gaussian vector of zero-
mean and covariance matrix Inmin satisfies condition (4.103), it follows
from Lemma 4.18 that, for sufficiently large Υ, a vector that is dis-
tributed according to the truncated Gaussian density given in (4.111)
satisfies (4.103), too.

The next lemma considers the mutual information term on the RHS of
(4.110).

Lemma 4.19. Let V−nmin−2, . . . ,V0 be a sequence of IID complex ran-
dom variables distributed according to the truncated Gaussian density
given in (4.111), and let U−nmin−2, . . . ,U0 be a sequence of IID, zero-
mean, circularly-symmetric, complex Gaussian random vectors of co-
variance matrix Inmin . Then

lim
Υ→∞

I
(
V0; {H�V�}0

�=−nmin−2,V
−1
−nmin−2

)
≥ I
(
U0; {H�U�}0

�=−nmin−2,U
−1
nmin−2

)
. (4.116)

Proof. Let P
(x,y)
Υ denote the law of

(
V0

−nmin−2, {H�V�}0
�=−nmin−2

)
,

let P
(x)
Υ denote the law of V0, and let P

(y)
Υ denote the law of(

V−1
−nmin−2, {H�V�}0

�=−nmin−2

)
. Similarly, let Q(x,y) denote the law of(

U0−nmin−2, {H�U�}0
�=−nmin−2

)
, let Q(x) denote the law of U0, and let

Q(y) denote the law of
(
U−1

−nmin−2, {H�U�}0
�=−nmin−2

)
. We note that,

as Υ tends to infinity,

(i) P (x,y)
Υ converges weakly to Q(x,y);

(ii) P (x)
Υ converges weakly to Q(x);

(iii) and P (y)
Υ converges weakly to Q(y).
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(See, e.g., [36, Sec. II] for a definition of weak convergence.) Expressing
mutual information in terms of relative entropy [5, Sec. 9.5], it follows
that (4.116) is equivalent to

lim
Υ→∞

D
(
P

(x,y)
Υ

∥∥∥ P (x)
Υ × P

(y)
Υ

)
≥ D

(
Q(x,y)

∥∥∥ Q(x) ×Q(y)
)
.

But this follows immediately from the lower semicontinuity of relative
entropy [36, Thm. 1].

We return to the analysis of (4.110). Let V−nmin−2, . . . ,V0 and
U−nmin−2, . . . ,U0 be as in Lemma 4.19. By Lemmas 4.18 and 4.19,
there exists for every ε > 0 an Υ > 0 such that∣∣∣E[log ‖V�‖2

]− E
[
log ‖U�‖2

]∣∣∣ ≤ ε,∣∣∣log E
[‖V�‖2

]− log E
[‖U�‖2

]∣∣∣ ≤ ε,
� = −nmin − 2, . . . , 0 (4.117)

and

I
(
V0; {H�V�}0

�=−nmin−2,V
−1
−nmin−2

)
≥ I
(
U0; {H�U�}0

�=−nmin−2,U
−1
nmin−2

)− ε. (4.118)

We lower bound the mutual information on the RHS of (4.118) as
follows

I
(
U0; {H�U�}0

�=−nmin−2,U
−1
nmin−2

)
≥ I
(
U0; H0U0

∣∣ {H�U�}−1
�=−nmin−2,U

−1
nmin−2

)
= h

(
H0U0

∣∣ {H�U�}−1
�=−nmin−2,U

−1
nmin−2

)
− h
(
H0U0

∣∣ {H�U�}−1
�=−nmin−2,U

0
nmin−2

)
, (4.119)

where the first step follows by using the chain rule to expand the mu-
tual information as a sum of an unconditional mutual information and
a conditional mutual information, and by using then the nonnegativ-
ity of mutual information to lower bound the unconditional mutual
information by zero.
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The first entropy on the RHS of (4.119) can be lower bounded by

h
(
H0U0

∣∣ {H�U�}−1
�=−nmin−2,U

−1
−nmin−2

)
≥ h

(
H0U0

∣∣ H0, {H�U�}−1
�=−nmin−2,U

−1
−nmin−2

)
= h(H0U0|H0), (4.120)

where the inequality follows because conditioning cannot increase en-
tropy; and the equality follows because(

U−1
−nmin−2, {H�U�}−1

�=−nmin−2

)
�−−H0�−−H0U0

forms a Markov chain.

Since, conditional on H0 = H0, the vector H0U0 has a circularly-
symmetric, complex Gaussian distribution of mean zero and covariance
matrix

H0 E
[
U0U

†
0

]
︸ ︷︷ ︸

=Inmin

H†
0 = H0H

†
0,

we obtain

h(H0U0|H0) = nmin log(πe) + E
[
log det H0H

†
0

]
= nmin log(πe) +

nmin−1∑
i=0

ψ(nmin − i), (4.121)

where ψ(·) denotes Euler’s psi-function. Here the last step follows from
[17, Lemma A.2].

We next upper bound the second entropy on the RHS of (4.119). Con-
sider a specific realization of(

{H�U�}−1
�=−nmin−2,U

0
nmin−2

)
,

which we denote by (
{H�u�}−1

�=−nmin−2,u
0
nmin−2

)
.

Let û0 � u0/‖u0‖. With probability one, û0 is in the span of
u−nmin−2, . . . ,u−1. Let α1, . . . , αnmin+2 be the set of coefficients of
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least L2-norm such that

û0 =
nmin+2∑

�=1

α� u−�, (4.122)

which can be written in matrix notation as⎛⎝ ↑ ↑ ↑
u−1 u−2 · · · u−nmin−2

↓ ↓ ↓

⎞⎠
︸ ︷︷ ︸

�U

⎛⎜⎝ α1

...
αnmin+2

⎞⎟⎠
︸ ︷︷ ︸

�α

=

⎛⎝ ↑
û0

↓

⎞⎠ . (4.123)

The problem of finding α � (α1, . . . , αnmin+2)T can be solved using the
singular value decomposition (SVD):

U = FSG†, (4.124)

where F ∈ Cnmin×nmin and G ∈ C(nmin+2)×(nmin+2) are unitary matrices,
and where the matrix S ∈ Cnmin×(nmin+2) is given by

S =

⎛⎜⎜⎜⎜⎝
σ1 0 · · · 0 0 · · · 0

0 σ2
. . .

...
...

. . .
...

...
. . . . . . 0

...
. . .

...
0 · · · 0 σnmin 0 · · · 0

⎞⎟⎟⎟⎟⎠ .

Here σ1, . . . , σnmin denote the singular values of U. We thus obtain from
(4.123) and (4.124)

SG†α = F†û0, (4.125)

which becomes, upon defining β � G†α,

Sβ = F †û0. (4.126)

The solution for β with the least Euclidean norm satisfying (4.126) is

βi =

⎧⎪⎨⎪⎩
(
F†û0

)
i

σi
, for i = 1, . . . , nmin

0, otherwise,
(4.127)
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where βi and
(
F†û0

)
i

denote the i-th component of the vectors β and
F†û0.

Later in the proof, we will need to upper bound ‖α‖2. Since G is
unitary, it follows that ‖α‖2 = ‖β‖2, which in turn can be computed
from (4.127):

‖α‖2 = ‖β‖2

=
nmin∑
i=1

∣∣(F†û0

)
i

∣∣2
σ2

i

≤
∑nmin

i=1

∣∣(F†û0

)
i

∣∣2
σ2

min

=
‖F†û0‖2

σ2
min

=
1

σ2
min

, (4.128)

where σmin = mini=1,...,nmin σi. Here the last step follows because
‖F†û0‖ = ‖û0‖ = 1. Note that σ2

min is equal to the smallest eigen-
value (which we will denote by ϑmin) of the matrix UU†.

If we do not condition on a specific realization of Unmin−2, . . . ,U0,
then UU† is a Wishart matrix, and its smallest eigenvalue is a random
variable. For future reference, we state its density in the next lemma.

Lemma 4.20. Let the
(
nmin × (nmin + 2)

)
-dimensional random matrix

U have IID, zero-mean, unit-variance, circularly-symmetric, complex
Gaussian entries. Then the matrix UU† is a Wishart matrix and the
density of its smallest eigenvalue is given by

f(ϑmin) = cnmin,nmin+2ϑ
2
min exp

(
−ϑmin

nmin

2

)
Pnmin,nmin+2(ϑmin),

ϑmin ≥ 0, (4.129)

where cnmin,nmin+2 is a constant and Pnmin,nmin+2(ϑmin) is a polynomial
of degree 2 (nmin + 1).

Proof. See [9, Thm. 5.4].
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We return to the analysis of the second term on the RHS of (4.119).
We have

h
(
H0U0

∣∣ {H�U�}−1
�=−nmin−2,U

0
nmin−2

)
= nminE

[
log ‖U0‖2

]
+ h
(
H0Û0

∣∣ {H�U�}−1
�=−nmin−2,U

0
nmin−2

)
= nminE

[
log ‖U0‖2

]
+ h

(
H0Û0 −

nmin+2∑
�=1

α�H−�U−�

∣∣∣∣∣ {H�U�}−1
�=−nmin−2,U

0
nmin−2

)

≤ nminE
[
log ‖U0‖2

]
+ h

(
H0Û0 −

nmin+2∑
�=1

α�H−�U−�

)

= nminE
[
log ‖U0‖2

]
+ h

(
nmin+2∑

�=1

α�(H0 − H−�)U−�

)
, (4.130)

where the first step follows from the scaling property of differential en-
tropy; the second step follows because differential entropy is invariant
under deterministic translation; the third step follows because condi-
tioning cannot increase entropy; and the last step follows from (4.122).

Since the fading is zero-mean, we have

E

[
nmin+2∑

�=1

α�(H0 − H−�)U−�

]
= 0.

Let H(r)
0 denote the r-th row of H0. Then the r-th component of∑nmin+2

�=1 α�(H0 − H−�)U−� is given by
∑nmin+2

�=1 α�

(
H(r)

0 − H(r)
−�

)
U−�

and its variance can be upper bounded as follows:

E

[∣∣∣∣nmin+2∑
�=1

α�

(
H(r)

0 − H(r)
−�

)
U−�

∣∣∣∣2
]

≤ E

[
nmin+2∑

ν=1

|αν |2
nmin+2∑

�=1

∣∣∣(H(r)
0 − H(r)

−�

)
U−�

∣∣∣2]

= E

⎡⎣‖α‖2
nmin+2∑

�=1

∣∣∣∣∣
nmin∑
t=1

(
H0(r, t) −H−�(r, t)

)
U−�(t)

∣∣∣∣∣
2
⎤⎦
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≤ E

[
‖α‖2

nmin+2∑
�=1

nmin∑
t=1

∣∣H0(r, t) −H−�(r, t)
∣∣2 nmin∑

t′=1

|U−�(t′)|2
]

= E

[
‖α‖2

nmin+2∑
�=1

nmin∑
t=1

E
[∣∣H0(r, t) −H−�(r, t)

∣∣2] ‖U−�‖2

]

= E

[
‖α‖2

nmin+2∑
�=1

nmin ε
2(�) ‖U−�‖2

]
, (4.131)

where we define

ε2(�) � E
[∣∣H0(r, t) −H−�(r, t)

∣∣2] .
(Note that ε2(�) does not depend on (r, t) because the fading is spatially
IID.) Here the first step follows from the Cauchy-Schwarz inequality;
the second step follows by writing out the scalar product of two vectors;
the third step follows again from the Cauchy-Schwarz inequality; the
fourth step follows because {Hk, k ∈ Z} and {Uk, k ∈ Z} are indepen-
dent; and the last step follows by defining ε2(�) and by noting that,
since the fading is spatially IID, it does not depend on (r, t).

Defining

ε2max � max
�=1,...,nmin+2

ε2(�)

= max
�=1,...,nmin+2

E
[∣∣H0(r, t) −H−�(r, t)

∣∣2] ,
we can further upper bound (4.131) for each r = 1, . . . , nmin

E

⎡⎣∣∣∣∣∣
nmin+2∑

�=1

α�

(
H(r)

0 − H(r)
−�

)
U−�

∣∣∣∣∣
2
⎤⎦

≤ E

[
‖α‖2

nmin+2∑
�=1

nmin ε
2(�) ‖U−�‖2

]

≤ nmin ε
2
max E

[
‖α‖2

nmin+2∑
�=1

‖U−�‖2

]
. (4.132)
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Using again the Cauchy-Schwarz inequality, we obtain

E

⎡⎣∣∣∣∣∣
nmin+2∑

�=1

α�

(
H(r)

0 − H(r)
−�

)
U−�

∣∣∣∣∣
2
⎤⎦

≤ nmin ε
2
max

√
E[‖α‖4]

√√√√√E

⎡⎣(nmin+2∑
�=1

‖U−�‖2

)2
⎤⎦

≤ nmin ε
2
max

√
E

[
1

Θ2
min

]√√√√√E

⎡⎣(nmin+2∑
�=1

‖U−�‖2

)2
⎤⎦, (4.133)

where Θmin denotes the smallest eigenvalue of the Wishart matrix UU†;
see Lemma 4.20. Here we use (4.128) to upper bound ‖α‖4 ≤ 1/Θ2

min.

To evaluate the RHS of (4.133), we first analyze

E

⎡⎣(nmin+2∑
�=1

‖U−�‖2

)2
⎤⎦ .

To this end, we note that
∑nmin+2

�=1 ‖U−�‖2 is of a central chi-square
distribution with 2 (nmin + 2)nmin degrees of freedom, for which the
second moment is given by [42, p. 14, Eq. (2.33)]

E

⎡⎣(nmin+2∑
�=1

‖U−�‖2

)2
⎤⎦ =

(
nmin (nmin + 2) + 1

)
(nmin + 2)nmin.

(4.134)
As for E

[
1/Θ2

min

]
, we recall that the density of Θmin is given by

(Lemma 4.20)

f(ϑmin) = cnmin,nmin+2ϑ
2
min exp

(
−ϑmin

nmin

2

)
Pnmin,nmin+2(ϑmin),

so

E

[
1

Θ2
min

]
= cnmin,nmin+2

∫ ∞

0

exp
(
−ϑmin

nmin

2

)
Pnmin,nmin+2(ϑmin) dϑmin.(4.135)
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Note that (4.135) does only depend on nmin and not on the memory
of the fading process. Further note that, since Pnmin,nmin+2(ϑmin) is a
polynomial, the integral on the RHS of (4.135) is finite.

We return to the analysis of (4.130). Using that the entropy of a
random vector of covariance matrix A is upper bounded by the entropy
of a Gaussian vector of diagonal covariance matrix with diagonal entries
A(1, 1), . . . , A(nmin, nmin), we obtain

h
(
H0U0

∣∣ {H�U�}−1
�=−nmin−2,U

0
nmin−2

)
≤ nminE

[
log ‖U0‖2

]
+ h

(
nmin+2∑

�=1

α�(H0 − H−�)U−�

)
≤ nminE

[
log ‖U0‖2

]
+ nmin log(πe)

+
nmin∑
r=1

log

⎛⎝E

⎡⎣∣∣∣∣∣
nmin+2∑

�=1

α�

(
H(r)

0 − H(r)
−�

)
U−�

∣∣∣∣∣
2
⎤⎦⎞⎠

≤ nminE
[
log ‖U0‖2

]
+ nmin log(πe) + nmin log ε2max

+ nmin log

⎛⎜⎝nmin

√
E

[
1

Θ2
min

]√√√√√E

⎡⎣(nmin+2∑
�=1

‖U−�‖2

)2
⎤⎦
⎞⎟⎠ , (4.136)

where the last step follows from (4.133).

We summarize the main steps of our proof to obtain the final lower
bound on χPP({Hk})

χPP({Hk})
≥ E

[
log ‖V0‖2

]− log
(
E
[‖V0‖2

])− γ − 1

+ lim
n→∞

1
n
I
(
Vn

1 ; {H�V�}n
�=1

)
≥ E

[
log ‖V0‖2

]− log
(
E
[‖V0‖2

])− γ − 1

+ I
(
V0; {H�V�}0

�=−nmin−2,V
−1
nmin−2

)
≥ E

[
log ‖U0‖2

]− log
(
E
[‖U0‖2

])− γ − 1

+ I
(
U0; {H�U�}0

�=−nmin−2,U
−1
nmin−2

)− 3ε

≥ E
[
log ‖U0‖2

]− log
(
E
[‖U0‖2

])− γ − 1 − 3ε

+ h
(
H0U0

∣∣ {H�U�}−1
�=−nmin−2,U

−1
nmin−2

)
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− h
(
H0U0

∣∣ {H�U�}−1
�=−nmin−2,U

0
nmin−2

)
≥ E

[
log ‖U0‖2

]− log
(
E
[‖U0‖2

])− γ − 1 − 3ε

+ nmin log(πe) +
nmin−1∑

i=0

ψ(nmin − i)

− h
(
H0U0

∣∣ {H�U�}−1
�=−nmin−2,U

0
nmin−2

)
≥ E

[
log ‖U0‖2

]− log
(
E
[‖U0‖2

])− γ − 1 − 3ε

+ nmin log(πe) +
nmin−1∑

i=0

ψ(nmin − i)

− nminE
[
log ‖U0‖2

]− nmin log(πe) − nmin log ε2max

− nmin log

⎛⎜⎝nmin

√
E

[
1

Θ2
min

]√√√√√E

⎡⎣(nmin+2∑
�=1

‖U−�‖2

)2
⎤⎦
⎞⎟⎠

= nmin log
1

ε2max

+ Δ(nmin), (4.137)

where we define

Δ(nmin) � −(nmin − 1)E
[
log ‖U0‖2

]− log
(
E
[‖U0‖2

])− γ − 1 − 3ε

+
nmin−1∑

i=0

ψ(nmin − i)

− nmin log

⎛⎜⎝nmin

√
E

[
1

Θ2
min

]√√√√√E

⎡⎣(nmin+2∑
�=1

‖U−�‖2

)2
⎤⎦
⎞⎟⎠ .

Here the first step follows from (4.101) and (4.108); the second step
follows from (4.110); the third step follows from (4.117) and (4.118);
the fourth step follows from (4.119); the fifth step follows from (4.121);
and the sixth step follows from (4.136).

This concludes the proof of Theorem 4.6.

4.9 A Gauss-Markov Fading Process

A very simple model for a slowly-varying channel is the Gauss-Markov
fading model (see for example [4] or [13]). Here {Hk, k ∈ Z} is a
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zero-mean, spatially IID, Gaussian process with

Hk =
√

1 − ε2Hk−1 + εWk, k ∈ Z, (4.138)

where {Wk, k ∈ Z} is spatially IID with {Wk(r, t), k ∈ Z} consisting of
IID, zero-mean, unit-variance, circularly-symmetric, complex Gaussian
random variables. In the above, ε2 is the prediction error in predicting
H0(r, t) from its past.

In the following, we consider a MIMO Gauss-Markov fading channel
with n = nR = nT transmit and receive antennas. Corollary 4.8 yields

χ({Hk}) ≤ n log
1
ε2

+ Ψ(n), (4.139)

where the correction term Ψ(n) is only a function of n and not of ε2.
Theorem 4.6 yields

χ({Hk}) ≥ n log
1
ε2

+ Δ(n) + o(ε2), (4.140)

where the o(ε2)-term vanishes as ε2 tends to zero.

4.10 The Fading Number and Degrees of Freedom

The “number of degrees of freedom” nmin of a system employing nT

transmit antennas and nR receive antennas is defined by

nmin � min{nT, nR}.
It plays an important role in the high-SNR asymptotic analysis of co-
herent MIMO fading channels [43] as well as in the asymptotic analysis
of the block-constant fading model [34, 52].

The role of degrees of freedom in noncoherent MIMO fading channels
is more subtle. Indeed, if the limit in (4.11) exists, then the asymptotic
expansion

C(SNR) ≈ log
(
1 + log(1 + SNR)

)
+ χ({Hk}) (4.141)

indicates that at very high SNR, when the log log SNR term dominates
the fading number χ, capacity grows double-logarithmically in the SNR
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and the number of transmit and receive antennas hardly influences
capacity.

Great care, however, must be exercised when applying this argument.
For this argument to demonstrate the irrelevance of the degrees of free-
dom in determining channel capacity, the SNR must not only be large
enough so (4.141) is a good approximation, but it must also be large
enough so the log log SNR-term dominates the fading number χ({Hk}).
While, as we shall argue, the approximation (4.141) begins to hold at
reasonable SNR, for the log log SNR-term to dominate the fading num-
ber χ({Hk}), the SNR must be larger than the double exponentiation
of the fading number. When the fading number is large, as in slowly-
varying channels, this latter condition only begins to hold at extremely
high SNR.

What then is the role of degrees of freedom in slowly varying noncoher-
ent communication? For slowly varying channels, degrees of freedom
play a key role in determining the fading number. Indeed—at least
when nR ≤ nT—Theorem 4.6 and Corollary 4.8 combine to prove that
for very slowly-varying fading channels the fading number is roughly
proportional to nmin.

The picture that emerges is thus the following. While the approxi-
mation (4.141) is quite reasonable as of relatively moderate SNR, for
slowly-varying channels the log log SNR dominates the fading number
only at extremely high SNR. At these extremely high SNR, degrees
of freedom, indeed, hardly influence capacity. However, increasing the
number of degrees of freedom increases the fading number χ({Hk}) and
hence pushes this extremely high-SNR regime further and further away.
If we think of the fading number as an indication of the maximal rate at
which power efficient communication is achievable on the channel [28],
then we can say that for slowly-varying spatially independent Gaussian
fading channels this rate is roughly proportional to the number of de-
grees of freedom. Thus, increasing the number of degrees of freedom
increases the practical limit on power-efficient communication over the
channel.

The capacity of noncoherent MIMO Gauss-Markov fading channels was
also studied by Etkin and Tse [12, 13]. Their results are, in fact, in
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agreement with the above picture.

Note that our results on the fading number and degrees of freedom are
not specific to Gauss-Markov fading. It suffices that the autocorrelation
decay slowly and that the difference between the present fading and any
fading in the past nmin + 2 symbols is of expected squared error that
is not much larger than the prediction error based on the infinite past.
That is, we require that

log
ε2max

ε2

be roughly a constant. (Here ε2max is defined in Theorem 4.6 and ε2

is the prediction error in predicting the present value of the process
Hk(r, t) from its infinite past.) This is certainly the case for Gauss-
Markov processes.





Chapter 5

Gaussian Fading
is the Worst Fading

5.1 Introduction

We study the capacity of peak-power limited, single-antenna, discrete-
time, flat-fading channels with memory. A noncoherent channel model
is considered where the transmitter and the receiver are both aware of
the law of the fading process, but not of its realization. Our focus is on
the capacity at high signal-to-noise ratio (SNR). Specifically, we study
the capacity pre-log, which is defined as the limiting ratio of channel
capacity to the logarithm of the SNR, as the SNR tends to infinity.

The capacity pre-log of Gaussian fading channels was derived in [26]
(see also [25]). It was shown that the pre-log is given by the Lebesgue
measure of the set of harmonics where the derivative of the spectral
distribution function that characterizes the memory of the fading pro-
cess is zero. To the best of our knowledge, the capacity pre-log of
non-Gaussian fading channels is unknown.

In this work, we demonstrate that the Gaussian assumption in the
analysis of fading channels at high SNR is conservative in the sense
that for a large class of fading processes the Gaussian process is the
worst. More precisely, we show that among all stationary and ergodic
fading processes of a given spectral distribution function and whose
law has no mass point at zero, the Gaussian process gives rise to the
smallest pre-log.

The rest of this chapter is organized as follows. Section 5.2 describes the
channel model. Section 5.3 defines channel capacity and the capacity
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pre-log. Section 5.4 presents our main results. Section 5.5 provides the
proofs of these results. Section 5.6 discusses the extension of our results
to multiple-input single-output (MISO) fading channels with memory.
And Section 5.7 concludes the chapter with a summary and a discussion
of our results.

5.2 Channel Model

We consider a single-antenna flat-fading channel with memory where
the time-k (k ∈ Z) channel output Yk ∈ C corresponding to the time-k
channel input xk ∈ C is given by

Yk = Hkxk + Zk, k ∈ Z. (5.1)

Here the random processes {Zk, k ∈ Z} and {Hk, k ∈ Z} take value
in C and model the additive and multiplicative noises, respectively. It
is assumed that these processes are statistically independent and of a
joint law that does not depend on the input sequence {xk}.

The additive noise {Zk, k ∈ Z} is a sequence of independent and iden-
tically distributed (IID) zero-mean, variance-σ2, circularly-symmetric,
complex Gaussian random variables. The multiplicative noise (“fad-
ing”) {Hk, k ∈ Z} is a mean-d, unit-variance, stationary and ergodic
stochastic process of spectral distribution function F (·), i.e., λ → F (λ)
is a bounded and nondecreasing function on [−1/2, 1/2] satisfying [8,
p. 474, Thm. 3.2]

E[(Hk+m − d)(Hk − d)∗] =
∫ 1/2

−1/2

ei2πmλ dF (λ),
(
k ∈ Z, m ∈ Z

)
. (5.2)

Since F (·) is monotonic, it is almost everywhere differentiable, and we
denote its derivative by F ′(·). (At the discontinuity points of F (·)
the derivative F ′(·) is undefined.) For example, if the fading process
{Hk, k ∈ Z} is IID, then

F ′(λ) = 1, −1
2
≤ λ ≤ 1

2
.
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5.3 Channel Capacity and Capacity Pre-Log

Channel capacity was defined in Section 2.1 as the supremum of all
achievable rates. In this chapter we study the capacity under a peak-
power constraint A2 on the inputs, which for our channel (5.1) is given
by (see, e.g., [20, Thm. 2] or [39, Sec. II])

C(SNR) = lim
n→∞

1
n

sup I(Xn
1 ;Y n

1 ), (5.3)

where SNR is defined as

SNR � A2

σ2
, (5.4)

and where the maximization is over all joint distributions onX1, . . . , Xn

satisfying with probability one

|Xk|2 ≤ A2, k = 1, . . . , n. (5.5)

The capacity pre-log is defined as [26]

Π � lim
SNR→∞

C(SNR)
log SNR

. (5.6)

For Gaussian fading, i.e., when {Hk − d, k ∈ Z} is a circularly-
symmetric, complex Gaussian process, the pre-log ΠG is given by the
Lebesgue measure of the set of harmonics where the derivative of the
spectral distribution function is zero, i.e.,

ΠG = μ ({λ : F ′(λ) = 0}) , (5.7)

where μ(·) denotes the Lebesgue measure on the interval [−1/2, 1/2];
see [25, 26]. (Here the subscript “G” stands for “Gaussian”.)

This result indicates that if the fading process is Gaussian and satisfies

μ ({λ : F ′(λ) = 0}) > 0,

then the corresponding capacity grows logarithmically in the SNR. Note
that otherwise the capacity can increase with the SNR in various ways.
For instance, in [28] fading channels are studied that result in a ca-
pacity which increases double-logarithmically with the SNR (see also
Chapter 4), and in [26] spectral distribution functions are presented
for which capacity grows as a fractional power of the logarithm of the
SNR.
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5.4 Main Result

We show that, among all stationary and ergodic fading processes of a
given spectral distribution function and whose law has no mass point
at zero, the Gaussian process gives rise to the smallest pre-log. This is
made precise in the following theorem.

Theorem 5.1. Consider a mean-d, unit-variance, stationary, ergodic
fading process {Hk, k ∈ Z} whose spectral distribution function is given
by F (·) and whose law satisfies

Pr(Hk = 0) = 0, k ∈ Z.

Then the corresponding capacity pre-log Π is lower bounded by

Π ≥ μ ({λ : F ′(λ) = 0}) . (5.8)

Proof. See Section 5.5.1.

Note 5.1. Theorem 5.1 continues to hold if {Zk, k ∈ Z} is a sequence of
IID, variance-σ2, complex (not necessarily Gaussian) random variables
of finite differential entropy. Thus, among all pairs of fading processes
(satisfying the conditions of Theorem 5.1) and additive noise processes,
the pair where both processes are Gaussian gives rise to the smallest
pre-log.

The assumption that the law of the fading process has no mass point
at zero is essential in the following sense.

Note 5.2. There exists a mean-d, unit-variance, stationary and ergodic
fading process {Hk, k ∈ Z} of some spectral distribution function F (·)
such that

Π < μ ({λ : F ′(λ) = 0}) . (5.9)

By Theorem 5.1, this process must satisfy

Pr(Hk = 0) > 0, k ∈ Z.

Proof. See Section 5.5.2.
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Note 5.3. The inequality in (5.8) can be strict. For example, consider
the phase-noise channel with memoryless phase noise. This channel can
be viewed as a fading channel where the fading process {Hk, k ∈ Z} is
given by

Hk = eiΘk , k ∈ Z,

where {Θk, k ∈ Z} is IID with Θk being uniformly distributed over
[−π, π). This process gives rise to a pre-log Π = 1/2, whereas the
Gaussian fading of equal spectral distribution function yields ΠG = 0.

Proof. For a derivation of the capacity pre-log of the phase-noise chan-
nel see Section 5.5.3.

5.5 Proofs

This section provides the proofs of our main results. For a proof of
Theorem 5.1 see Section 5.5.1, for a proof of Note 5.2 see Section 5.5.2,
and for a proof of Note 5.3 see Section 5.5.3.

5.5.1 Proof of Theorem 5.1

To prove Theorem 5.1, we first derive a lower bound on the capacity,
and proceed then to analyze its asymptotic growth as the SNR tends
to infinity.

Capacity Lower Bound

To derive a lower bound on the capacity we consider inputs {Xk, k ∈ Z}
that are IID, zero-mean, and circularly-symmetric, and for which |Xk|2
is uniformly distributed over the interval

[
0,A2

]
. Our derivation is

based on the lower bound

1
n
I(Xn

1 ;Y n
1 ) ≥ 1

n
I(Xn

1 ;Y n
1 |Hn

1 ) − 1
n
I(Hn

1 ;Y n
1 |Xn

1 ), (5.10)

which follows from the chain rule

I(Xn
1 ;Y n

1 ) = I(Xn
1 , H

n
1 ;Y n

1 ) − I(Hn
1 ;Y n

1 |Xn
1 )

= I(Hn
1 ;Y n

1 ) + I(Xn
1 ;Y n

1 |Hn
1 ) − I(Hn

1 ;Y n
1 |Xn

1 )
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and the nonnegativity of mutual information.

We first study the first term on the right-hand side (RHS) of (5.10).
Making use of the stationarity of the channel and of the fact that the
inputs are IID we have

1
n
I(Xn

1 ;Y n
1 |Hn

1 ) = I(X1;Y1|H1). (5.11)

We lower bound the RHS of (5.11) as follows. For any fixed Υ > 0

I(X1;Y1|H1)
= h(H1X1 + Z1|H1) − h(Z1)

=
∫
|h1|≥Υ

h(H1X1 + Z1|H1 = h1) dPH1 (h1)

+
∫
|h1|<Υ

h(H1X1 + Z1|H1 = h1) dPH1(h1) − h(Z1)

≥
∫
|h1|≥Υ

h(H1X1 + Z1|H1 = h1) dPH1 (h1)

+ Pr(|H1| < Υ)h(Z1) − h(Z1)

≥
∫
|h1|≥Υ

(
log |h1|2 + h(X1)

)
dPH1(h1)

+ Pr(|H1| < Υ)h(Z1) − h(Z1)
≥ Pr(|H1| ≥ Υ)

(
log Υ2 + h(X1)

)
+ Pr(|H1| < Υ)h(Z1) − h(Z1)

= Pr(|H1| ≥ Υ)
(
log Υ2 + log π + h(|X1|2)

)
+ Pr(|H1| < Υ)h(Z1) − h(Z1)

= Pr(|H1| ≥ Υ) log A2 + Pr(|H1| ≥ Υ) log
(
πΥ2

)
+ Pr(|H1| < Υ)h(Z1) − h(Z1)

= Pr(|H1| ≥ Υ) log A2 + Pr(|H1| ≥ Υ) log
(
πΥ2

)
+
(
Pr(|H1| < Υ) − 1

)
log(πeσ2)

= Pr(|H1| ≥ Υ) log SNR − Pr(|H1| ≥ Υ)
(
1 − log Υ2

)
, (5.12)

where PH1(·) denotes the distribution of the fading H1. Here the third
step follows by conditioning the entropy in the second integral on X1;
the fourth step follows by conditioning the entropy in the first inte-
gral on Z1 and by the behavior of differential entropy under scaling [5,
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Thm. 9.6.4]; the fifth step follows because over the range of integra-
tion |h1| ≥ Υ we have log |h1|2 ≥ log Υ2; the sixth step follows because
X1 is circularly-symmetric [28, Lemma 6.16]; the seventh step follows
by computing the entropy of a random variable that is uniformly dis-
tributed over the interval

[
0,A2

]
; the eighth step follows by evaluating

the entropy of a zero-mean, variance-σ2, circularly-symmetric, complex
Gaussian random variable h(Zk) = log(πeσ2); and the last step follows
from Pr(|H1| ≥ Υ) = 1 − Pr(|H1| < Υ).

We next turn to the second term on the RHS of (5.10). In order
to upper bound it we proceed along the lines of [7], but for non-
Gaussian fading. Let Y, H, and Z be the random vectors (Y1, . . . , Yn)T,
(H1, . . . , Hn)T, and (Z1, . . . , Zn)T, and let X be a diagonal matrix with
diagonal entries x1, . . . , xn. It follows from (5.1) that

Y = XH + Z. (5.13)

The conditional covariance matrix of Y, conditional on x1, . . . , xn, is
given by

E
[
(Y − E[Y]) (Y − E[Y])†

∣∣∣ Xn
1 = xn

1

]
= XKHHX† + σ2In, (5.14)

where
KHH � E

[
(H − E[H])(H − E[H])†

]
. (5.15)

Using the entropy maximizing property of circularly-symmetric Gaus-
sian vectors [5, Thm. 9.6.5], we have

1
n
I(Hn

1 ;Y n
1 |Xn

1 ) =
1
n
h(Y n

1 |Xn
1 ) − 1

n
h(Zn

1 )

≤ 1
n

E

[
log det

(
In +

1
σ2

XKHHX
†
)]

=
1
n

E

[
log det

(
In +

1
σ2

KHHX
†
X

)]
≤ 1
n

log det
(

In +
E
[|X1|2

]
σ2

KHH

)
=

1
n

n∑
k=1

log
(

1 +
E
[|X1|2

]
σ2

λk

)

≤ 1
n

n∑
k=1

log(1 + SNR λk), (5.16)
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where X is a random diagonal matrix with diagonal entries X1, . . . , Xn,
and where λ1, . . . , λn denote the eigenvalues of KHH. Here the third
step follows from the identity det(In + AB) = det(In + BA); the fourth
step follows from Jensen’s inequality and by noting that {Xk, k ∈ Z}
is IID, so E

[
X†X

]
= E

[|X1|2
]
In; the fifth step follows because the

determinant of a matrix is given by the product of its eigenvalues; and
the last step follows because, by (5.5), we have E

[|X1|2
] ≤ A2.

To evaluate the RHS of (5.16) in the limit as n tends to infinity, we
apply Szegö’s Theorem on the asymptotic behavior of the eigenvalues
of Hermitian Toeplitz matrices [18] (see also [41, Thm. 2.7.13]). We
obtain

lim
n→∞

1
n
I(Hn

1 ;Y n
1 |Xn

1 ) ≤ lim
n→∞

1
n

n∑
k=1

log(1 + SNRλk)

=
∫ 1/2

−1/2

log
(
1 + SNRF ′(λ)

)
dλ. (5.17)

Combining (5.10), (5.11), (5.12), and (5.17) yields the final lower bound

C(SNR) ≥ Pr(|H1| ≥ Υ) log SNR − Pr(|H1| ≥ Υ)
(
1 − log Υ2

)
−
∫ 1/2

−1/2

log (1 + SNRF ′(λ)) dλ, (5.18)

which holds for any fixed Υ > 0. Note that this lower bound applies
to all mean-d, unit-variance, stationary and ergodic fading processes
{Hk, k ∈ Z} with spectral distribution function F (·), irrespective of
whether Pr(Hk = 0) is zero or not.

Asymptotic Analysis

In the following we prove Theorem 5.1 by computing the limiting ratio
of the lower bound (5.18) to log SNR as SNR tends to infinity.

We first show that

lim
SNR→∞

∫ 1/2

−1/2

log
(
1 + SNRF ′(λ)

)
log SNR

dλ = μ ({λ : F ′(λ) > 0}) . (5.19)
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To this end, we divide the integral into three parts, depending on
whether λ takes part in the set S1, S2, or S3, where

S1 � {λ ∈ [−1/2, 1/2] : F ′(λ) = 0} (5.20)
S2 � {λ ∈ [−1/2, 1/2] : F ′(λ) ≥ 1} (5.21)
S3 � {λ ∈ [−1/2, 1/2] : 0 < F ′(λ) < 1}. (5.22)

For λ ∈ S1 the integrand is zero and hence

lim
SNR→∞

∫
S1

log
(
1 + SNRF ′(λ)

)
log SNR

dλ = 0. (5.23)

For λ ∈ S2, i.e., when F ′(λ) ≥ 1, we note that, for sufficiently large
SNR, the function

SNR → log
(
1 + SNRF ′(λ)

)
log SNR

is monotonically decreasing in SNR. Therefore, applying the Monotone
Convergence Theorem [38, Thm. 1.26], we have

lim
SNR→∞

∫
S2

log
(
1 + SNRF ′(λ)

)
log SNR

dλ

=
∫
S2

lim
SNR→∞

log
(
1 + SNRF ′(λ)

)
log SNR

dλ

= μ (S2)
= μ ({λ : F ′(λ) ≥ 1}) . (5.24)

For λ ∈ S3, i.e., when 0 < F ′(λ) < 1, we have

0 <
log
(
1 + SNRF ′(λ)

)
log SNR

<
log(1 + SNR)

log SNR
≤ log(1 + e), SNR ≥ e,

(5.25)
where the last inequality follows because, for sufficiently large SNR, the
function

SNR → log(1 + SNR)
log SNR

is monotonically decreasing in SNR. Since log(1 + e) is integrable over
S3, we can apply the Dominated Convergence Theorem [38, Thm. 1.34]
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to obtain

lim
SNR→∞

∫
S3

log
(
1 + SNRF ′(λ)

)
log SNR

dλ

=
∫
S3

lim
SNR→∞

log
(
1 + SNRF ′(λ)

)
log SNR

dλ

= μ (S3)
= μ ({λ : 0 < F ′(λ) < 1}) . (5.26)

Adding (5.23), (5.24), and (5.26) yields (5.19).

To continue with the asymptotic analysis of (5.18) we note that by
(5.19)

Π � lim
SNR→∞

C(SNR)
log SNR

≥ Pr(|H1| ≥ Υ) − μ ({λ : F ′(λ) > 0})
= μ ({λ : F ′(λ) = 0}) − Pr(|H1| < Υ) , Υ > 0. (5.27)

If the law of the fading process has no mass point at zero, then

lim
Υ↓0

Pr(|H1| < Υ) = 0, (5.28)

and Theorem 5.1 therefore follows from (5.27) by letting Υ tend to zero
from above.

5.5.2 Proof of Note 5.2

We prove Note 5.2 by demonstrating that there exists a stationary and
ergodic fading process of some spectral distribution function F (·) for
which

Π < μ ({λ : F ′(λ) = 0}) .
By Theorem 5.1, the law of such a process must have a mass point at
zero, i.e.,

Pr(Hk = 0) > 0, k ∈ Z.

We first show that the capacity pre-log is upper bounded by

Π ≤ Pr(|H1| > 0) . (5.29)
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Indeed, the capacity C(SNR) does not decrease when the receiver ad-
ditionally knows the realization of {Hk, k ∈ Z} and when the inputs
have to satisfy an average-power constraint rather than a peak-power
constraint, i.e.,

C(SNR) ≤ lim
n→∞

1
n

sup I(Xn
1 ;Y n

1 |Hn
1 ), (5.30)

where the maximization is over all input distributions on X1, . . . , Xn

satisfying the average-power constraint

1
n

n∑
k=1

E
[|Xk|2

]
σ2

≤ SNR. (5.31)

(This follows because the availability of additional information cannot
decrease the capacity, and because any distribution on the inputs sat-
isfying the peak-power constraint (5.5) satisfies also (5.31).) It is well
known that the expression on the RHS of (5.30) is equal to

lim
n→∞

1
n

sup I(Xn
1 ;Y n

1 |Hn
1 ) = E

[
log(1 + |H1|2 SNR)

]
(5.32)

(see, e.g., [2, Eq. (3.3.10)]), which can be further upper bounded by

E
[
log(1 + |H1|2 SNR)

]
= Pr(|H1| > 0) E

[
log(1 + |H1|2 SNR)

∣∣ |H1| > 0
]

≤ Pr(|H1| > 0) log
(
1 + E

[ |H1|2
∣∣ |H1| > 0

]
SNR

)
= Pr(|H1| > 0) log

(
1 +

SNR
Pr(|H1| > 0)

)
. (5.33)

Here the first step follows by writing the expectation as

E
[
log(1 + |H1|2 SNR)

]
= Pr(|H1| = 0) E

[
log(1 + |H1|2 SNR)

∣∣ |H1| = 0
]

+ Pr(|H1| > 0) E
[
log(1 + |H1|2 SNR)

∣∣ |H1| > 0
]

and by noting that E
[
log(1 + |H1|2 SNR)

∣∣ |H1| = 0
]

= 0; the second
step follows from Jensen’s inequality; and the last step follows because
E
[|H1|2

]
= 1, which implies that

E
[ |H1|2

∣∣ |H1| > 0
]

=
1

Pr(|H1| > 0)
.
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Dividing the RHS of (5.33) by log SNR and computing the limit as
SNR tends to infinity yields (5.29).

In view of (5.29), it suffices to demonstrate that there exists a fading
process of some spectral distribution function F (·) that satisfies

Pr(|H1| > 0) < μ ({λ : F ′(λ) = 0}) . (5.34)

A first attempt of defining such a process (which, alas, does not work)
is

. . . , H−1, H0, H1, . . . =

⎧⎨⎩ . . . , 0, 0, 0, . . . with prob. δ

. . . , B−1, B0, B1, . . . with prob. 1 − δ,
(5.35)

where {Bk, k ∈ Z} is a zero-mean, circularly-symmetric, stationary
and ergodic, complex Gaussian process of variance 1/(1 − δ) and of
spectral distribution function G(·); and where δ and G(·) are chosen so
that

1 − δ < μ ({λ : G′(λ) = 0}) . (5.36)

This process satisfies (5.34) because Pr(|H1| > 0) = 1− δ, and because

E[(Hk+m − d)(Hk − d)∗]
= (1 − δ)E[Bk+mB

∗
k ] ,

(
k ∈ Z, m ∈ Z

)
(5.37)

which implies that F (λ) = (1 − δ)G(λ) almost everywhere, so

μ ({λ : F ′(λ) = 0}) = μ ({λ : G′(λ) = 0}) . (5.38)

Alas, the above fading process is stationary but not ergodic.

In the following, we exhibit a fading process that is stationary and
ergodic and that satisfies (5.34). Let

. . . , A−1, A0, A1, A2, . . . =

⎧⎨⎩ . . . , 0, 1, 0, 1, . . . with prob. 1
2

. . . , 1, 0, 1, 0, . . . with prob. 1
2 ,

(5.39)

and let {Bk, k ∈ Z} be a zero-mean, variance-2, circularly-symmetric,
stationary and ergodic, complex Gaussian process of spectral distribu-
tion function G(·). Furthermore let {Ak, k ∈ Z} and {Bk, k ∈ Z} be
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independent of each other. Let the fading process be given by

Hk = Ak Bk, k ∈ Z. (5.40)

Note that {Hk, k ∈ Z} is of zero mean, and its law satisfies

Pr(|Hk| > 0) = Pr(Ak = 1) =
1
2
, k ∈ Z. (5.41)

We first argue that {Hk, k ∈ Z} is stationary and ergodic. Indeed,
{Ak, k ∈ Z} is stationary and ergodic. And since a Gaussian process
is ergodic if, and only if, it is weakly-mixing (see, e.g., [39, Sec. II]),
we have that {Bk, k ∈ Z} is stationary and weakly-mixing. (See [35,
Sec. 2.6] for a definition of weakly-mixing stochastic processes.) It thus
follows from [3, Prop. 1.6] that the process {(Ak, Bk), k ∈ Z} is jointly
stationary and ergodic, which implies that

{Hk, k ∈ Z} = {Ak · Bk, k ∈ Z},
is stationary and ergodic.

We next demonstrate that G(·) can be chosen so that {Hk, k ∈ Z}
satisfies (5.34). We choose

G′(λ) =

⎧⎨⎩
1
W
, if |λ| ≤ W

0, otherwise
(5.42)

for some W ∈ (0, 1/8), which corresponds to the autocovariance func-
tion

E[Bk+mB
∗
k] = 2 sinc(2Wm),

(
k ∈ Z, m ∈ Z

)
.

Here sinc(·) denotes the sinc-function, i.e., sinc(x) = sin(πx)/(πx) for
|x| > 0 and sinc(0) = 1. Using that

E[Ak+mA
∗
k] =

1
2

I {m is even} , (
k ∈ Z, m ∈ Z

)
,

we have for the autocovariance function of {Hk, k ∈ Z}
E[Hk+mH

∗
k ] = E[Ak+mBk+mA

∗
kB

∗
k]

= E[Ak+mA
∗
k] E[Bk+mB

∗
k ]

= I {m is even} sinc(2Wm),
(
k ∈ Z, m ∈ Z

)
, (5.43)
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and the corresponding spectrum is given by

F ′(λ) =

⎧⎨⎩
1

4W , if |λ| ≤ W or 1
2 − W ≤ |λ| ≤ 1

2

0, otherwise.
(5.44)

We thus have
μ ({λ : F ′(λ) = 0}) = 1 − 4W, (5.45)

and it follows from (5.41) and (5.45) that

Pr(|Hk| > 0) < μ ({λ : F ′(λ) = 0}) , for W <
1
8
.

Thus there exist stationary and ergodic fading processes of some spec-
tral distribution function that give rise to a capacity pre-log that is
strictly smaller than the pre-log of a Gaussian fading channel of equal
spectral distribution function.

5.5.3 Proof of Note 5.3

To prove Note 5.3, we first notice that, since the phase noise is memo-
ryless, the derivative of the spectral distribution function is

F ′(λ) = 1, −1
2
≤ λ ≤ 1

2
.

Hence the capacity pre-log of the Gaussian fading channel of spectral
distribution function F (·) equals

ΠG = μ ({λ : F ′(λ) = 0}) = 0. (5.46)

It remains to show that the pre-log of the phase-noise channel with
memoryless phase noise is equal to

Π =
1
2
. (5.47)

In [24] it was shown that at high SNR the capacity of the phase-noise
channel under an average-power constraint on the inputs is given by

CAvg(SNR) =
1
2

log
(

1 +
SNR

2

)
+ o(1), (5.48)
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where o(1) tends to zero as SNR tends to zero. (The subscript “Avg”
indicates that the inputs satisfy an average-power constraint and not
a peak-power constraint.) Since any distribution on the inputs satis-
fying the peak-power constraint (5.5) satisfies also the average-power
constraint, it follows that C(SNR) ≤ CAvg(SNR) and hence

Π ≤ 1
2
. (5.49)

To prove (5.47) it thus suffices to show that Π ≥ 1
2 . To this end, we

first note that, since the phase noise is memoryless, we have

C(SNR) = sup I(X1;Y1), (5.50)

where the maximization is over all distributions on X1 satisfying with
probability one

|X1| ≤ A.

We derive a lower bound onC(SNR) by evaluating the RHS of (5.50) for
X1 being a zero-mean, circularly-symmetric, complex random variable
with |X1|2 uniformly distributed over the interval

[
0,A2

]
. We have

I(X1;Y1) ≥ I
(
X1; |Y1|2

)
= h

(|Y1|2
)− h

(|Y1|2
∣∣ X1

)
≥ h

(|X1|2
)− h

(|Y1|2
∣∣ X1

)
, (5.51)

where the first step follows from the data processing inequality [5,
Thm. 2.8.1]; and the last step follows by the circular symmetry of
X1 [24, p. 3, after Eq. (20)].

Computing the differential entropy of a uniformly distributed random
variable, the first term on the RHS of (5.51) becomes

h
(|X1|2

)
= log A2. (5.52)

As to the second term, we note that, for a given X1 = x1, the ran-
dom variable 2/σ2 |Y1|2 has a noncentral chi-square distribution with
noncentrality parameter 2/σ2 |x1|2 and two degrees of freedom. Its
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differential entropy can be upper bounded by [24, Eq. (8)]

h
(|Y1|2

∣∣ X1

) ≤ 1
2
E

[
log
(

4πe
(
2 + 2

2
σ2

|X1|2
))]

− log
2
σ2

≤ 1
2

log
(

4πe
(
2 + 2

2
σ2

A2
))

− log
2
σ2
, (5.53)

where the last step follows because |X1| ≤ A with probability one.
Combining (5.52) and (5.53) with (5.51) yields thus

I(X1;Y1) ≥ 1
2

log SNR + o(log SNR), (5.54)

where

lim
SNR→∞

o(log SNR)
log SNR

= 0.

We finally obtain the lower bound

Π ≥ 1
2

upon dividing the RHS of (5.54) by log SNR and letting SNR tend to
infinity.

5.6 Extension to MISO Fading Channels

Theorem 5.1 can be extended to MISO fading channels with memory,
when the fading processes corresponding to the different transmit an-
tennas are independent. For such channels, the channel output Yk ∈ C

at time k corresponding to the channel input xk ∈ C
nT is given by

Yk = HT

kxk + Zk, k ∈ Z, (5.55)

where Hk =
(
Hk(1), . . . , Hk(nT)

)T, and where the processes{
Hk(1), k ∈ Z

}
,
{
Hk(2), k ∈ Z

}
. . . ,

{
Hk(nT), k ∈ Z

}
are jointly stationary ergodic and independent. We assume that for
each t = 1, . . . , nT the process

{
Hk(t), k ∈ Z

}
is of mean dt, of unit
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variance, and of spectral distribution function Ft(·). We further assume
that

Pr(Hk(1) = 0) = Pr(Hk(2) = 0) = . . . = Pr(Hk(nT) = 0) = 0, k ∈ Z.

The additive noise {Zk, k ∈ Z} is defined as in Section 5.2.

The capacity of this channel is given by (5.3), but with Xn
1 replaced

by Xn
1 , and with the peak-power constraint (5.5) altered accordingly:

‖Xk‖2 ≤ A2 with probability one, k ∈ Z. (5.56)

The pre-log of MISO fading channels is defined as in the single-
antenna case (5.6). For Gaussian fading, i.e., when the nT pro-
cesses {H(t) − dt, k ∈ Z} are circularly-symmetric complex Gaussian,
the pre-log is given by (Corollary 4.15)

ΠG = max
1≤t≤nT

μ ({λ : F ′
t (λ) = 0}) . (5.57)

Proving that the capacity pre-log Π of MISO fading channels is lower
bounded by the pre-log of the MISO Gaussian fading channel of equal
spectral distribution functions—namely F1(·), . . . , FnT(·)—is straight-
forward. Let Πt, 1 ≤ t ≤ nT denote the capacity pre-log of a single-
antenna fading channel with fading process

{
Hk(t), k ∈ Z

}
, and let

t = arg max
1≤t≤nT

Πt.

By signaling from antenna t while keeping the other antennas silent,
we can achieve the pre-log Πt� , so

Π ≥ max
1≤t≤nT

Πt. (5.58)

Theorem 5.1 yields then that

Πt ≥ μ ({λ : F ′
t (λ) = 0}) , 1 ≤ t ≤ nT, (5.59)

which together with (5.58) proves the claim

Π ≥ max
1≤t≤nT

μ ({λ : F ′
t (λ) = 0}) . (5.60)
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5.7 Conclusion

We showed that, among all stationary and ergodic fading processes of
a given spectral distribution function and whose law has no mass point
at zero, the Gaussian process gives rise to the smallest capacity pre-
log. We further showed that if the fading law is allowed to have a mass
point at zero, then the above statement is not necessarily true anymore.
Roughly speaking, we can say that for a large class of fading processes
the Gaussian process is the worst. This demonstrates the robustness
of the Gaussian assumption in the analysis of fading channels at high
SNR.

To give an intuition why Gaussian processes give rise to the smallest
pre-log, we recall that for Gaussian fading [26, Eqs. (33) & (47)]

C(SNR) = log
1

ε2pred(1/SNR)
+ o(log SNR),

where ε2pred(·) denotes the mean-square error in predicting the present
fading H0 from a noisy observation of its past (see Section 4.3). Thus
for Gaussian fading the capacity pre-log is determined by ε2pred(1/SNR),
and it is plausible that also the pre-log of non-Gaussian fading channels
is connected with the ability of predicting the present fading from a
noisy observation of its past. Since, among all stationary and ergodic
processes of a given spectral distribution function, the Gaussian process
is hardest to predict, it is therefore plausible that the Gaussian process
gives rise to the smallest pre-log.



Chapter 6

Multipath Fading Channels

6.1 Introduction

In this chapter, we study the capacity of discrete-time multipath fading
channels. In multipath fading channels, the transmitted signal propa-
gates along a multitude of paths, and the gains and delays of these paths
vary over time. In general, the path delays differ from each other, and
the receiver thus observes a weighted sum of delayed replicas of the
transmitted signal, where the weights are random. We shall slightly
abuse nomenclature and refer to each summand in the received signal
as a path, and to the corresponding weight as its path gain, even if it
is in fact composed of a multitude of paths. We consider a noncoher-
ent channel model, where transmitter and receiver are cognizant of the
statistics of the path gains, but are ignorant of their realization.

Multipath fading channels arise in wireless communication, where ob-
stacles in the surroundings reflect the transmitted signal and force it to
propagate along multiple paths, and where relative movements of trans-
mitter, receiver, and obstacles lead to time-variations of the path gains
and delays. Examples of wireless communication scenarios where the
receiver observes typically more than one path include radio communi-
cation (particularly if the transmitted signal is of large bandwidth as,
for example, in Ultra-Wideband or in CDMA) and underwater acoustic
communication.

The capacity of noncoherent multipath fading channels has been inves-
tigated extensively in the wideband regime, where the signal-to-noise
ratio (SNR) is typically small. It was shown by Kennedy that, in the
limit as the available bandwidth tends to infinity, the capacity of the
fading channel is the same as the capacity of the additive white Gaus-
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sian noise (AWGN) channel of equal received power; see [14, Sec. 8.6]
and references therein.

To the best of our knowledge, not much is known about the capacity
of noncoherent multipath fading channels at high SNR. For the special
case of noncoherent frequency-flat fading channels (where we only have
one path), it was shown by Lapidoth and Moser [28] that if the fad-
ing process is of finite entropy rate, then at high SNR capacity grows
double-logarithmically in the SNR (see also Chapter 4). This is much
slower than the logarithmic growth of the AWGN capacity [40].

We study the high-SNR behavior of the capacity of noncoherent mul-
tipath fading channels (where the number of paths is typically greater
than one). We demonstrate that the capacity of such channels does
not merely grow slower with the SNR than the capacity of the AWGN
channel, but may be even bounded in the SNR. In other words, for such
channels the capacity does not necessarily tend to infinity as the SNR
tends to infinity.

We derive a necessary and a sufficient condition for the capacity to
be bounded in the SNR. We show that if the variances of the path
gains decay exponentially or slower, then the capacity is bounded in
the SNR. In contrast, if the variances of the path gains decay faster
than exponentially, then the capacity is unbounded in the SNR. We
further show that if the number of paths is finite, then at high SNR
capacity increases double-logarithmically with the SNR, and the capac-
ity pre-loglog, which is defined as the limiting ratio of the capacity to
log log SNR as SNR tends to infinity, is 1, irrespective of the number of
paths.

The rest of this chapter is organized as follows. Section 6.2 describes the
channel model. Section 6.3 is devoted to channel capacity. Section 6.4
summarizes our main results. Sections 6.5 and 6.6 derive the upper
bounds and the lower bounds on the capacity, respectively, that are
used to prove these results. Section 6.7 concludes with a brief summary
and a discussion of our results.
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6.2 Channel Model

We consider a discrete-time multipath fading channel whose channel
output Yk ∈ C at time k ∈ N corresponding to the time-1 through
time-k channel inputs x1, . . . , xk ∈ C is given by

Yk =
k−1∑
�=0

H
(�)
k xk−� + Zk, k ∈ N. (6.1)

Here {Zk, k ∈ Z} models additive noise, and H
(�)
k denotes the time-k

gain of the �-th path. We assume that {Zk, k ∈ Z} is a sequence of
independent and identically distributed (IID), zero-mean, variance-σ2,
circularly-symmetric, complex Gaussian random variables. For each
path � ∈ N0, we assume that

{
H

(�)
k , k ∈ Z

}
is a zero-mean complex

stationary process. We denote its variance and its differential entropy
rate by

α� � E
[∣∣H(�)

k

∣∣2] , � ∈ N0 (6.2)

and

h� � lim
n→∞

1
n
h
(
H

(�)
1 , . . . , H(�)

n

)
, � ∈ N0. (6.3)

We shall say that the channel has a finite number of paths, if for some
finite integer L ∈ N0

H
(�)
k = 0,

(
� > L, k ∈ N

)
. (6.4)

We assume that α0 > 0. We further assume that

sup
�∈N0

α� <∞ (6.5)

and
inf
�∈L

h� > −∞, (6.6)

where the set L is defined as L � {� ∈ N0 : α� > 0}. (In Chapter 4
we referred to processes that satisfy condition (6.6) as regular. When
the path gains are Gaussian, then this condition is equivalent to saying
that the mean-square error in predicting the present path gain from
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its past is strictly positive, i.e., that the present path gain cannot be
predicted perfectly from its past.) We finally assume that the processes{

H
(0)
k , k ∈ Z

}
,
{
H

(1)
k , k ∈ Z

}
, . . .

are independent (“uncorrelated scattering”); that they are jointly in-
dependent of {Zk, k ∈ Z}; and that the joint law of(

{Zk, k ∈ Z},{H(0)
k , k ∈ Z

}
,
{
H

(1)
k , k ∈ Z

}
, . . .

)
does not depend on the input sequence {xk}. We consider a noncoher-
ent channel model where the transmitter and the receiver are aware of
the statistics of

{
H

(�)
k , k ∈ Z

}
, � ∈ N0, but not of their realizations.

We do not assume that the path gains are Gaussian.

The channel (6.1) is akin to the channel (3.8) studied in Chapter 3.
Indeed, in the Gaussian case, i.e., when the path gains in (6.1) as well
as the noise {Uk, k ∈ Z} in (3.8) are Gaussian processes, the heating-up
channel (3.8) can be viewed as a real-valued version of the multipath
channel (6.1)—except that in (3.8) the gain of the shortest path is
deterministic rather than a stochastic process.

6.3 Channel Capacity

We study the information capacity of the above channel (6.1) under an
average-power constraint on the inputs, which is defined as (2.4)

CInfo(SNR) � lim
n→∞

1
n

sup I
(
Xn

1 ;Y n
1

)
, (6.7)

where the supremum is over all joint distributions on X1, . . . , Xn sat-
isfying the power constraint

1
n

n∑
k=1

E
[|Xk|2

] ≤ P, (6.8)

and where SNR is defined as

SNR � P

σ2
. (6.9)
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Recall that, by Fano’s inequality, no rate above CInfo(SNR) is achiev-
able, i.e., we have C(SNR) ≤ CInfo(SNR), where C(SNR) denotes the
capacity under the input constraint (6.8). (Recall that the capacity was
defined in Section 2.1 as the supremum of all achievable rates.) The
information capacity CInfo(SNR) is achievable, for example, if the num-
ber of paths is finite, and if the processes corresponding to these paths{
H

(0)
k , k ∈ Z

}
, . . . ,

{
H

(L)
k , k ∈ Z

}
are jointly ergodic [20, Thm. 2].

Note 6.1. The results in this chapter do not change if (6.8) is replaced
by the peak-power constraint (2.2). Indeed, all upper bounds are derived
under the average-power constraint (6.8), while all lower bounds are
derived under the peak-power constraint (2.2). Since any distribution
on the inputs satisfying (2.2) satisfies also (6.8), it follows that all
bounds derived in this chapter hold irrespective of whether an average-
power constraint or a peak-power constraint is imposed.

The special case of noncoherent frequency-flat fading channels (where
we have only one path) was studied by Lapidoth and Moser [28] (see
also (4.12)). They showed that if the fading process

{
H

(0)
k , k ∈ Z

}
is

ergodic, then the capacity satisfies [28, Thm. 4.41]

lim
SNR→∞

{
C(SNR) − log log SNR

}
= log π + E

[
log
∣∣H(0)

1

∣∣2]− h0. (6.10)

Thus, at high SNR, the capacity of noncoherent frequency-flat fad-
ing channels grows double-logarithmically with the SNR. Lapidoth and
Moser concluded that communicating over noncoherent frequency-flat
fading channels at high SNR is extremely power-inefficient, as one
should expect to square the SNR for every additional bit per chan-
nel use.1

In this chapter, we show inter alia that communicating over nonco-
herent multipath fading channels at high SNR is not merely power-
inefficient, but may be even worse: if the delay spread is large in the
sense that the sequence {α�} (which describes the variances of the path
gains) decays exponentially or slower, then the capacity is bounded in

1Note that the capacity of coherent fading channels (where the fading realization
is known to the receiver) grows logarithmically with the SNR [11]. Thus in the
coherent case it suffices to double the SNR for every additional bit per channel use.
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the SNR. For such channels, capacity does not tend to infinity as the
SNR tends to infinity. The main results of this chapter are presented
in the following section.

6.4 Main Results

Our main results are a sufficient and a necessary condition on {α�}
for CInfo(SNR) to be bounded in SNR, as well as a characterization
of the capacity pre-loglog when the number of paths is finite. Since
C(SNR) ≤ CInfo(SNR), it follows that any condition that implies that
CInfo(SNR) is bounded implies also that C(SNR) is bounded.

Theorem 6.1. Consider the above channel model. Then

(i)
(

lim
�→∞

α�+1

α�
> 0
)

=⇒
(

sup
SNR>0

C(SNR) <∞
)

(6.11)

(ii)
(

lim
�→∞

1
�

log
1
α�

= ∞
)

=⇒
(

sup
SNR>0

CInfo(SNR) = ∞
)
, (6.12)

where we define a/0 � ∞ for every a > 0 and 0/0 � 0.

Proof. Part (i) is proven in Section 6.5.1, and Part (ii) is proven in
Sections 6.6.1 and 6.6.2.

By noting that(
lim

�→∞
α�+1

α�
= 0
)

=⇒
(

lim
�→∞

1
�

log
1
α�

= 0
)

we obtain from Theorem 6.1 the immediate corollary:

Corollary 6.2. Consider the above channel model. Then

(i)
(

lim
�→∞

α�+1

α�
> 0
)

=⇒
(

sup
SNR>0

C(SNR) <∞
)

(6.13)

(ii)
(

lim
�→∞

α�+1

α�
= 0
)

=⇒
(

sup
SNR>0

CInfo(SNR) = ∞
)
, (6.14)

where we define a/0 � ∞ for every a > 0 and 0/0 � 0.
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For example, if
α� = e−�, � ∈ N0, (6.15)

then
lim

�→∞
α�+1

α�
=

1
e
> 0 (6.16)

and it follows from Part (i) of Corollary 6.2 that the capacity is bounded
in the SNR. On the other hand, if

α� = exp
(−�κ), � ∈ N0, for some κ > 1, (6.17)

then
lim

�→∞
α�+1

α�
= lim

�→∞
exp
(
�κ − (�+ 1)κ

)
= 0 (6.18)

and it follows from Part (ii) of Corollary 6.2 that the (information)
capacity is unbounded in the SNR. Roughly speaking, we can say that
when {α�} decays exponentially or slower, CInfo(SNR) (and hence also
C(SNR)) is bounded in SNR, and when {α�} decays faster than expo-
nentially, CInfo(SNR) is unbounded in SNR.

The condition on the left-hand side (LHS) of (6.14) is certainly satisfied
if the channel has a finite number of paths, as in this case

H
(�)
k = 0,

(
� > L, k ∈ N

)
,

which implies

α� = 0, � > L and
α�+1

α�
=

0
0

� 0, � > L.

Moreover, it was shown that in this case the information capacity is
achievable, i.e., C(SNR) = CInfo(SNR) [20, Thm. 2]. Consequently, it
follows from Corollary 6.2 that if the number of paths is finite, then
C(SNR) is unbounded in SNR. However, for this case the high-SNR
behavior of the capacity can be characterized more accurately: The-
orem 6.3 ahead shows that if the number of paths is finite, then the
capacity pre-loglog, which is defined as

Λ � lim
SNR→∞

C(SNR)
log log SNR

, (6.19)

is 1, irrespective of the number of paths. The pre-loglog in this case is
thus the same as for frequency-flat fading.
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Theorem 6.3. Consider the above channel model. Further assume that
the number of paths is finite. Then, irrespective of the number of paths,
the capacity pre-loglog is given by

Λ = lim
SNR→∞

C(SNR)
log log SNR

= 1. (6.20)

Proof. See Section 6.5.2 for the converse and Sections 6.6.1 and 6.6.3
for the direct part.

When studying multipath fading channels at low or at moderate SNR,
it is often assumed that the channel has a finite number of paths, even if
the number of paths is in reality infinite. This assumption is commonly
justified by saying that only the first (L + 1) paths are relevant, since
the variances of the remaining paths are typically small and hence the
influence of these paths on the capacity is marginal. As we see from
Theorems 6.1 and 6.3, this argument is not valid anymore when study-
ing multipath fading channels at high SNR. In fact, when for example
the sequence of variances {α�} decays exponentially, then according to
Part (i) of Theorem 6.1 the capacity is bounded in the SNR. However,
if we consider only the first (L+1) paths and set the other paths to zero,
then it follows from Theorem 6.3 that, irrespective of L, the capacity
increases double-logarithmically with the SNR. Thus, even though the
variances of the remaining paths α�, � > L can be made arbitrarily
small by choosing L sufficiently large, these paths have a significant
influence on the capacity behavior at high SNR.

The reason why paths with a small variance can affect the capacity
behavior is that the capacity depends on the variance of the product
between the path gains and the transmitted signal, and not on the
variance of the path gains only. Since at high SNR the variance of∑∞

�=L+1H
(�)
k Xk−� might be huge even if the variance of

∑∞
�=L+1H

(�)
k

is small, the relevance of a path is determined not only by its own vari-
ance, but also by the power available at the transmitter. The number
of paths that are needed to approximate a multipath channel typically
depends on the SNR and may grow to infinity as the SNR tends to
infinity.
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In order to prove the above results, we derive upper and lower bounds
on the capacity. Since these bounds may also be of independent inter-
est, we summarize them in the following propositions.

Proposition 6.4 (Upper Bounds).

(i) Consider the above channel model. Further assume that for some
0 < ρ < 1 and some �0 ∈ N

α�0 > 0 and
α�+1

α�
≥ ρ, � ≥ �0.

Then the capacity C(SNR) is upper bounded by

C(SNR) ≤ log
2π2

√
ρ̃
− inf

�∈L
(h� − logα�), (6.21)

where
ρ̃ = min

{
ρ�0−1 α�0

max0≤�′<�0 α�′
, ρ�0

}
. (6.22)

(ii) Consider the above channel model. Further assume that

∞∑
�=0

α� <∞. (6.23)

Then

lim
SNR→∞

{
C(SNR) − log log SNR

}
≤ 1 + log π − inf

�∈L
(h� − logα�). (6.24)

Proof. Part (i) is proven in Section 6.5.1 and Part (ii) is proven in
Section 6.5.2.

For example, if {α�} is a geometric sequence, i.e.,

α� = ρ�, � ∈ N0, for some 0 < ρ < 1,

and if the path gains are Gaussian and memoryless, so

h� = log(πeα�), � ∈ N0,
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then Part (i) of Proposition 6.4 yields

C(SNR) ≤ log
2π√
ρ
− 1. (6.25)

Part (ii) of Proposition 6.4 combines with (6.10) to show that the pre-
loglog of a multipath fading channel can never be larger than the pre-
loglog of a frequency-flat fading channel. This result is consistent with
the intuition that at high SNR the multipath behavior is detrimental.

Our last result is a lower bound on the capacity. This bound is the
basis for the proof of Part (ii) of Theorem 6.1 and for the direct part
of Theorem 6.3.

Proposition 6.5 (Lower Bound). Consider the above channel model.
Further assume that

∞∑
�=0

α� <∞. (6.26)

Let L(P) ∈ N be some positive integer that satisfies

∞∑
�=L(P)+1

α� P ≤ σ2 (6.27)

(typically L(P) depends on P), and let τ ∈ N be some arbitrary posi-
tive integer that is allowed to depend on L(P). Then the information
capacity is lower bounded by

CInfo(SNR) ≥ τ

L(P) + τ
log log P1/τ +

τ

L(P) + τ
Υ, P > 1, (6.28)

where

Υ � E
[
log
∣∣H(0)

1

∣∣2]− 1 − 2 log
(√

α0 +
√
α+ 2σ2

)
. (6.29)

Proof. See Section 6.6.1.
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6.5 Proofs of the Upper Bounds

In this section, we establish a proof of Proposition 6.4, which in turn
will be used to prove Part (i) of Theorem 6.1 and the converse to
Theorem 6.3.

Section 6.5.1 proves Part (i) of Proposition 6.4 and demonstrates that
Part (i) of Theorem 6.1 follows immediately from this result. Sec-
tion 6.5.2 proves Part (ii) of Proposition 6.4. This part provides an
upper bound on the capacity pre-loglog and will be used later, together
with a capacity lower bound that is derived in Section 6.6, to establish
Theorem 6.3.

6.5.1 Bounded Capacity

We provide a proof of Part (i) of Proposition 6.4 by deriving an upper
bound on channel capacity that holds under the assumption that for
some 0 < ρ < 1 and some �0 ∈ N0

α�0 > 0 and
α�+1

α�
≥ ρ, � ≥ �0. (6.30)

As this bound is finite for SNR ≥ 0, Part (i) of Theorem 6.1 follows
immediately from Part (i) of Proposition 6.4 by noting that if

lim
�→∞

α�+1

α�
> 0,

then we can find a 0 < ρ < 1 and an �0 ∈ N satisfying (6.30).

The proof of the desired upper bound is akin to the proof of the upper
bound derived in Section 3.6.1. (However, in Chapter 3 we studied
a channel with real-valued inputs and outputs, while here we study a
channel with complex-valued inputs and outputs.) It is based on (2.6),
(6.7), and on an upper bound on 1

nI(X
n
1 ;Y n

1 ). To this end, we begin
with the chain rule for mutual information [5, Thm. 2.5.2]

1
n
I(Xn

1 ;Y n
1 ) =

1
n

�0∑
k=1

I
(
Xn

1 ;Yk

∣∣ Y k−1
1

)
+

1
n

n∑
k=�0+1

I
(
Xn

1 ;Yk

∣∣ Y k−1
1

)
. (6.31)
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Each term in the first sum on the right-hand side (RHS) of (6.31) is
upper bounded by

I
(
Xn

1 ;Yk

∣∣ Y k−1
1

) ≤ h(Yk) − h
(
Yk

∣∣∣ Y k−1
1 , Xn

1 , H
(0)
k , . . . , H

(k−1)
k

)
≤ log

(
πe

(
σ2 +

k−1∑
�=0

α�E
[|Xk−�|2

]))− log
(
πeσ2

)
≤ log

(
1 + sup

�∈N0

α� n SNR
)
, (6.32)

where the first inequality follows because conditioning cannot increase
differential entropy; the second inequality follows from the entropy
maximizing property of Gaussian random variables [5, Thm. 9.6.5];
and the last inequality follows by upper bounding

α� ≤ sup
�′∈N0

α�′ , � = 0, . . . , k − 1

and from the power constraint (6.8).

For k = �0+1, . . . , n, we upper bound I(Xn
1 ;Yk|Y k−1

1 ) using the general
upper bound for mutual information (Theorem 2.1)

I(X ;Y ) ≤
∫
D
(
W (·|x) ∥∥ R(·)) dQ(x). (6.33)

For any given Y k−1
1 = yk−1

1 , we choose the output distribution R(·) to
be of density √

β

π2|yk|
1

1 + β|yk|2 , yk ∈ C, (6.34)

with β = 1/(ρ̃|yk−�0 |2) and2

ρ̃ = min
{
ρ�0−1 α�0

max0≤�′<�0 α�′
, ρ�0

}
. (6.35)

With this choice

0 < ρ̃ < 1 and ρ̃ α� ≤ α�+�0 , � ∈ N0. (6.36)
2When yk−�0 = 0, the density (6.34) is undefined. However, this event

is of zero probability and has therefore no impact on the mutual information
I

`
Xn

1 ; Yk

˛
˛ Y k−1

1

´
.
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Using (6.34) in (6.33), and averaging over Y k−1
1 , we obtain

I
(
Xn

1 ;Yk

∣∣ Y k−1
1

)
≤ 1

2
E
[
log |Yk|2

]
+

1
2
E
[
log
(
ρ̃|Yk−�0 |2

)]
+ E

[
log
(

1 +
|Yk|2

ρ̃|Yk−�0 |2
)]

− h
(
Yk

∣∣ Xn
1 , Y

k−1
1

)
+ log π2

=
1
2
E
[
log |Yk|2

]− 1
2
E
[
log |Yk−�0 |2

]
+ E

[
log
(
ρ̃|Yk−�0 |2 + |Yk|2

)]
− h
(
Yk

∣∣ Xn
1 , Y

k−1
1

)
+ log

π2

√
ρ̃
. (6.37)

We bound the third and the fourth term in (6.37) individually. We
begin with

E
[
log
(
ρ̃|Yk−�0 |2 + |Yk|2

)]
= E

[
E
[
log
(
ρ̃|Yk−�0 |2 + |Yk|2

) ∣∣ Xk
1

]]
≤ E

[
log
(
ρ̃E
[ |Yk−�0 |2

∣∣ Xk
1

]
+ E

[ |Yk|2
∣∣ Xk

1

])]
= E

[
log
(

(1 + ρ̃)σ2 +
k−�0−1∑

�=0

ρ̃ α�|Xk−�0−�|2 +
k−1∑
�=0

α�|Xk−�|2
)]

≤ E

[
log
(

2σ2 +
k−�0−1∑

�=0

α�+�0 |Xk−�0−�|2 +
k−1∑
�=0

α�|Xk−�|2
)]

= E

[
log
(

2σ2 +
k−1∑
�′=�0

α�′ |Xk−�′ |2 +
k−1∑
�=0

α�|Xk−�|2
)]

≤ log 2 + E

[
log
(
σ2 +

k−1∑
�=0

α�|Xk−�|2
)]

, (6.38)

where the second step follows from Jensen’s inequality; the third step
follows by evaluating the conditional expectations; the fourth step fol-
lows from (6.36); the fifth step follows by substituting �′ = �+ �0; and
the sixth step follows because with probability one

k−1∑
�=�0

α�|Xk−�|2 ≤
k−1∑
�=0

α�|Xk−�|2.
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Next we derive a lower bound on h
(
Yk

∣∣Xn
1 , Y

k−1
1

)
. Let{

H
(�)
k′

}k−1

k′=1
=
(
H

(�)
1 , . . . , H

(�)
k−1

)
, � ∈ N0, (6.39)

and let

Hk−1
1 �

({
H

(0)
k′

}k−1

k′=1
, . . . ,

{
H

(k−1)
k′

}k−1

k′=1

)
. (6.40)

We have

h
(
Yk

∣∣ Xn
1 , Y

k−1
1

) ≥ h
(
Yk

∣∣ Xn
1 , Y

k−1
1 ,Hk−1

1

)
= h

(
Yk

∣∣ Xn
1 ,H

k−1
1

)
, (6.41)

where the inequality follows because conditioning cannot increase dif-
ferential entropy; and where the equality follows because, conditional
on
(
Xn

1 ,H
k−1
1

)
, Yk is independent of Y k−1

1 . Let Sk be defined as

Sk � {0 ≤ � < k : |xk−�|2 α� > 0}. (6.42)

Using the entropy power inequality [5, Thm. 16.6.3], and using that the
processes {

H
(0)
k , k ∈ Z

}
,
{
H

(1)
k , k ∈ Z

}
, . . .

are independent and jointly independent of Xn
1 , it is shown in Ap-

pendix C that for any given Xn
1 = xn

1

h

(
k−1∑
�=0

H
(�)
k Xk−� + Zk

∣∣∣∣∣ Xn
1 = xn

1 ,H
k−1
1

)

≥ log

(∑
�∈Sk

e
h

(
H

(�)
k Xk−�

∣∣∣Xk−�=xk−�,
{

H
(�)
k′
}k−1

k′=1

)
+ eh(Zk)

)
. (6.43)

We lower bound the differential entropies on the RHS of (6.43) as fol-
lows. The differential entropies in the sum are lower bounded by

h

(
H

(�)
k Xk−�

∣∣∣∣ Xk−� = xk−�,
{
H

(�)
k′

}k−1

k′=1

)
= log

(
α�|xk−�|2

)
+ h

(
H

(�)
k

∣∣∣∣ {H(�)
k′

}k−1

k′=1

)
− logα�

≥ log
(
α�|xk−�|2

)
+ inf

�∈L
(
h� − logα�

)
, � ∈ Sk, (6.44)
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where the equality follows from the behavior of differential entropy
under scaling [5, Thm. 9.6.4]; and where the inequality follows from
the stationarity of the process

{
H

(�)
k , k ∈ Z

}
, which implies that the

conditional differential entropy

h

(
H

(�)
k

∣∣∣∣ {H(�)
k′

}k−1

k′=1

)
, � ∈ Sk

cannot be smaller than the differential entropy rate h� [5, Thms. 4.2.1
& 4.2.2], and by lower bounding (h� − logα�) by inf�∈L(h� − logα�)
(which holds for each � ∈ Sk because Sk ⊆ L). The last differential
entropy on the RHS of (6.43) is lower bounded by

h(Zk) = log(πeσ2) ≥ inf
�∈L
(
h� − logα�

)
+ log σ2, (6.45)

which follows because conditioning cannot increase differential entropy,
and because Gaussian random variables maximize differential entropy:

inf
�∈L
(
h� − logα�

) ≤ inf
�∈L

(
h
(
H

(�)
k

)
− logα�

)
≤ inf

�∈L
(
log(πeα�) − logα�

)
= log(πe). (6.46)

Applying (6.44) and (6.45) to (6.43), and averaging over Xn
1 , yields

h
(
Yk

∣∣ Xn
1 , Y

k−1
1

)
≥ E

[
log

(∑
�∈Sk

α�|Xk−�|2einf�∈L(h�−log α�) + σ2einf�∈L(h�−log α�)

)]

= E

[
log
(
σ2 +

k−1∑
�=0

α�|Xk−�|2
)]

+ inf
�∈L
(
h� − logα�

)
. (6.47)

Returning to the analysis of (6.37), we obtain from (6.38) and (6.47)

I
(
Xn

1 ;Yk

∣∣ Y k−1
1

)
≤ 1

2
E
[
log |Yk|2

]− 1
2
E
[
log |Yk−�0 |2

]
+ log 2 + E

[
log
(
σ2 +

k−1∑
�=0

α�|Xk−�|2
)]



144 6.5. Proofs of the Upper Bounds

− E

[
log
(
σ2 +

k−1∑
�=0

α�|Xk−�|2
)]

− inf
�∈L
(
h� − logα�

)
+ log

π2

√
ρ̃

=
1
2
E
[
log |Yk|2

]− 1
2
E
[
log |Yk−�0 |2

]
+ K, (6.48)

where K is defined as

K � log
2π2

√
ρ̃
− inf

�∈L
(
h� − logα�

)
. (6.49)

Applying (6.48) and (6.32) to (6.31), we have

1
n
I(Xn

1 ;Y n
1 )

≤ 1
n

�0∑
k=1

log
(
1 + sup

�∈N0

α� n SNR
)

+
1
n

n∑
k=�0+1

(
1
2
E
[
log |Yk|2

]− 1
2
E
[
log |Yk−�0 |2

]
+ K

)
=
�0
n

log
(
1 + sup

�∈N0

α� n SNR
)

+
n− �0
n

K

+
1
2n

n∑
k=�0+1

(
E
[
log |Yk|2

]− E
[
log |Yk−�0 |2

])
. (6.50)

To show that the RHS of (6.50) is bounded in the SNR, we use that,
for any sequences {ak} and {bk},

n∑
k=�0+1

(ak − bk) =
n∑

k=n−�0+1

(ak − bk−n+2�0) +
n−�0∑

k=�0+1

(ak − bk+�0). (6.51)

Defining
ak � E

[
log |Yk|2

]
(6.52)

and
bk � E

[
log |Yk−�0 |2

]
(6.53)
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we have for the first sum on the RHS of (6.51)

n∑
k=n−�0+1

(ak − bk−n+2�0)

=
n∑

k=n−�0+1

(
E
[
log |Yk|2

]− E
[
log |Yk−n+�0 |2

])
≤

n∑
k=n−�0+1

(
log E

[|Yk|2
]− E

[
log |Yk−n+�0 |2

])
≤

n∑
k=n−�0+1

(
log
(
σ2 + sup

�∈N0

α� nP
)
− E

[
log |Yk−n+�0 |2

])

≤
n∑

k=n−�0+1

(
log
(
σ2 + sup

�∈N0

α� nP
)
− E

[
log |Zk−n+�0 |2

])
= �0 log

(
1 + sup

�∈N0

α� n SNR
)

+ �0γ, (6.54)

where γ ≈ 0.577 denotes Euler’s constant. Here the second step follows
from Jensen’s inequality; the third step follows by upper bounding

E
[|Yk|2

]
= σ2 +

k−1∑
�=0

α�E
[|Xk−�|2

] ≤ σ2 + sup
�∈N0

α� nP;

the fourth step follows by noting that, conditional on∑k−n+�0−1
�=0 H

(�)
k−n+�0

Xk−n+�0−� = ζ, the random variable |Yk−n+�0 |2
is of a Gaussian law of mean ζ and variance σ2, so |Yk−n+�0 |2 is
stochastically larger than |Zk−n+�0 |2 [28, Lemma 6.2b)] and hence

E

[
log |Yk−n+�0 |2

∣∣∣∣∣
k−n+�0−1∑

�=0

H
(�)
k−n+�0

Xk−n+�0−� = ζ

]

≥ E

[
log |Zk−n+�0 |2

∣∣∣∣∣
k−n+�0−1∑

�=0

H
(�)
k−n+�0

Xk−n+�0−� = ζ

]

from which we obtain the lower bound

E
[
log |Yk−n+�0 |2

] ≥ E
[
log |Zk−n+�0 |2

]
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upon averaging over
∑k−n+�0−1

�=0 H
(�)
k−n+�0

Xk−n+�0−� (see [28, Sec. VI–
B] on stochastic ordering); and the last step follows by evaluating the
expected logarithm of an exponentially distributed random variable of
mean σ2, i.e., E

[
log |Zk−n+�0 |2

]
= log σ2 − γ.

For the second sum on the RHS of (6.51) we have

n−�0∑
k=�0+1

(ak − bk+�0) =
n−�0∑

k=�0+1

(
E
[
log |Yk|2

]− E
[
log |Yk|2

])
= 0. (6.55)

Thus, applying (6.51)–(6.55) to (6.50), yields

1
n
I(Xn

1 ;Y n
1 ) ≤ 3�0

2n
log
(
1 + sup

�∈N0

α� n SNR
)

+
n− �0
n

K +
�0
2n
γ, (6.56)

which tends to

K = log
2π2

√
ρ̃
− inf

�∈L
(
h� − logα�

)
as n tends to infinity. This proves Part (i) of Proposition 6.4.

6.5.2 Unbounded Capacity

We prove Part (ii) of Proposition 6.4 by deriving an upper bound on
the capacity that holds under the assumption (6.26), namely,

∞∑
�=0

α� <∞.

From this upper bound follows that

lim
SNR→∞

{
C(SNR) − log log SNR

}
<∞, (6.57)

which in turn shows that the capacity pre-loglog is upper bounded by

Λ � lim
SNR→∞

C(SNR)
log log SNR

≤ 1. (6.58)

This yields the converse to Theorem 6.3.
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As in Section 6.5.1, the desired upper bound is based on (2.6), (6.7),
and on an upper bound on 1

nI(X
n
1 ;Y n

1 ). To this end, we begin with
the chain rule for mutual information

I
(
Xn

1 ;Y n
1

)
=

n∑
k=1

I
(
Xn

1 ;Yk

∣∣ Y k−1
1

)
(6.59)

and upper bound each summand on the RHS of (6.59) using [28,
Eq. (27)]

I
(
Xn

1 ;Yk

∣∣ Y k−1
1

)
≤ E

[
log |Yk|2

]− h
(
Yk

∣∣ Xn
1 , Y

k−1
1

)
+ ξ
(
1 + log E

[|Yk|2
]− E

[
log |Yk|2

])
+ log Γ(ξ) − ξ log ξ + log π

= (1 − ξ)E
[
log |Yk|2

]− h
(
Yk

∣∣ Xn
1 , Y

k−1
1

)
+ ξ
(
1 + log E

[|Yk|2
])

+ log Γ(ξ) − ξ log ξ + log π, (6.60)

for any ξ > 0. Here Γ(·) denotes the Gamma function.

We evaluate the terms on the RHS of (6.60) individually. We upper
bound the first term using Jensen’s inequality

E
[
log |Yk|2

]
= E

[
E
[
log |Yk|2

∣∣ Xk
1

]]
≤ E

[
log E

[ |Yk|2
∣∣ Xk

1

]]
= E

[
log
(
σ2 +

k−1∑
�=0

α�|Xk−�|2
)]

. (6.61)

The second term was already evaluated in (6.47)

h
(
Yk

∣∣ Xn
1 , Y

k−1
1

)
≥ E

[
log
(
σ2 +

k−1∑
�=0

α�|Xk−�|2
)]

+ inf
�∈L
(
h� − α�

)
, (6.62)

and the next term is readily evaluated as

log E
[|Yk|2

]
= log

(
σ2 +

k−1∑
�=0

α�E
[|Xk−�|2

])
. (6.63)
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Our choice of ξ will satisfy ξ < 1 (see (6.65) ahead). We therefore
obtain, upon substituting (6.61)–(6.63) in (6.60),

I
(
Xn

1 ;Yk

∣∣Y k−1
1

)
≤ (1 − ξ)E

[
log
(
σ2 +

k−1∑
�=0

α�|Xk−�|2
)]

− E

[
log
(
σ2 +

k−1∑
�=0

α�|Xk−�|2
)]

− inf
�∈L
(
h� − α�

)
+ ξ

(
1 + log

(
σ2 +

k−1∑
�=0

α�E
[|Xk−�|2

]))
+ log Γ(ξ) − ξ log ξ + log π

= − inf
�∈L
(
h� − α�

)
+ log Γ(ξ) − ξ log ξ + log π

+ ξ

(
1 + log

(
σ2 +

k−1∑
�=0

α�E
[|Xk−�|2

])

− E

[
log
(
σ2 +

k−1∑
�=0

α�|Xk−�|2
)])

≤ − inf
�∈L
(
h� − α�

)
+ log Γ(ξ) − ξ log ξ + log π

+ ξ

(
1 + log

(
1 +

k−1∑
�=0

α�E
[|Xk−�|2

]
/σ2

))
, (6.64)

where the last inequality follows by lower bounding

E

[
log
(
σ2 +

k−1∑
�=0

α�|Xk−�|2
)]

≥ log σ2.

We choose
ξ =

1
1 + log

(
1 + α SNR

) , (6.65)

where

α �
∞∑

�=0

α�.
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Defining

Ψ(SNR) �
[
log Γ(ξ) − log

1
ξ
− ξ log ξ

∣∣∣∣
ξ=
(
1+log(1+α SNR)

)−1
, (6.66)

we obtain

I
(
Xn

1 ;Yk

∣∣ Y k−1
1

)
≤ − inf

�∈L
(
h� − α�

)
+ log

(
1 + log(1 + α SNR)

)
+ Ψ(SNR) + log π

+
1 + log

(
1 +

∑k−1
�=0 α�E

[|Xk−�|2
]
/σ2
)

1 + log(1 + α SNR)
. (6.67)

Using (6.67) in (6.59) yields then

1
n
I
(
Xn

1 ;Y n
1

)
≤ − inf

�∈L
(
h� − α�

)
+ log

(
1 + log(1 + α SNR)

)
+ Ψ(SNR) + log π

+
1 + 1

n

∑n
k=1 log

(
1 +

∑k−1
�=0 α�E

[|Xk−�|2
]
/σ2
)

1 + log(1 + α SNR)
. (6.68)

By Jensen’s inequality we have

1
n

n∑
k=1

log
(

1 +
k−1∑
�=0

α�E
[|Xk−�|2

]
/σ2

)

≤ log
(

1 +
1
n

n∑
k=1

k−1∑
�=0

α�E
[|Xk−�|2

]
/σ2

)
≤ log(1 + α SNR), (6.69)

where the last inequality follows by rewriting the double sum as

1
n

n∑
k=1

E
[|Xk|2

]
σ2

n−k∑
�=0

α�

and by upper bounding then
∑k−n

�=0 α� ≤ α and using the power con-
straint (6.8).
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Combining (6.69) and (6.68) with (6.7) and (2.6), we obtain the upper
bound

C(SNR) ≤ − inf
�∈L
(
h� − α�

)
+ log

(
1 + log(1 + α SNR)

)
+ Ψ(SNR) + log π + 1. (6.70)

It follows from [28, Eq. (337)] that

lim
SNR→∞

Ψ(SNR) = lim
ξ↓0

{
log Γ(ξ) − log

1
ξ
− ξ log ξ

}
= 0. (6.71)

Noting that

lim
SNR→∞

{
log
(
1 + log(1 + α SNR)

)− log log SNR
}

= 0,

we obtain from (6.70) and (6.71) the desired result

lim
SNR→∞

{
C(SNR) − log log SNR

} ≤ 1 + log π − inf
�∈L
(
h� − α�

)
. (6.72)

6.6 Proofs of the Lower Bounds

In Section 6.6.1, we derive the lower bound on channel capacity that
is presented in Proposition 6.5. This lower bound will be used in Sec-
tions 6.6.2 and 6.6.3 to prove Part (ii) of Theorem 6.1 and to prove the
direct part of Theorem 6.3, respectively.

6.6.1 Capacity Lower Bound

To derive the desired lower bound on the (information) capacity,
we evaluate 1

nI(X
n
1 ;Y n

1 ) for the following distribution on the inputs
{Xk, k ∈ Z}:
Let L(P) be such that

∞∑
�=L(P)+1

α� P ≤ σ2. (6.73)

To shorten notation, we shall write in the following L instead of L(P).
Let τ ∈ N be some positive integer that possibly depends on L, and let
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Xb = (Xb(L+τ)+1, . . . , X(b+1)(L+τ))T. We choose the sequence of vectors
{Xb, b ∈ Z} to be IID with

Xb =
(
0, . . . , 0︸ ︷︷ ︸

L

, X̃bτ+1, . . . , X̃(b+1)τ

)T
,

where X̃bτ+1, . . . , X̃(b+1)τ is a sequence of independent, zero-mean,
circularly-symmetric, complex random variables with log |X̃bτ+ν |2 be-
ing uniformly distributed over the interval

[
log P(ν−1)/τ , log Pν/τ

]
, i.e.,

for each ν = 1, . . . , τ

log |X̃bτ+ν |2 ∼ U
([

log P(ν−1)/τ , log Pν/τ
])
.

(Here and throughout this proof we assume that P > 1.)

Let κ �
⌊

n
L+τ

⌋
, and let Yb = (Yb(L+τ)+1, . . . , Y(b+1)(L+τ))T. By the

chain rule for mutual information we have

I
(
Xn

1 ;Y n
1

) ≥ I
(
Xκ−1

0 ;Yκ−1
0

)
=

κ−1∑
b=0

I
(
Xb;Yκ−1

0

∣∣ Xb−1
0

)
≥

κ−1∑
b=0

I(Xb;Yb), (6.74)

where the first step follows by restricting the number of observables;
and where the last step follows by restricting the number of observables
and by noting that {Xb, b ∈ Z} is IID.

We continue by lower bounding each summand on the RHS of (6.74).
We use again the chain rule and that reducing observations cannot
increase mutual information to obtain

I(Xb;Yb) =
τ∑

ν=1

I
(
X̃bτ+ν;Yb

∣∣ X̃bτ+ν−1
bτ+1

)
≥

τ∑
ν=1

I
(
X̃bτ+ν;Yb(L+τ)+L+ν

∣∣ X̃bτ+ν−1
bτ+1

)
≥

τ∑
ν=1

I
(
X̃bτ+ν;Yb(L+τ)+L+ν

)
, (6.75)
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where we have additionally used in the last step that X̃bτ+1, . . . , X̃(b+1)τ

are independent.

Defining

Wbτ+ν �
b(L+τ)+L+ν−1∑

�=1

H
(�)
b(L+τ)+L+νXb(L+τ)+L+ν−� + Zb(L+τ)+L+ν ,

(6.76)
each summand on the RHS of (6.75) can be written as

I
(
X̃bτ+ν;Yb(L+τ)+L+ν

)
= I
(
X̃bτ+ν ;H(0)

b(L+τ)+L+νX̃bτ+ν +Wbτ+ν

)
.

(6.77)
A lower bound on (6.77) follows from the following lemma.

Lemma 6.6. Let the random variables X, H, and W have finite second
moments. Assume that both X and H are of finite differential entropy.
Further assume that X is independent of H; that X is independent of
W ; and that X�−−H�−−W forms a Markov chain. Then

I(X ;HX +W ) ≥ h(X) − E
[
log |X |2]+ E

[
log |H |2]

− E

[
log

(
πe

(
σH +

σW

|X |
)2
)]

, (6.78)

where σ2
H ≥ 0 and σ2

H > 0 denote the variances of W and H. (Note
that the assumptions that X and H have finite second moments and are
of finite differential entropy guarantee that E

[
log |X |2] and E

[
log |H |2]

are finite, see [28, Lemma 6.7e)].)

Proof. See [27, Lemma 4].

It can be easily verified that for the channel model given in Section 6.2
and for the above coding scheme the lemma’s conditions are satisfied.
We therefore obtain from Lemma 6.6

I
(
X̃bτ+ν;H(0)

b(L+τ)+L+νX̃bτ+ν +Wbτ+ν

)
≥ h

(
X̃bτ+ν

)− E
[
log |X̃bτ+ν |2

]
+ E

[
log
∣∣H(0)

b(L+τ)+L+ν

∣∣2]
− E

[
log

(
πe

(√
α0 +

√
E[|Wbτ+ν |2]
|X̃bτ+ν|

)2
)]

. (6.79)
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Using that the differential entropy of a circularly-symmetric random
variable is given by [28, Eqs. (320) & (316)]

h
(
X̃bτ+ν

)
= E

[
log |X̃bτ+ν |2

]
+ h
(
log |X̃bτ+ν|2

)
+ log π, (6.80)

and evaluating h(log |X̃bτ+ν |2) for our choice of X̃bτ+ν , yields for the
first two terms on the RHS of (6.79)

h
(
X̃bτ+ν

)− E
[
log |X̃bτ+ν|2

]
= log log P1/τ + log π. (6.81)

We next upper bound

E
[|Wbτ+ν |2

]
|X̃bτ+ν |2

=
L∑

�=1

α�

E
[|Xb(L+τ)+L+ν−�|2

]
|X̃bτ+ν |2

+
b(L+τ)+L+ν−1∑

�=L+1

α�

E
[|Xb(L+τ)+L+ν−�|2

]
|X̃bτ+ν |2

+
σ2

|X̃bτ+ν|2
. (6.82)

To this end, we note that for our choice of {Xk, k ∈ Z} and by the
assumption that P > 1, we have

E
[|X�|2

] ≤ P, � ∈ N, (6.83)

E
[|Xb(L+τ)+L+ν−�|2

] ≤ P(ν−�)/τ , � = 1, . . . ,L, (6.84)

and

|X̃bτ+ν|2 ≥ P(ν−1)/τ ≥ 1, (6.85)

from which we obtain

E
[|Xb(L+τ)+L+ν−�|2

]
|X̃bτ+ν |2

≤ P(ν−�)/τ

P(ν−1)/τ
≤ 1, � = 1, . . . ,L (6.86)

and

E
[|Xb(L+τ)+L+ν−�|2

]
|X̃bτ+ν |2

≤ P, L + 1 ≤ � < b(L + τ) + L + ν. (6.87)
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Applying (6.85)–(6.87) to (6.82) yields

E
[|Wbτ+ν |2

]
|X̃bτ+ν |2

≤
L∑

�=1

α� +
b(L+τ)+L+ν−1∑

�=L+1

α� P + σ2

≤ α+
∞∑

�=L+1

α� P + σ2

≤ α+ 2σ2, (6.88)

where

α �
∞∑

�=0

α�.

Here the second step follows because α�, � ∈ N0 and P are nonnegative,
and the last step follows from (6.73).

By combining (6.79) with (6.81) and (6.88), and by noting that by the
stationarity of

{
H

(0)
k , k ∈ Z

}
E
[
log
∣∣H(0)

b(L+τ)+L+ν

∣∣2] = E
[
log
∣∣H(0)

1

∣∣2] ,
we obtain the lower bound

I
(
X̃bτ+ν ;H(0)

b(L+τ)+L+νX̃bτ+ν +Wbτ+ν

)
≥ log log P1/τ + E

[
log
∣∣H(0)

1

∣∣2]− 1 − 2 log
(√
α0 +

√
α+ 2σ2

)
. (6.89)

Note that the RHS of (6.89) neither depends on ν nor on b. We there-
fore obtain from (6.89), (6.75), and (6.74)

I
(
Xn

1 ;Y n
1

) ≥ κτ log log P1/τ + κτΥ, (6.90)

where we define Υ as

Υ � E
[
log
∣∣H(0)

1

∣∣2]− 1 − 2 log
(√
α0 +

√
α+ 2σ2

)
.

Dividing the RHS of (6.90) by n, and computing the limit as n tends
to infinity, yields the lower bound

CInfo(SNR) ≥ τ

L + τ
log log P1/τ +

τ

L + τ
Υ, P > 1, (6.91)

where we have used that limn→∞ κ/n = 1/(L+ τ). This proves Propo-
sition 6.5.
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6.6.2 Condition for Unbounded Capacity

We use Proposition 6.5 to prove Part (ii) of Theorem 6.1. In particular,
we show that if

lim
�→∞

1
�

log
1
α�

= ∞, (6.92)

then, by cleverly choosing L(P) and τ , the lower bound (6.28), namely

CInfo(SNR) ≥ τ

L(P) + τ
log log P1/τ +

τ

L(P) + τ
Υ, P > 1,

can be made arbitrarily large as SNR tends to infinity. To this end, we
first note that (6.92) implies that for every 0 < � < 1 we can find an
�0 ∈ N such that

α� < ��, � ≥ �0. (6.93)

By choosing

L(P) =

⌈
log
(
P/σ2 �/(1 − �)

)
log(1/�)

⌉
and τ = L(P), (6.94)

we obtain from (6.28) the lower bound

CInfo(SNR) ≥ 1
2

log
log P⌈

log
(
P/σ2 �/(1−�)

)
log(1/�)

⌉ +
1
2
Υ, P > 1. (6.95)

Taking the limit as SNR (and hence also P = σ2SNR) tends to infinity,
yields

lim
SNR→∞

CInfo(SNR) ≥ 1
2

log log
1
�

+
1
2
Υ. (6.96)

Since this holds for every 0 < � < 1, we have

sup
SNR>0

CInfo(SNR) = ∞. (6.97)

It remains to show that {α�} and our choice of L(P) (6.94) satisfy the
conditions (6.26) and (6.27) of Proposition 6.5, namely

∞∑
�=0

α� <∞ and
∞∑

�=L(P)+1

α� P ≤ σ2.
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It follows immediately from (6.5) and (6.93) that {α�} satisfies the first
condition (6.26):

∞∑
�=0

α� =
�0−1∑
�=0

α� +
∞∑

�=�0

α�

< �0 sup
�∈N0

α� +
∞∑

�=�0

��

= �0 sup
�∈N0

α� +
��0

1 − �

<∞. (6.98)

In order to show that L(P) satisfies the second condition (6.27), we first
note that by (6.93)

∞∑
�=�′+1

α� <

∞∑
�=�′+1

�� = ��′ �

1 − �
, �′ ≥ �0 − 1. (6.99)

Since L(P) tends to infinity as P → ∞ (6.94), it follows that L(P)
is greater than (�0 − 1) for sufficiently large P. Furthermore, (6.94)
implies

�L(P) �

1 − �
P ≤ σ2. (6.100)

We therefore obtain from (6.99) and (6.100)

∞∑
�=L(P)+1

α� P < �L(P) �

1 − �
P ≤ σ2, (6.101)

thus demonstrating that L(P) satisfies (6.27).

6.6.3 The Pre-LogLog

We use Proposition 6.5 to prove Theorem 6.3. To this end, we first note
that because the number of paths is finite, we have for some L ∈ N0

α� = 0, � > L, (6.102)
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which implies that

∞∑
�=0

α� =
L∑

�=0

α� ≤ (L + 1) sup
�∈N0

α� <∞ (6.103)

and ∞∑
�=L+1

α�P = 0 ≤ σ2. (6.104)

We further note that C(SNR) = CInfo(SNR) [20, Thm. 2]. Conse-
quently, it follows from (6.28) of Proposition 6.5 that the capacity is
lower bounded by

C(SNR) ≥ τ

L + τ
log log P1/τ +

τ

L + τ
Υ, P > 1. (6.105)

Dividing the RHS of (6.105) by log log SNR, and computing the limit
as SNR → ∞, yields

lim
SNR→∞

C(SNR)
log log SNR

≥ τ

L + τ
, (6.106)

where we have used that for any fixed τ

lim
SNR→∞

log log P1/τ

log log SNR
= 1.

The lower bound on the capacity pre-loglog

Λ � lim
SNR→∞

C(SNR)
log log SNR

≥ lim
SNR→∞

C(SNR)
log log SNR

≥ 1 (6.107)

follows then by letting τ tend to infinity. Together with the upper
bound Λ ≤ 1, which was derived in Section 6.5.2, this proves Theo-
rem 6.3.

6.7 Conclusion

We studied the high-SNR behavior of the capacity of noncoherent mul-
tipath fading channels. We demonstrated that, depending on the decay
rate of the sequence {α�}, the capacity may be bounded or unbounded
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in the SNR. We further showed that if the number of paths is finite,
then at high SNR capacity grows double-logarithmically with the SNR,
and the capacity pre-loglog does not depend on the number of paths.
The picture that emerges is as follows:

• If the sequence of variances {α�} decays exponentially or slower,
then the capacity is bounded in the SNR.

• If the sequence of variances {α�} decays faster than exponentially,
then the capacity is unbounded in the SNR.

• If the number of paths is finite, then the capacity pre-loglog is
equal to 1, irrespective of the number of paths.

The conclusions that can be drawn from these results are twofold. First,
multipath channels with an infinite number of paths and multipath
channels with a finite number of paths have in general completely dif-
ferent capacity behaviors at high SNR. Indeed, at high SNR, if the
number of paths is finite, then capacity grows double-logarithmically
with the SNR, whereas if the number of paths is infinite, then the capac-
ity may even be bounded in the SNR. Thus, while for low and moderate
SNR it might be reasonable to approximate a multipath channel with
infinitely many paths by a multipath channel with only a finite num-
ber paths, this is not reasonable when the SNR tends to infinity. The
number of paths that are needed to approximate a multipath channel
typically depends on the SNR and may grow to infinity as the SNR
tends to infinity.

Second, the above results indicate that the high-SNR behavior of the
capacity of multipath fading channels depends critically on the assumed
channel model. Thus when studying such channels at high SNR, the
channel modeling is crucial, since slight changes in the channel model
might lead to completely different capacity results.



Chapter 7

Summary and Conclusion

In this dissertation we studied the effect of heating up and fading in
communication channels. In particular, we investigated the impact of
these phenomena on channel capacity.

The heating-up effect was studied in Chapter 3. We proposed a
channel model where the variance of the additive noise depends on
a weighted sum of the past channel input powers. To study the capac-
ity of this channel at low transmit powers, we computed the capacity
per unit cost. We showed that, irrespective of the distribution of the
additive noise, the heating-up effect is unharmful in the sense that the
capacity per unit cost cannot be smaller than the capacity per unit cost
of the channel with an ideal heat sink. We further showed that if the
noise is Gaussian, then the heating-up effect is even beneficial in the
sense that the capacity per unit cost is larger than the capacity per unit
cost of the channel with an ideal heat sinks. This suggests that at low
transmit powers no heat sinks should be used. To study capacity at
large transmit powers, we derived a sufficient condition and a necessary
condition on the weights describing the dependence of the noise vari-
ance on the past channel input powers for the capacity to be unbounded
in the transmit power. We showed that when the sequence of weights
decays not faster than geometrically, the capacity is bounded in the
transmit power, and when the sequence of weights decays faster than
geometrically, the capacity is unbounded in the transmit power. This
demonstrates the importance of an efficient heat sink at large transmit
powers. The main conclusions of this chapter are thus as follows:

• When the transmit power is low, heat sinks are not only unneces-
sary, but they may even reduce the capacity by dissipating heat
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which contains information about the transmitted signal.

• When the available transmit power is large, heat sinks can sig-
nificantly increase the capacity. In fact, if the heat is dissipated
slowly, then the capacity is bounded in the available transmit
power, i.e., the capacity does not tend to infinity as the available
power tends to infinity.

The remaining chapters were devoted to fading. While these chapters
studied different versions of fading channels, they shared the assump-
tion that the transmitter and the receiver only know the statistics of
the fading, but not its realization, i.e., they all studied a noncoherent
channel model.

In Chapter 4, we studied multiple-input multiple-output (MIMO)
Gaussian flat-fading channels with memory. We first derived
nonasymptotic upper and lower bounds on the capacity. The asymp-
totic behavior of these bounds was then analyzed in the limit as the
signal-to-noise ratio (SNR) tends to infinity. The upper bounds were
used to derive upper bounds on the fading number of regular Gaussian
fading channels and on the capacity pre-log of nonregular Gaussian fad-
ing channels. The lower bounds were used to derive an expression for
the capacity pre-loglog of nonregular single-input single-output (SISO)
Gaussian fading channels. We further proposed a new approach to
derive lower bounds on the fading number of MIMO fading channels.
With this approach, we derived a lower bound on the fading number of
spatially IID, zero-mean, Gaussian fading channels with memory. Our
bounds demonstrate that when the number of receive antennas does not
exceed the number of transmit antennas, the fading number of zero-
mean, spatially IID, slowly-varying, MIMO Gaussian fading channels is
proportional to the number of degrees of freedom, i.e., to the minimum
number of transmit and receive antennas. The main conclusions of this
chapter are as follows:

• While the high-SNR asymptotic capacity depends on the fading
memory only via the (noiseless) prediction error, the capacity-vs-
SNR curve depends on the memory of the fading process more
finely, namely via the functional dependence of the noisy predic-
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tion error on the variance of the noise corrupting the observa-
tions. In fact, we demonstrated that two fading channels that
have the same (noiseless) prediction error and therefore the same
high-SNR asymptotic capacity can have completely different be-
haviors at low and moderate SNR.

• The fading number of MIMO Gaussian fading channels is pro-
portional to the number of degrees of freedom. Thus, like in the
high-SNR asymptotic analysis of coherent MIMO fading chan-
nels [43] (where the receiver is cognizant of the realization of the
fading), the number of degrees of freedom plays also an important
role in the high-SNR asymptotic analysis of noncoherent fading
channels.

In Chapter 5, we investigated the robustness of the Gaussian fading
assumption in the analysis of fading channels at high SNR. For SISO
flat-fading channels, we showed that, among all stationary and ergodic
fading processes of a given spectral distribution function and whose
law has no mass point at zero, the Gaussian process gives rise to the
smallest capacity pre-log. We further demonstrated that the assump-
tion that the fading law has no mass point at zero is essential in the
sense that there exist stationary and ergodic fading processes of some
spectral distribution function (and whose law has a mass point at zero)
that give rise to a smaller pre-log than the Gaussian process of equal
spectral distribution function. An extension of our result to MISO fad-
ing channels with memory was also presented. The main conclusion of
this chapter is:

• For a large class of fading processes the Gaussian process is the
worst. The Gaussian fading assumption in the analysis of fading
channels at high SNR is thus conservative.

Finally, in Chapter 6 we studied the capacity of multipath (frequency-
selective) fading channels. We showed that if the variances of the path
gains decay exponentially or slower, then the capacity is bounded in the
SNR. In contrast, if the variances of the path gains decay faster than
exponentially, then the capacity is unbounded in the SNR. We further
showed that, for multipath fading channels with a finite number of
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paths, the capacity is not merely unbounded in the SNR, but its high-
SNR asymptotic behavior is also independent of the number of paths.
The main conclusions of this chapter are the following:

• Multipath channels with an infinite number of paths and multi-
path channels with a finite number of paths possess usually com-
pletely different asymptotic capacity behaviors in the limit as the
SNR tends to infinity. At high SNR it is thus not reasonable
to approximate a multipath channel with an infinite number of
paths by a multipath channel with a finite number of paths.

• In general, the high-SNR asymptotic capacity of multipath fading
channels depends critically on the assumed channel model.

For noncoherent fading channels, particularly the high-SNR asymp-
totic behavior of channel capacity depends critically on the assumed
channel model. Indeed, for flat-fading channels, the memory of the
fading process determines whether the high-SNR asymptotic growth
of the capacity with the SNR is double-logarithmic, logarithmic, or
even something in between. For multipath (frequency-selective) fad-
ing channels, the asymptotic growth depends additionally on the decay
rate of the sequence of the path-gains’ variances. Thus, in the analysis
of fading channels at high SNR, one has to attach great importance
to the channel model, since slight changes in the model might lead to
completely different capacity results.





Karma police, arrest this man, he talks in maths,
he buzzes like a fridge, he’s like a detuned radio.

Radiohead, “Karma Police”
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Appendix to Chapter 3

A.1 Proof of Proposition 3.1

We first note that by the expression of the capacity per unit cost of a
memoryless channel [47] we have

sup
SNR>0

Cα=0(SNR)
SNR

= sup
ζ>0

D
(
Wα=0(·|ζ)

∥∥Wα=0(·|0)
)

ζ2/σ2
, (A.1)

where Wα=0(·|·) denotes the channel law of the channel

Yk = xk + σ Uk. (A.2)

Thus, to prove Proposition 3.1 it suffices to show that

sup
SNR>0

CInfo(SNR)
SNR

≥ sup
ζ2>0

D
(
Wα=0(·|ζ)

∥∥ Wα=0(·|0)
)

ζ2/σ2
.

We shall obtain this result by deriving a lower bound on CInfo(SNR)
and by computing then its limiting ratio to SNR as SNR tends to zero.

In order to lower bound CInfo(SNR), which we defined in (3.16) as

CInfo(SNR) = lim
n→∞

1
n

sup I(Xn
1 ;Y n

1 ),

we evaluate 1
nI(X

n
1 ;Y n

1 ) for inputs {Xk, k ∈ Z} that are block-
wise IID in blocks of L symbols (for some L ∈ N). Thus
{(XbL+1, . . . , X(b+1)L), b ∈ N0} is a sequence of IID random length-
L vectors with (XbL+1, . . . , X(b+1)L) taking on the value (ξ, 0, . . . , 0)
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with probability δ and (0, . . . , 0) with probability 1−δ, for some ξ ∈ R.
To satisfy the power constraint (3.12) we shall choose ξ and δ such that

ξ2

σ2
δ = L SNR. (A.3)

We use the chain rule for mutual information to write

1
n
I
(
Xn

1 ;Y n
1

)
=

1
n

	n/L
−1∑
b=0

I
(
XbL+1;Y n

1

∣∣ XbL
1

)
≥ 1
n

	n/L
−1∑
b=0

I
(
XbL+1;YbL+1

∣∣ XbL
1

)
, (A.4)

where the inequality follows because reducing observations cannot in-
crease mutual information.

Let R(ξ)
on-off(snr) denote the maximum rate achievable on (A.2) using

on-off keying with on-symbol ξ and with its corresponding probability
℘ chosen in order to satisfy the power constraint snr, i.e.,

R
(ξ)
on-off (snr) � sup

PX (ξ)=1−PX (0)=℘,

ξ2/σ2℘≤snr

I(X ;X + σ Uk). (A.5)

Notice that snr → R
(ξ)
on-off(snr) is a nonnegative, monotonically non-

decreasing function with R
(ξ)
on-off(0) = 0. From the strict concavity of

mutual information it follows that

R
(ξ)
on-off(snr) > 0, snr > 0.

Also, for a fixed ξ, the function snr → R
(ξ)
on-off(snr) is concave in snr.

Consequently, for some snr0 > 0, we have that snr → R
(ξ)
on-off(snr) is

strictly monotonic in snr ∈ [0, snr0] and hence the supremum on the
RHS of (A.5) is attained for

℘ = snrσ2/ξ2, 0 ≤ snr ≤ snr0.

By expressing I
(
XbL+1;YbL+1

∣∣ XbL
1 = xbL

1

)
for a given XbL

1 = xbL
1 as

I
(
XbL+1;YbL+1

∣∣ XbL
1 = xbL

1

)
= I
(
XbL+1;XbL+1 + θ

(
xbL

1

)
UbL+1

)
= I

(
XbL+1;

σ

θ
(
xbL

1

)XbL+1 + σ UbL+1

)
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(where θ
(
xbL

1

)
is defined in (3.68)), and by using that for 0 ≤ snr ≤ snr0

the supremum on the RHS of (A.5) is attained for ℘ = snrσ2/ξ2, we
obtain

I
(
XbL+1;YbL+1

∣∣ XbL
1 = xbL

1

)
= R

(ξ)
on-off

(
L SNR

1 +
∑b−1

�=0 α(b−�)L x
2
�L+1/σ

2

)
, (A.6)

for 0 ≤ SNR ≤ snr0/L. Averaging (A.6) over XbL
1 , and applying the

result to (A.4), yields

1
n
I
(
Xn

1 ;Y n
1

) ≥ 1
n

	n/L
−1∑
b=0

E

[
R

(ξ)
on-off

(
L SNR

1 +
∑b−1

�=0 α(b−�)LX
2
�L+1/σ

2

)]

≥ �n/L�
n

R
(ξ)
on-off

(
L SNR

1 +
∑∞

�=1 α�L ξ2/σ2

)
, (A.7)

where the second inequality follows by the monotonicity of R(ξ)
on-off(·)

and because we have with probability one

b−1∑
�=0

α(b−�)LX
2
�L+1/σ

2 ≤
∞∑

�=1

α�L ξ
2/σ2.

The lower bound on CInfo(SNR) follows by letting n tend to infinity

CInfo(SNR)

≥ lim
n→∞

1
n
I
(
Xn

1 ;Y n
1

)
≥ 1
L
R

(ξ)
on-off

(
L SNR

1 +
∑∞

�=1 α�L ξ2/σ2

)
, 0 ≤ SNR ≤ snr0/L. (A.8)

We continue by lower bounding the information capacity per unit cost
as

sup
SNR>0

CInfo(SNR)
SNR

≥ lim
SNR↓0

CInfo(SNR)
SNR
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≥ lim
SNR↓0

1
L

R
(ξ)
on-off

(
L SNR

1+
P∞

�=1 α�L ξ2/σ2

)
SNR

= lim
SNR↓0

R
(ξ)
on-off

(
L SNR

1+
P∞

�=1 α�L ξ2/σ2

)
L SNR

1+
P∞

�=1 α�L ξ2/σ2

1
1 +

∑∞
�=1 α�L ξ2/σ2

= lim
SNR′↓0

R
(ξ)
on-off(SNR′)

SNR′
1

1 +
∑∞

�=1 α�L ξ2/σ2
, (A.9)

where in the last step we substitute SNR′ = L SNR
1+

P∞
�=1 α�Lξ2/σ2 .

Proceeding along the lines of the proof of [47, Thm. 3], one can show
that

lim
SNR′↓0

R
(ξ)
on-off(SNR′)

SNR′ =
D
(
Wα=0(·|ξ)

∥∥Wα=0(·|0)
)

ξ2/σ2
(A.10)

and therefore

sup
SNR>0

CInfo(SNR)
SNR

≥ D
(
Wα=0(·|ξ)

∥∥ Wα=0(·|0)
)

ξ2/σ2

1
1 +

∑∞
�=1 α�L ξ2/σ2

. (A.11)

Noting that (3.10) and (3.23) imply

0 ≤ lim
L→∞

∞∑
�=1

α�L ≤ lim
L→∞

∞∑
�=L

α� = 0 (A.12)

we obtain, upon letting L tend to infinity,

sup
SNR>0

CInfo(SNR)
SNR

≥ D
(
Wα=0(·|ξ)

∥∥Wα=0(·|0)
)

ξ2/σ2
. (A.13)

Maximizing (A.13) over ξ2 yields then

sup
SNR>0

CInfo(SNR)
SNR

≥ sup
ξ>0

D
(
Wα=0(·|ξ)

∥∥Wα=0(·|0)
)

ξ2/σ2
, (A.14)

which, in view of (A.1), proves Proposition 3.1.
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A.2 Appendix to Section 3.5.2

We shall prove that

lim
b→∞

I
(
X−1

−∞; Ỹb

∣∣ Xb
0

)
= 0. (A.15)

Let α(i)
b be defined as

α
(1)
0 � 0 (A.16)

α
(i)
b � αbL+i−1, (b, i) ∈ N0 × N \ {(0, 1)}. (A.17)

We have

I
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X−1

−∞; Ỹb

∣∣ Xb
0

)
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−∞
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≤ 1
2
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log
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2
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log
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b∑
�=−∞
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2
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≤ 1
2

L∑
i=1

E

[
log

(
σ2 +
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log
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=
1
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[
log

(
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(i)
�

σ2 +
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�=0 α
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b−�X

2
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≤ 1
2

L∑
i=1

log
(

1 + L SNR
∞∑

�=b+1

α
(i)
�

)
, (A.18)

where the second step follows because conditioning cannot increase en-
tropy and because, conditional on Xb−∞, the random variable ỸbL+i



170 A.3. Proof of Lemma 3.5

is independent of Ỹ bL+i−1
bL+1 ; the third step follows from the entropy

maximizing property of Gaussian random variables and because, con-
ditional on Xb−∞, the random variable Ỹ bL+i−1

bL+1 is Gaussian; the fourth
step follows because with probability one

−1∑
�=−∞

α
(i)
b−�X

2
�L+1 ≥ 0, i = 1, . . . , L;

and the last step follows because with probability one

b∑
�=0

α
(i)
b−�X

2
�L+1 ≥ 0, i = 1, . . . , L.

By upper bounding
∞∑

�=b+1

α
(i)
� ≤

∞∑
�=b+1

α�, i = 1, . . . , L

we obtain

I
(
X−1

−∞; Ỹb

∣∣ Xb
0

) ≤ L

2
log

(
1 + L SNR

∞∑
�=b+1

α�

)
, (A.19)

and (A.15) follows then by noting that (3.23) implies

lim
b→∞

∞∑
�=b+1

αi = 0.

A.3 Proof of Lemma 3.5

We show that for any ε > 0

lim
n→∞Pr

(∣∣∣∣ 1
�n/L�‖Y‖2 − (σ2 + P + α(L) P

)∣∣∣∣ > ε

)
= 0 (A.20)

and

lim
n→∞Pr

(∣∣∣∣ 1
�n/L�‖Z‖

2 − (σ2 + α(L) P
)∣∣∣∣ > ε

)
= 0. (A.21)
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Lemma 3.5 follows then by the union of events bound.

In order to prove (A.20) and (A.21), we first note that

1
�n/L�E

[‖Y‖2
]

= σ2 + P +
P

�n/L�
	n/L
−1∑

k=1

k∑
�=1

α�L (A.22)

1
�n/L�E

[‖Z‖2
]

= σ2 +
P

�n/L�
	n/L
−1∑

k=1

k∑
�=1

α�L (A.23)

and hence, by Cesáro’s mean [5, Thm. 4.2.3],

lim
n→∞

1
�n/L�E

[‖Y‖2
]

= σ2 + P + α(L) P (A.24)

lim
n→∞

1
�n/L�E

[‖Z‖2
]

= σ2 + α(L) P, (A.25)

where α(L) was defined in (3.87) as

α(L) =
∞∑

�=1

α�L.

Thus for any ε > 0 and 0 < ε < ε there exists an n0 such that for all
n ≥ n0 ∣∣∣∣ 1

�n/L�E
[‖Y‖2

]− (σ2 + P + α(L) P)
∣∣∣∣ ≤ ε (A.26)∣∣∣∣ 1

�n/L�E
[‖Z‖2

]− (σ2 + α(L) P)
∣∣∣∣ ≤ ε, (A.27)

and it follows from the triangle inequality that∣∣∣∣ 1
�n/L�‖Y‖2 − (σ2 + P + α(L) P)
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≤
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�n/L�E
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and ∣∣∣∣ 1
�n/L�‖Z‖

2 − (σ2 + α(L) P)
∣∣∣∣

≤
∣∣∣∣ 1
�n/L�‖Z‖

2 − 1
�n/L�E

[‖Z‖2
]∣∣∣∣+ ε. (A.29)
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This yields

Pr
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and
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where Var(A) = E
[
(A− E[A])2

]
denotes the variance of A. Here the

last inequalities in (A.30) and (A.31) follow from Chebyshev’s inequal-
ity [14, Sec. 5.4].

It remains to show that

lim
n→∞ Var

(
1
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)
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(
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)
= 0. (A.32)

We shall prove (A.32) for Y. The proof for Z follows along the same
lines. We begin by writing Var

(
1

	n/L
‖Y‖2
)

as

Var
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=
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+
2

�n/L�2
∑
k>j

Cov
(
Y 2

kL+1, Y
2
jL+1

)
, (A.33)

where Cov(A,B) = E[(A− E[A])(B − E[B])] denotes the covariance
between A and B. We evaluate both terms on the RHS of (A.33)
separately. For the sake of clarity, we shall omit the details and show
only the main steps. Unless otherwise stated, these steps can be derived
in a straightforward way using that

(i) {XkL+1 , k ∈ N0} is a sequence of IID, zero-mean, variance-P,
Gaussian random variables;

(ii) the fourth moment of a zero-mean, variance-P, Gaussian random
variable is given by 3P, and all odd moments are zero;

(iii) Xk = 0 for k mod L �= 1;

(iv) {Uk, k ∈ Z} (and hence also {UkL+1 , k ∈ N0}) is a zero-mean,
unit-variance, stationary, weakly-mixing random process;

(v) {Xk, k ∈ Z} and {Uk, k ∈ Z} are independent of each other.

For the first sum on the RHS of (A.33) it suffices to show that
Var
(
Y 2

kL+1

)
< ∞, k ∈ N0. Indeed, this sum contains only �n/L� sum-

mands and hence, if Var
(
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)
<∞, then its ratio to �n/L�2 vanishes

as n tends to infinity. We have
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≤ 3P2 + 6P
(
σ2 + Pα(L)
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, (A.34)

where the last step follows by upper bounding
∑k

�=1 α�L by α(L) and∑k
�=1 α

2
�L by

∑∞
�=1 α

2
�L. Note that (3.82) implies that

α(L) <∞ and
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α2
�L <∞.

By additionally noting that UkL+1 has a finite fourth moment (3.9), it
follows that (for any finite P)
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(
Y 2
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)
<∞, k ∈ N0. (A.35)

In order to show that the second term on the RHS of (A.33) vanishes
as n tends to infinity, we evaluate

Cov
(
Y 2

kL+1, Y
2
jL+1

)
= E

[
Y 2

kL+1Y
2
jL+1

]− E
[
Y 2

kL+1

]
E
[
Y 2

jL+1

]
, k > j.(A.36)

We have
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and
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k∑
�=1

α�L

)(
σ2 + P

j∑
�′=1

α�′L

)
. (A.38)
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Equations (A.36), (A.37), and (A.38) thus yield

Cov
(
Y 2

kL+1, Y
2
jL+1

)
= 2P2 α(k−j)L + 2P2

j∑
�=1

α�Lα(�+k−j)LE
[
U2

kL+1U
2
jL+1

]
+
(
σ2 + P

k∑
�=1

α�L

)(
σ2 + P

j∑
�′=1

α�′L

)(
E
[
U2

kL+1U
2
jL+1

]− 1
)
.

(A.39)

We continue by summing Cov
(
Y 2

kL+1, Y
2
jL+1

)
over (k, j)∑

k>j

Cov
(
Y 2

kL+1, Y
2
jL+1

)
=
∑
k>j

2P2 α(k−j)L +
∑
k>j

2P2
j∑

�=1

α�Lα(�+k−j)LE
[
U2

kL+1U
2
jL+1

]
+
∑
k>j

(
σ2 + P

k∑
�=1

α�L

)(
σ2 + P

j∑
�′=1

α�′L

)(
E
[
U2

kL+1U
2
jL+1

]− 1
)

=
	n/L
−2∑

j=0

	n/L
−1−j∑
ν=1

2P2 ανL

+
	n/L
−2∑

j=0

	n/L
−1−j∑
ν=1

2P2
j∑

�=1

α�Lα(�+ν)LE
[
U2

νL+1U
2
1

]
+

	n/L
−2∑
j=0

	n/L
−1−j∑
ν=1

(
σ2 + P

j+ν∑
�=1

α�L

)(
σ2 + P

j∑
�′=1

α�′L

)
×
(
E
[
U2

νL+1U
2
1

]− 1
)
, (A.40)

where the second step follows by substituting ν = k − j and from the
stationarity of {Uk, k ∈ Z}.
The first two terms on the RHS of (A.40) can be upper bounded using
(3.83), namely

α� < ��,
(
0 < � < 1, � ≥ �0

)
.
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Indeed, by noting that L ≥ �0, this yields

	n/L
−1−j∑
ν=1

ανL <

	n/L
−1−j∑
ν=1

�νL <

	n/L
∑
ν=1

�νL (A.41)

and
	n/L
−1−j∑

ν=1

j∑
�=1

α�Lα(�+ν)L <

	n/L
−1−j∑
ν=1

j∑
�=1

(
�2L
)�

�νL

<

	n/L
∑
ν=1

∞∑
�=1

(
�2L
)�

�νL

=
�2L

1 − �2L

	n/L
∑
ν=1

�νL. (A.42)

Applying (A.41) we can upper bound the first term on the RHS of
(A.40) by

2
�n/L�2

	n/L
−2∑
j=0

	n/L
−1−j∑
ν=1

2P2ανL

<
4P2

�n/L�2
	n/L
−2∑

j=0

	n/L
∑
ν=1

�νL

= 4P2 �n/L� − 1
�n/L�

1
�n/L�

	n/L
∑
ν=1

�νL. (A.43)

Likewise, applying (A.42) we can upper bound the second term on the
RHS of (A.40) by

2
�n/L�2

	n/L
−2∑
j=0

	n/L
−1−j∑
ν=1

2P2
j∑

�=1

α�Lα(�+ν)LE
[
U2

νL+1U
2
1

]
≤ 4P2

�n/L�2
	n/L
−2∑

j=0

	n/L
−1−j∑
ν=1

j∑
�=1

α�Lα(�+ν)LE
[
U4

1

]
< 4P2 �2L

1 − �2L
E
[
U4

1

] �n/L� − 1
�n/L�

1
�n/L�

	n/L
∑
ν=1

�νL, (A.44)
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where the first inequality follows from the Cauchy-Schwarz inequality.

As for the last term on the RHS of (A.40), we upper bound each sum-
mand by(

σ2 + P

j+ν∑
�=1

α�L

)(
σ2 + P

j∑
�′=1

α�′L

)(
E
[
U2

νL+1U
2
1

]− 1
)

≤
(
σ2 + P

j+ν∑
�=1

α�L

)(
σ2 + P

j∑
�′=1

α�′L

)∣∣∣E[U2
νL+1U

2
1

]− 1
∣∣∣

≤
(
σ2 + Pα(L)

)2∣∣∣E[U2
νL+1U

2
1

]− 1
∣∣∣, (A.45)

where the first inequality follows by upper bounding

E
[
U2

νL+1U
2
1

]− 1 ≤ ∣∣E[U2
νL+1U

2
1

]− 1
∣∣ ;

and the second inequality follows by upper bounding

j∑
�=1

α�L ≤
j+ν∑
�=1

α�L ≤
∞∑

�=1

α�L = α(L).

Applying (A.43), (A.44), and (A.45) to (A.40) yields

2
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∑
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(
Y 2

kL+1, Y
2
jL+1

)
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1

�n/L�
	n/L
∑
ν=1

�νL
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1 − �2L
E
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1
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1
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∑
ν=1

�νL

+
2

(�n/L�)2
	n/L
−2∑

j=0

	n/L
−1−j∑
ν=1

(
σ2 + Pα(L)

)2∣∣∣E[U2
νL+1U

2
1

]− 1
∣∣∣

≤ 4P2 �n/L� − 1
�n/L�

1
�n/L�

	n/L
∑
ν=1

�νL

+ 4P2 �2L

1 − �2L
E
[
U4

1

] �n/L� − 1
�n/L�

1
�n/L�

	n/L
∑
ν=1

�νL
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+ 2
(
σ2 + Pα(L)

)2 �n/L� − 1
�n/L�

1
�n/L�

	n/L
∑
ν=1

∣∣∣E[U2
νL+1U

2
1

]− 1
∣∣∣.(A.46)

Here the second step follows by upper bounding

	n/L
−1−j∑
ν=1

(
σ2 + Pα(L)

)2∣∣∣E[U2
νL+1U

2
1

]− 1
∣∣∣

≤
	n/L
∑
ν=1

(
σ2 + Pα(L)

)2∣∣∣E[U2
νL+1U

2
1

]− 1
∣∣∣.

By Cesáro’s mean the first two terms on the RHS of (A.46) tend to zero
as n tends to infinity, and by the weakly-mixing property of {Uk, k ∈ Z}
the third term on the RHS of (A.46) tends to zero as n tends to infinity
[35, Thm. 6.1]. It thus follows from (A.33), (A.35), and (A.46) that

lim
n→∞Var

(
1

�n/L�‖Y‖2

)
= 0.

Together with (A.30) this proves (A.20). The proof of (A.21) follows
along the same lines.



Appendix B

Appendix to Chapter 4

The proofs given in this appendix were originally derived in [22]. We
repeat them here for the sake of completeness.

B.1 Proof of Theorem 4.2

To derive an upper bound on the capacity of peak-power limited MIMO
fading channels, we begin by using the chain rule

I
(
Xn

1 ;Yn
1

)
=

n∑
k=1

I
(
Yk;Xn

1

∣∣ Yk−1
1

)
(B.1)

and upper bound each of the terms in the sum by

I
(
Yk;Xn

1

∣∣ Yk−1
1

)
= I
(
Yk;Xn

1 ,Y
k−1
1

)− I
(
Yk;Yk−1

1

)
≤ I
(
Yk;Xn

1 ,Y
k−1
1

)
= I
(
Yk;Xk

1 ,Y
k−1
1

)
= I
(
Yk;Xk

)
+ I
(
Yk;Xk−1

1 ,Yk−1
1

∣∣ Xk

)
≤ sup I

(
Yk;Xk

)
+ I
(
Yk;Xk−1

1 ,Yk−1
1

∣∣ Xk

)
, (B.2)

where the maximization on the RHS of (B.2) is over all distributions
on Xk satisfying with probability one ‖Xk‖ ≤ A. Here the first step
follows from the chain rule; the second step follows from the nonneg-
ativity of mutual information; the third step follows from the absence
of feedback, which implies that

Xn
k+1�−−(Xk

1 ,Y
k−1
1

)
�−−Yk

forms a Markov chain; the fourth step follows from the chain rule; and
the last step follows by maximizing the first term on the RHS of (B.2).
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The first term on the RHS of (B.2) is the capacity of a memoryless
fading channel

sup I
(
Yk;Xk

)
= C

(IID)
PP (SNR). (B.3)

In the following we upper bound the second term on the RHS of (B.2).

Let the (nR × nT)-valued process {Wk, k ∈ Z} be spatially IID, where
each process {Wk(r, t), k ∈ Z} is a sequence of IID, zero-mean, unit-
variance, circularly-symmetric, complex Gaussian random variables,
drawn independently of {(Xk,Hk,Zk), k ∈ Z}. We have

I
(
Yk;Xk−1

1 ,Yk−1
1

∣∣ Xk

)
= I
(
Yk;Yk−1

1

∣∣ Xk
1

)
≤ I

(
Yk;

{
H� +

σ

A
W�

}k−1

�=1

∣∣∣∣ Xk

)
≤ sup

‖x0‖≤A

I

(
Y0;

{
H� +

σ

A
W�

}−1

�=−∞

∣∣∣∣ X0 = x0

)
, (B.4)

where the first step follows because, conditional on Xk
1 , the random

vectors Yk and Xk−1
1 are independent; the second step follows from

the data processing inequality and by noting that, conditional on Xk
1 ,

Yk−1
1 �−−

{
H� +

σ

A
W�

}k−1

�=1
�−−Yk

forms a Markov chain; and the last step follows because the expected
value cannot be greater than the supremum, because additional infor-
mation cannot decrease mutual information, and because the channel
is stationary.

We continue by expressing the fading H0 as

H0 = H0 + H̃0, (B.5)

where H0 is the best estimate of the fading H0 given the noisy obser-
vation H1 + σ/A W1, H2 + σ/A W2, . . ., i.e.,

H0 = E

[
H0

∣∣∣∣ {H� +
σ

A
W�

}−1

�=−∞

]
, (B.6)
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and where H̃0 is the prediction error. We thus have

I

(
Y0;

{
H� +

σ

A
W�

}−1

�=−∞

∣∣∣∣ X0 = x0

)
= I

((
H0 + H̃0

)
X0 + Z0;

{
H� +

σ

A
W�

}−1

�=−∞

∣∣∣∣ X0 = x0

)
= h

((
H0 + H̃0

)
X0 + Z0

∣∣∣ X0 = x0

)
− h

((
H0 + H̃0

)
X0 + Z0

∣∣∣∣ {H� +
σ

A
W�

}−1

�=−∞
,X0 = x0

)
. (B.7)

To compute the first entropy on the RHS of (B.7), we note that, condi-
tional on X0 = x0, the random vector

(
H0 + H̃

)
x0 +Z0 has a Gaussian

law of mean
E[H0x0 + Z0] = Dx0 (B.8)

and of covariance matrix

KYY = E
[
H0x0x

†
0H

†
0

]
+ σ2InR . (B.9)

We further note that KYY is a diagonal matrix with diagonal entries

E

⎡⎣∣∣∣∣∣
nT∑
t=1

(
H0(r, t) − d(r, t)

)
x0(t) + Z0(r)

∣∣∣∣∣
2
⎤⎦

= E

⎡⎣∣∣∣∣∣
nT∑
t=1

(
H0(r, t) − d(r, t)

)
x0(t)

∣∣∣∣∣
2
⎤⎦+ σ2

=
nT∑
t=1

|x0(t)|2 + σ2

= ‖x0‖2 + σ2, r = 1, . . . , nR, (B.10)

where the first step follows because H0 and Z0 are independent; and the
second step follows because {H − D, k ∈ Z} is spatially independent,
and because the processes {H(r, t)−d(r, t), k ∈ Z} are of unit variance.

Using the expression for the differential entropy of a multivariate Gaus-
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sian random variable yields

h
((

H0 + H̃0

)
X0 + Z0

∣∣∣ X0 = x0

)
= nR log(πe) +

nR∑
r=1

log
(‖x0‖2 + σ2

)
. (B.11)

To compute the second entropy on the RHS of (B.7), we note that,
conditional on(

X0,
{

H� +
σ

A
W�

}−1

�=−∞

)
=
(
x0,
{
H� +

σ

A
W�

}−1

�=−∞

)
,

the random vector
(
H0 + H̃0

)
X0 + Z0 has a Gaussian law of mean(
D + H0

)
x0 (B.12)

and of covariance matrix

KYY|H0
= E

[
H̃0x0x

†
0H̃

†
0

]
+ σ2InR . (B.13)

We further note that KYY|H0
is a diagonal matrix with diagonal entries

E

⎡⎣∣∣∣∣∣
nT∑
t=1

H̃0(r, t)x0(t) + Z0(r)

∣∣∣∣∣
2
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= E

⎡⎣∣∣∣∣∣
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2
⎤⎦+ σ2

=
nT∑
t=1

|x0(t)|2 ε2r,t(1/SNR) + σ2, r = 1, . . . , nR, (B.14)

where the last step follows because if {Hk −D, k ∈ Z} is spatially inde-
pendent, then also the entries in H̃0 are independent [22, Lemma 3.1].

Using, as above, the expression for the differential entropy of a multi-
variate Gaussian random variable yields

h

((
H0 + H̃0

)
X0 + Z0

∣∣∣∣ {H� +
σ

A
W�

}−1

�=−∞
,X0 = x0

)
= nR log(πe) +

nR∑
r=1

log

(
nT∑
t=1

|x0(t)|2 ε2r,t(1/SNR) + σ2

)
, (B.15)
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where we additionally use that the covariance matrix KYY|H0
does not

depend on the realization of
{
H� + σ/A W�

}−1

�=−∞.

Applying (B.11) and (B.15) to (B.7) yields

I

(
Y0;

{
H� +

σ

A
W�

}−1

�=−∞

∣∣∣∣ X0 = x0

)
=
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log
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=
nR∑
r=1

log
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log
1 + 1/SNR∑nT

t=1 |x0(t)|2/‖x0‖2 ε2r,t(1/SNR) + 1/SNR
, (B.16)

where the last step follows because the function

x → log
1 + x

α+ x
, 0 < α ≤ 1

is monotonically decreasing in x, and because, by the power con-
straint, ‖x0‖ ≤ A. (Note that

∑nT
t=1 |x0(t)‖2/‖x0‖2 ε2r,t(1/SNR) can-

not be greater than 1, because the prediction error cannot be larger
than the variance of the random variable one wishes to predict—i.e.,
ε2r,t(1/SNR) ≤ 1—and because

∑nT
t=1 |x0(t)|2/‖x0‖2 = 1.)

Combining (B.2), (B.3), (B.4), and (B.16), we obtain
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, (B.17)
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which together with (B.1) and (4.4) yields the final upper bound

CPP(SNR)

≤ C
(IID)
PP (SNR) + max

‖x̂‖=1

nR∑
r=1

log
1 + 1/SNR∑nT

t=1 |x̂(t)|2 ε2r,t(1/SNR) + 1/SNR
.

(B.18)

B.2 Proof of Theorem 4.4

The proof of Theorem 4.4 follows along the same lines as the proof of
Theorem 4.2 in Section B.1, but with spatially correlated fading.

As in Section B.1, we begin with the chain rule for mutual information

I
(
Xn

1 ;Y n
1

)
=

n∑
k=1

I
(
Yk;Xn

1

∣∣ Y k−1
1

)
(B.19)

and upper bound each mutual information in the sum by

I
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)
, (B.20)

see (B.2)–(B.4). (The random process {Wk, k ∈ Z} is defined in Sec-
tion B.1.) We continue by expressing the fading as

H0 = H0 + H̃0

(where H0 and H̃0 are given in (B.5)) and writing the second mutual
information on the RHS of (B.20) as the difference of two differential
entropies

I
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)T
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)
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σ

A
W�

}−1
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To compute the first entropy on the RHS of (B.21), we note that,
conditional on X0 = x0, the random variable

(
H0 + H̃0

)T
X0 + Z0 has

a Gaussian law of mean

E
[(

H0 + H̃0

)T
x0 + Z0

]
= dTx0 (B.22)

and of variance

σ2
Y = xT

0Kx∗
0 + σ2, (B.23)

where K � E
[
(H0 − d)(H0 − d)†

]
. We thus have
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2
)
. (B.24)

To compute the second entropy on the RHS of (B.21), we note that,
conditional on({

H� +
σ

A
W�

}−1

�=−∞
,X0

)
=
({

h� +
σ

A
w�

}−1

�=−∞
,x0

)
,

the random variable
(
H0 + H̃0

)T
X0 + Z0 has a Gaussian law of mean

h0 + dTx0 (B.25)

and of variance
σ2

Y |h = xT

0Σ(1/SNR)x∗
0 + σ2, (B.26)

where Σ(1/SNR) denotes the covariance matrix of the prediction error
in predicting H0 from H−1 + σ/AW−1, H−2 + σ/AW−2, . . . We thus
obtain
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)
, (B.27)

where we additionally use that the variance σ2
Y |h does not depend on

the realization of
{
H� + σ/AW�

}−1

�=−∞.
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Applying (B.24) and (B.27) to (B.21) yields

I
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A
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≤ log
‖K‖ + σ2/‖x0‖2

λmin(1/SNR) + σ2/‖x0‖2

≤ log
‖K‖ + 1/SNR

λmin(1/SNR) + 1/SNR
, (B.28)

where x̂0 = x0/‖x0‖, and where λmin(1/SNR) denotes the smallest
eigenvalue of Σ(1/SNR). Here the third step follows because

x̂TKx̂∗ ≤ ‖K‖, ‖x̂‖ = 1
x̂TΣ(1/SNR)x̂∗ ≥ λmin(1/SNR), ‖x̂‖ = 1;

and the last step follows because the function

x → log
α+ x

β + x
, α ≥ β

is monotonically decreasing in x, and because, by the power constraint,
‖x0‖ ≤ A. (We have ‖K‖ ≥ λmin(1/SNR) because K − Σ(1/SNR)
is positive semidefinite, so ‖K‖ ≥ ‖Σ(1/SNR)‖ and consequently
‖K‖ ≥ λmin(1/SNR).)

Combining (B.20) and (B.28), we obtain

I
(
Yk;Xn

1

∣∣ Yk−1
1

)
≤ C

(IID)
PP (SNR) + log

‖K‖ + 1/SNR
λmin(1/SNR) + 1/SNR

, (B.29)

which together with (B.19) and (4.4) yields the final upper bound

CPP(SNR) ≤ C
(IID)
PP (SNR) + log

‖K‖ + 1/SNR
λmin(1/SNR) + 1/SNR

. (B.30)
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B.3 Proof of Theorem 4.13

An upper bound on the capacity pre-log of MIMO fading channels
follows from the upper bound given in Theorem 4.2, namely,

CPP(SNR)

≤ C
(IID)
PP (SNR) + max

‖x̂‖=1

nR∑
r=1

log
1 + 1/SNR∑nT

t=1 |x̂(t)|2 ε2r,t(1/SNR) + 1/SNR
,

by computing its limiting ratio to log SNR as SNR tends to infinity.

It follows from (4.10) that

lim
SNR→∞

{
C

(IID)
PP (SNR) − log log SNR

}
<∞

and hence

lim
SNR→∞

C
(IID)
PP (SNR)
log SNR

= 0. (B.31)

It thus suffices to show that

lim
SNR→∞

max‖x̂‖=1

∑nR
r=1 log 1+1/SNR

PnT
t=1 |x̂(t)|2 ε2r,t(1/SNR)+1/SNR

log SNR

≤ max
1≤t≤nT

nR∑
r=1

μ({λ : F ′
r,t(λ) = 0}). (B.32)

Indeed, we have for any ‖x̂‖ = 1

nR∑
r=1

log

(
nT∑
t=1

|x̂(t)|2 ε2r,t(1/SNR) + 1/SNR

)

=
nR∑
r=1

log

(
nT∑
t=1

|x̂(t)|2(ε2r,t(1/SNR) + 1/SNR
))

≥
nR∑
r=1

nT∑
t=1

|x̂(t)|2 log
(
ε2r,t(1/SNR) + 1/SNR

)
=

nR∑
r=1

nT∑
t=1

|x̂(t)|2
∫ 1/2

−1/2

log
(
F ′

r,t(λ) + 1/SNR
)
dλ, (B.33)
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where the second step follows from Jensen’s inequality; and where the
last step follows by applying the expression for the noisy prediction
error (4.22).

With this, we obtain

lim
SNR→∞

max‖x̂‖=1

∑nR
r=1 log 1+1/SNR

PnT
t=1 |x̂(t)|2 ε2r,t(1/SNR)+1/SNR

log SNR

= lim
SNR→∞

max
‖x̂‖=1

−∑nR
r=1 log

(∑nT
t=1 |x̂(t)|2 ε2r,t(1/SNR) + 1/SNR

)
log SNR

≤ lim
SNR→∞

max
‖x̂‖=1

−∑nR
r=1

∑nT
t=1 |x̂(t)|2 ∫ 1/2

−1/2
log
(
F ′

r,t(λ) + 1/SNR
)
dλ

log SNR

= lim
δ↓0

max
‖x̂‖=1

nR∑
r=1

nT∑
t=1

|x̂(t)|2
∫ 1/2

−1/2 log
(
F ′

r,t(λ) + δ
)
dλ

log δ

= lim
δ↓0

max
‖x̂‖=1

nT∑
t=1

|x̂(t)|2
nR∑
r=1

∫ 1/2

−1/2
log
(
F ′

r,t(λ) + δ
)
dλ

log δ

= lim
δ↓0

max
1≤t≤nT

nR∑
r=1

∫ 1/2

−1/2 log
(
F ′

r,t(λ) + δ
)
dλ

log δ

= max
1≤t≤nT

nR∑
r=1

lim
δ↓0

∫ 1/2

−1/2
log
(
F ′

r,t(λ) + δ
)
dλ

log δ

= max
1≤t≤nT

nR∑
r=1

μ({λ : F ′
r,t(λ) = 0}), (B.34)

where the first step follows because

lim
SNR→∞

log(1 + 1/SNR)
log SNR

= 0;

the second step follows from (B.33); the third step follows by substi-
tuting δ = 1/SNR; the fourth step follows by interchanging the order
of summation; the fifth step follows because the unit vector that max-
imizes the sum is 1 for the largest summand and 0 for the other sum-
mands; the sixth step follows because maximization and summation are
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both taken over finite index sets, in which case it is valid to compute
the limit first; and the last step follows by [26, Eq. (63)].

This concludes the proof.

B.4 Proof of Theorem 4.16

To derive an upper bound on ΛPP, we begin with the upper bound
(4.27), namely,

CPP(SNR) ≤ C
(IID)
PP (SNR) + log

1 + 1/SNR
ε2(1/SNR) + 1/SNR

. (B.35)

It follows from (4.10) that

lim
SNR→∞

C
(IID)
PP (SNR)

log log SNR
≤ 1. (B.36)

By using the expression (4.22) for ε2(1/SNR), we obtain for the second
term on the RHS of (B.35)

lim
SNR→∞

log 1+1/SNR
ε2(1/SNR)+1/SNR

log log SNR

= lim
SNR→∞

− ∫ 1/2

−1/2
log
(
F ′(λ) + 1/SNR

)
dλ

log log SNR

= lim
δ↓0

− ∫ 1/2

−1/2 log
(
F ′(λ) + δ

)
dλ

log log 1
δ

. (B.37)

Combining (B.36) and (B.37) thus yields

ΛPP ≤ 1 + lim
δ↓0

− ∫ 1/2

−1/2 log
(
F ′(λ) + δ

)
dλ

log log 1
δ

. (B.38)

To derive a lower bound on ΛPP, we evaluate the lower bound (4.30)
in Proposition 4.1 for

α2 = SNR−(1−β) for some 0 < β < 1,
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which yields

CPP(SNR)

≥ log
1

ε2(ξ) + ξ
− 1 + β

2
log SNR

− exp

(
e

(1 − β) log(SNR) SNR1/2(1+β)

)

×Ei

(
− e

(1 − β) log(SNR) SNR1/2(1+β)

)
= log

1
ε2(ξ) + ξ

+ log(1 − β) + log log SNR − 1

+ log
e

(1 − β) log(SNR) SNR1/2(1+β)

− exp

(
e

(1 − β) log(SNR) SNR1/2(1+β)

)

×Ei

(
− e

(1 − β) log(SNR) SNR1/2(1+β)

)
≥ log

1
ε2(ξ) + ξ

+ log(1 − β) + log log SNR − 1 − γ, (B.39)

where ξ = SNR−β. Here the second step follows by adding

log
e

(1 − β) log(SNR) SNR1/2(1+β)
− 1

+ log(1 − β) + log log SNR +
1 + β

2
log SNR = 0;

and the last step follows because the function

g(x) = log(x) − exp(x) Ei(−x) , x ≥ 0

is monotonically increasing in x with g(0) = −γ [28, Eqs. (210)–(213)].

We continue by showing that

lim
SNR→∞

− log
(
ε2(ξ) + ξ

)
log log SNR

= lim
δ↓0

− ∫ 1/2

−1/2
log
(
F ′(λ) + δ

)
dλ

log log 1
δ

. (B.40)
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Indeed, from (4.22) we obtain

lim
SNR→∞

− log
(
ε2(ξ) + ξ

)
log log SNR

= lim
SNR→∞

− ∫ 1/2

−1/2
log
(
F ′(λ) + SNR−β

)
dλ

log log SNR

= lim
SNR→∞

⎧⎨⎩− ∫ 1/2

−1/2
log
(
F ′(λ) + SNR−β

)
dλ

log log SNRβ

log log SNRβ

log log SNR

⎫⎬⎭
= lim

δ↓0

− ∫ 1/2

−1/2
log
(
F ′(λ) + δ

)
dλ

log log 1
δ

,

where the last step follows by substituting δ = SNR−β and because

lim
SNR→∞

log log SNRβ

log log SNR
= 1.

Dividing the RHS of (B.39) by log log SNR and computing the limit as
SNR tends to infinity, yields

ΛPP ≥ lim
SNR→∞

− log
(
ε2(ξ) + ξ

)
log log SNR

+ 1

= 1 + lim
δ↓0

− ∫ 1/2

−1/2
log
(
F ′(λ) + δ

)
dλ

log log 1
δ

, (B.41)

where the last step follows from (B.40). Together with (B.38), this
proves Theorem 4.16.
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To prove (6.43), we lower bound

h

(
k−1∑
�=0

H
(�)
k Xk−� + Zk

∣∣∣∣∣ Xn
1 = xn

1 ,H
k−1
1 = hk−1

1

)
(C.1)

for a given hk−1
1 and average then the result over Hk−1

1 . Let Hk denote
the set

Hk �
{
H

(�)
k , 0 ≤ � < k : α� = 0

}
. (C.2)

We have

h

(
k−1∑
�=0

H
(�)
k Xk−� + Zk

∣∣∣∣∣ Xn
1 = xn

1 ,H
k−1
1 = hk−1

1

)

≥ h

(
k−1∑
�=0

H
(�)
k Xk−� + Zk

∣∣∣∣∣ Xn
1 = xn

1 ,H
k−1
1 = hk−1

1 ,Hk

)

= h

(∑
�∈Sk

H
(�)
k Xk−� + Zk

∣∣∣∣∣ Xn
1 = xn

1 ,H
k−1
1 = hk−1

1 ,Hk

)

≥ log

(∑
�∈Sk

e
h

(
H

(�)
k Xk−�

∣∣∣Xn
1 =xn

1 ,
{

H
(�)
k′
}k−1

k′=1
=
{

h
(�)
k′
}k−1

k′=1

)
+ eh(Zk)

)
, (C.3)

where Sk is defined in (6.42). Here the first step follows because con-
ditioning cannot increase differential entropy; the second step follows
because differential entropy is invariant under deterministic transla-
tion [5, Thm. 9.6.3] and because the terms where we have xk−� = 0
do not contribute to the sum; and the last step follows by the entropy
power inequality [5, Thm. 16.6.3] and because the processes{

H
(0)
k , k ∈ Z

}
,
{
H

(1)
k , k ∈ Z

}
, . . .



194

are independent. (Note that, for a given Hk−1
1 = hk−1

1 , the conditional
entropies on the RHS of (C.3) are possibly infinite. However, by (6.6)
this event is of zero probability and is therefore immaterial to (C.3)
when averaged over Hk−1

1 .)

Since the processes of the path gains are independent and jointly in-
dependent of Xn

1 , we can compute the expectation of (C.3) over Hk−1
1

by averaging (C.3) first over
(
H

(0)
1 , . . . , H

(0)
k−1

)
, then averaging the re-

sult over
(
H

(1)
1 , . . . , H

(1)
k−1

)
, and so on. To lower bound the individual

expectations, we note that the function

x → log
(
ex + ζ

)
(C.4)

is convex for all ζ ≥ 0. Thus, by defining for each �′ = 0, . . . , k − 1

ζ�′ �
∑

�∈Sk,
�<�′

e
h

(
H

(�)
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1 =xn

1 ,
{

H
(�)
k′
}k−1

k′=1

)

+
∑

�∈Sk,
�>�′

e
h

(
H

(�)
k Xk−�

∣∣∣Xn
1 =xn

1 ,
{

H
(�)
k′
}k−1

k′=1
=
{

h
(�)
k′
}k−1

k′=1

)
+ eh(Zk), (C.5)

it follows from Jensen’s inequality

E{
H

(�′)
k′
}k−1

k′=1

[
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(
e

h

(
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where E{
H

(�′)
k′
}k−1

k′=1

denotes expectation with respect to
{
H

(�′)
k′

}k−1

k′=1
.

Averaging (C.3) over Hk−1
1 , and employing (C.6) to compute this av-

erage, yields thus
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This proves the lower bound (6.43).





List of Symbols

See also the remarks about notation in Section 1.3.

Elementary

i imaginary unit, i =
√−1

� definition
Ei(·) exponential integral function
φ(·) Euler’s psi-function
γ Euler’s constant, γ ≈ 0.577
Γ(·) Gamma function
�·� floor function
�·� ceiling function
I {statement} indicator function, is 1 if the statement is true and 0

otherwise
An

m sequence Am, Am+1, . . . , An

lim limit superior
lim limit inferior
log(·) natural logarithm function

Sets

R set of real numbers
C set of complex numbers
Z set of integers
N set of positive integers
N0 set of nonnegative integers



198 List of Symbols

Vectors and Matrices

‖ · ‖ Euclidean norm
‖ · ‖F Frobenius norm
det(A) determinant of A
tr (A) trace of A
A∗ complex conjugate of A
AT transpose of A
A† Hermitian transpose of A
In n× n identity matrix

Probability and Information Theory

U (X ) uniform probability distribution over the set X
N (μ,K) Gaussian distribution of mean μ and covariance matrix

K
E[X ] expectation of the random variable X
EX [·] expectation with respect to X
{Xk, k ∈ Z} stochastic process
I(X;Y) mutual information between the random variables X

and Y
D(P‖Q) relative entropy between the probability distributions

P and Q
h(X) differential entropy of the random variable X
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