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Abstract

In this thesis we study the capacity of Gaussian fading channels with memory

where neither transmitter nor receiver has access to the realization of the

fading process, though both are fully cognizant of the fading laws. The

emphasis is on the high signal-to-noise ratio (SNR) regime.

For regular fading processes, i.e., the “present” fading cannot be pre-

dicted precisely from its “past”, we derive an upper bound on the fading

number of multiple-input single-output (MISO) fading channels, where the

fading number is the second-order term in the high SNR expansion of capac-

ity. We show that this bound is tight (i.e., it coincides with a lower bound)

if the channels are uncorrelated and the fading process is either zero-mean or

its spectral density matrix contains identical entries. In the former case, the

fading number can be achieved by transmitting from only one antenna, i.e.,

the one that yields the smallest prediction error in predicting the “present”

fading from its “past”. In the latter case, the fading number can be achieved

by beam forming.

For non-regular fading processes, i.e., the “present” fading can be

predicted precisely from its “past”, we derive upper bounds on the capacity

of MISO and multiple-input multiple-output (MIMO) fading channels. For

cases where the channels are uncorrelated the bound on the MISO capacity

is tight and we provide an expression for the pre-log, i.e., the limiting ratio

of the capacity to the logarithm of the SNR. Moreover, we show that this

pre-log can be achieved by transmitting from only one antenna, i.e., the

one that yields the smallest prediction error in predicting the “present”

fading from its “past”. In addition, we present an improved lower bound on

the capacity of single-input single-output (SISO) fading channels if channel

capacity only grows double-logarithmically in the SNR. This allows for an

expression of the pre-log-log, i.e., the limiting ratio of the capacity to the

logarithm of the logarithm of the SNR.

Keywords: channel capacity, fading channels, fading number, high

SNR, multiplexing gain, non-coherent, pre-log, pre-log-log, regular and non-

regular fading processes.
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Introduction Chapter 1

Chapter 1

Introduction

1.1 Motivation

Wireless communication systems have been investigated elaborately in the

last few years as these systems offer high data rates at low implementation

cost. In contrast to wired transmission through copper or optical fibers, a

wireless link is highly affected by its environment and the interference there-

from. Additionally, due to movements of transmitter, receiver, or scatterers

in the environment the link may vary over time. The resulting variation

of the channel is called fading and we therefore refer to these channels as

fading channels. Usually, the fading is modelled by a multiplicative noise

term. In addition, some additive white Gaussian noise models the distur-

bance introduced by the receiver.

An important performance measure to analyze these channels is the

channel capacity. The channel capacity is the largest rate at which reliable

communication, i.e., with arbitrarily small error-probability, is possible.

Recently, it was shown by Lapidoth and Moser [1] that if the law of

the fading process is known to both, transmitter and receiver, but neither of

them has knowledge of its realization and if the process is regular in the sense

that the realization of the “present” fading cannot be predicted precisely

from its “past”, then capacity grows double-logarithmically in the signal-

to-noise ratio (SNR). This result differs dramatically from the case where

either transmitter, receiver, or both have access to the fading realization

(perfect side information). Here, capacity increases logarithmically with the

SNR.

In order to bridge the gap between the double-logarithmic and the log-
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Chapter 1 Introduction

arithmic behaviors, Lapidoth extended the study in [1] to non-regular or

deterministic fading processes, where the “present” fading can be predicted

precisely from its “past” [2]. In particular, the capacity of single-input

single-output (SISO) discrete-time Gaussian fading channels with memory

was studied, where neither transmitter nor receiver has access to the re-

alization of the fading process. It was demonstrated that for non-regular

processes the increase of capacity with the SNR may be logarithmically,

double-logarithmically or in between, e.g., as a fractional power of the log-

arithm of the SNR. Additionally, an expression for the pre-log, i.e., the

limiting ratio of channel capacity to the logarithm of the SNR, was pre-

sented.

This thesis addresses the capacity of multiple-input single-output

(MISO) Gaussian fading channels with memory. Both, regular and non-

regular fading processes are considered. Again, neither transmitter nor re-

ceiver has access to the fading realization, though both are cognizant of the

fading law. The emphasis is on the high SNR regime. In particular, for non-

regular processes we determine the pre-log. In the case where the fading is

regular, we give an expression for the fading number1. In addition, we derive

an improved lower bound on the capacity of SISO fading channels as well as

an upper bound on the capacity of multiple-input multiple-output (MIMO)

fading channels where the fading process is in both cases non-regular.

This thesis is organized as follows: in Chapter 2 we provide a background

in information theory. Chapter 3 studies the prediction theory of univariate

and multivariate stochastic processes. In Chapter 4 we consider wireless

communication links and establish the channel model that we address. The

results obtained in this thesis are presented in Chapter 5. Chapters 6 and

7 show the derivations that yield those results. The results are discussed in

Chapter 8; and Chapter 9 concludes this thesis with a brief summary.

1The fading number is the second-order term in the high SNR expansion of capacity.

It was introduced in [1] by Lapidoth and Moser and can be viewed as an indication of the

practical limiting rate for power-efficient communication over the channel.
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1.2 Notation Chapter 1

1.2 Notation

In this section we establish the notation that we are using in this thesis. We

have to differentiate between random and deterministic quantities as well as

between scalars, vectors and matrices.

When dealing with scalars, we shall use upper case letters such as X for

random quantities and lower case letters such as x for its realization. Ran-

dom vectors are denoted with bold face upper case letters, e.g., X, and its

realizations are written in bold lower case letters, e.g., x. For deterministic

matrices, we use upper case letters of a special font, e.g., H, for random

matrices we use yet another font, e.g, H.

In order to denote the entries of a matrix we shall use superscripts so

that H(r,t) denotes the component of H that lies in row-r and column-t. We

use r and t as indices because we think of r indexing the receive antennas

and t indexing the transmit antennas. Consequently, we often use nR to

denote the number of rows and nT to denote the number of columns.

Typically, subscripts are used for time indices. Thus, the matrix H at

time k is denoted by Hk. Sequences of random variables are denoted using a

combination of superscript and subscript. So, if X1, X2, . . . is a sequence of

random variables, Xn
k describes the sequence Xk, . . . , Xn. If k = 1 we shall

often write Xn instead of Xn
1 .

With ‖ · ‖ we denote the Euclidean norm of vectors or the Euclidean

operator norm of matrices, i.e.,

‖x‖ =

√√√√
nT∑

t=1

|x(t)|2, x ∈ C
nT , (1.1)

‖A‖ = max
‖ŵ‖=1

‖Aŵ‖. (1.2)

All rates given in this thesis are in nats per channel use. When writing

log(·) we shall mean the natural logarithm function.

The mean-µ variance-σ2 univariate real Gaussian distribution is denoted

by NR (µ, σ2
)
. Similarly, NR (µ,K) denominates the distribution of a real

Gaussian random vector with mean µ and covariance matrix K. With

NC (µ, σ2
)

we shall mean the distribution of a complex Gaussian random

variable with mean µ and variance σ2 and where X − µ is circularly sym-

metric, i.e., where the real and imaginary part of X − µ are independent

NR (0, σ2/2
)

random variables. The distribution of a complex Gaussian

3



Chapter 1 Introduction

random vector with mean µ and covariance matrix K and where X − µ is

circularly symmetric is written as NC (µ,K) .
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Chapter 2

Channel Capacity

This chapter provides a background in information theory. In particular, we

introduce the notion of channel capacity which is an important performance

measure in communications.

Transmitter

Noise Source

Received Signal

Receiver

Signal

Channel

MessageMessage

Figure 2.1: A communication system

We consider a communication system with a transmitter, a channel and

a receiver, as shown in Figure 2.11. The task of the communication system

is to transmit a message from one point to another. The message could be

a text or a picture that someone wants to send to a friend. The transmitter

produces signals suitable for transmission over the channel. The channel is

the medium used to transmit the signal from transmitter to receiver. It can

be a pair of wires, a coaxial cable or air. Usually, the transmitted signal

is perturbed by noise which is indicated in Figure 2.1 by the noise source.

Based on the received signal, the receiver has to decide which message has

been sent. If the decision differs from the original message an error occurs.

Figure 2.2 shows a mathematical model of the communication system

shown in Figure 2.1. The message M is a random variable taken from the

1This communication system was originally introduced by Shannon in [3].
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Chapter 2 Channel Capacity

ReceiverChannelTransmitter

MY nM Xn

W (yn|xn)

Figure 2.2: Mathematical description of a communication system

index set {1, 2, . . . , |M|}, where |M| denotes the number of elements in the

set M. Note that we can express any finite set M of messages in terms

of such an index set by indexing all messages. The channel input Xn is

a sequence of random variables Xk taking values in the set X . Possibly,

the input sequences have to fulfill an additional constraint (e.g., power con-

straint, bandwidth constraint). We refer to a sequence xn as a codeword.

Usually, the alphabet of the codewords is restricted to a chosen codebook C

satisfying

C ⊆ X n (2.1)

and |C| = |M|. The transmitter performs a mapping from the index set M

to the set C referred to as encoding

Ψn(m) : M → C. (2.2)

The channel output Y n is a sequence of random variables Yk taking values in

the set Y. Based on the sequence yn the receiver has to decide which message

m has been sent. If the decision m differs from the original message m an

error occurs. The decision process is referred to as decoding and can be

described by the mapping—the so-called decoding rule—

Φn(yn) : Y → M. (2.3)

If a codebook C and a mapping Φn(yn) can be chosen in such a way that for

a sufficiently large n the probability of error can be made arbitrarily small,

then we refer to this case as reliable communication.

The chosen codebook determines the rate defined as

R =
log |C|

n
. (2.4)

The rate is a measure of how many information symbols can be transmitted

with a codeword of length n. The highest rate at which reliable communica-

tion is possible is called channel capacity. One can show that for the channel

model that we are addressing in this thesis (see Section 4.2) the capacity is

6



Chapter 2

given by [4]

C = lim
n→∞

1

n
sup

Q∈P(Xn)
I(Xn;Y n), (2.5)

where P(X n) is the set of all probability densities over X n fulfilling the

input constraint, and I(Xn;Y n) denotes the mutual information between

the channel input sequence Xn and the output sequence Y n given by

I(Xn;Y n) =

∫

xn∈Xn

∫

yn∈Yn

Q(xn)W (yn|xn) log
W (yn|xn)

(QW ) (yn)
dyn dxn. (2.6)

The density Q(xn) denotes the probability density of the input sequence

Xn and (QW ) (yn) denominates the probability density of the output se-

quence Y n induced by the channel with law W (yn|xn) and an input sequence

according to the probability density Q(xn):

(QW ) (yn) =

∫

x′n∈Xn

Q(x′n)W (yn|x′n) dx′n, yn ∈ Yn. (2.7)

The mutual information of random variables with probability densities can

as well be expressed as

I(Xn;Y n) = h(Y n) − h(Y n|Xn), (2.8)

where h(Y n) denotes the differential entropy of the output given by

h(Y n) = −

∫

yn∈Yn

(QW )(yn) log(QW )(yn) dyn (2.9)

and h(Y n|Xn) denominates the conditional differential entropy of the chan-

nel

h(Y n|Xn)

=

∫

xn∈Xn

Q(xn)h(Y n|Xn = xn) dxn

= −

∫

xn∈Xn

Q(xn)

∫

yn∈Yn

W (yn|xn) log W (yn|xn) dyn dxn. (2.10)

For a description of the properties of mutual information and differential

entropy see [5].

In general, the maximization over all input distributions in (2.5) can

be very complicated. Therefore, it is often easier to find upper and lower

bounds on the capacity. In the ideal case these bounds are tight (i.e., they

coincide) and one obtains an expression for the capacity. Good lower bounds

7



Chapter 2 Channel Capacity

can be found by choosing an input distribution Q(xn) close to the capacity-

achieving input distribution that maximizes (2.5). This cannot be done in

order to find upper bounds and, thus, good upper bounds are often more

difficult to find. In Chapter 5 we present upper bounds on the capacity of

fading channels.
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Chapter 3

Linear Prediction

This chapter outlines the prediction theory of univariate and multivariate

stochastic processes. In particular, we study the prediction error of linear

predictors, which are optimal when the stochastic processes are Gaussian.

This will be of importance when considering the capacity of channels with

memory.

The chapter is divided into two parts. In Section 3.1 we consider univari-

ate processes. For both regular and non-regular processes expressions are

given that connect the minimum mean squared prediction error to the spec-

tral density function of the process. In Section 3.2 multivariate processes are

considered. We show for both regular and non-regular processes identities

that link the determinant of the prediction error covariance matrix to the

determinant of the matrix-valued spectral density function. Additionally,

we show that if the entries in the random vectors of the stochastic process

are uncorrelated, then the prediction error covariance matrix is diagonal and

the diagonal entries correspond to the univariate prediction errors.

3.1 Univariate Prediction

In this section we glance at the prediction theory of univariate stochastic

processes. In particular, we aim at an expression for the mean squared error

in predicting a random variable A0 from past values A−1, A−2, . . ..

Consider a univariate zero-mean stationary stochastic process {Ak} with

spectral distribution function F(λ), −1/2 ≤ λ ≤ 1/2. Thus, F(λ) is a

monotonically non-decreasing function on [−1/2, 1/2] (see [2] and references

9



Chapter 3 Linear Prediction

therein) satisfying

E
[
Ak+mA*

k

]
=

∫ 1/2

−1/2
ei2πmλ dF(λ), k, m ∈ Z. (3.1)

In the following we assume F(λ) to be absolutely continuous. Then, F
′(λ)

denotes its derivative and is referred to as spectral density function.

The task of prediction is now to estimate A0 based on the past values

A−1, A−2, . . . in a way that the mean squared prediction error ǫ2MSE be-

tween A0 and its estimate A0, i.e., E
[
|A0 − A0|

2
]
, is minimized. In general,

the estimate that minimizes the mean squared error given the past values

a−1, a−2, . . . is given by

a0 = E
[
A0

∣∣A−1
−∞

]
(3.2)

and may be very difficult to compute. However, if the stochastic process

{Ak} is Gaussian, then it is well known that A0 is of the form

A0 =
−1∑

k=−∞

ckAk, (3.3)

where the parameters ck have to be chosen such that the prediction error

is minimized. Thus, the estimate is a linear combination of the past values

A−1, A−2, . . . and we refer to this case as linear prediction.

It was shown that if one is restricted to a linear predictor and if the

prediction error ǫ2MSE > 0, then there exists a formula that connects the

minimum mean squared error ǫ2MSE to the spectral density function F
′(λ)

(e.g., [6]):

ǫ2MSE = exp

{∫ 1/2

−1/2
log F

′(λ) dλ

}
. (3.4)

This formula is sometimes referred to as Kolmogorov’s formula. It should be

noted that this result holds for all kind of processes {Ak}, as long as linear

prediction is performed. However, only if the process is Gaussian, then this

error corresponds to the minimum mean squared prediction error among all

predictors.

In [2] the term regular is used for processes with ǫ2MSE > 0 whereas

processes for which ǫ2MSE = 0 are called non-regular or deterministic.

As mentioned above the expression for the prediction error (3.4) holds

only if ǫ2MSE > 0. Thus, in cases where the process is non-regular (i.e.,

ǫ2MSE = 0), we shall study the noisy prediction problem stated in [2] instead.

10



3.1 Univariate Prediction Chapter 3

Let {Wk} be a sequence of independent and identically distributed

(i.i.d.) NC (0, δ2
)

random variables, for a given δ2. Furthermore, let the

stochastic process {Ak} be Gaussian and independent from the process

{Wk}, i.e., Ak ⊥⊥ Wm, k, m ∈ Z. The noisy prediction problem is to pre-

dict A0 based on the observations A−1 + W−1, A−2 + W−2, . . .. It follows

that in this case the minimum mean squared prediction error denoted by

ǫ2MSE(δ2) is given by

ǫ2MSE(δ2) = exp

{∫ 1/2

−1/2
log(F

′(λ) + δ2) dλ

}
− δ2. (3.5)

This can be easily verified by noting that the conditional expectation

of A0 given the observations A−1 + W−1, A−2 + W−2, . . . is identical to the

conditional expectation of A0 + W0 given those observations, i.e.,

E
[
A0

∣∣ {Aν + Wν}
−1
ν=−∞

]
= E

[
A0 + W0

∣∣ {Aν + Wν}
−1
ν=−∞

]
. (3.6)

Since W0 is independent of A0 and of the observations, it follows that the

prediction error ǫ2MSE(δ2) can be written as the prediction error of the process

{Ak + Wk} but with the variance of W0 subtracted:

ǫ2MSE(δ2) = E
[
|A0 − A0|

2
∣∣ {Aν + Wν}

−1
ν=−∞

]

= E
[
|A0 − A0 + W0|

2
∣∣ {Aν + Wν}

−1
ν=−∞

]

= E
[
|A0 − A0 + W0|

2 + |W0|
2
∣∣ {Aν + Wν}

−1
ν=−∞

]

− E
[
|W0|

2
∣∣ {Aν + Wν}

−1
ν=−∞

]

= E
[
|A0 + W0 − A0 + W0|

2
∣∣ {Aν + Wν}

−1
ν=−∞

]
− E

[
|W0|

2
]
,

(3.7)

with A0 and A0 + W0 being the estimates of A0 and A0 + W0, respectively,

given the observations. We then obtain (3.5) by noting that the density of

{Ak + Wk} is given by F
′(λ) + δ2.

At the end of this section, we recall some facts related to the predic-

tion problem for circularly symmetric stationary Gaussian processes. We

first note that if {Ak} is a Gaussian process, then the random variable A0

conditioned on A−1, A−2, . . . , A−n has a Gaussian distribution with mean

E
[
A0

∣∣A−1
−n

]
and variance ǫ2n = E

[∣∣A0 − E
[
A0

∣∣A−1
−n

]∣∣2
]

that is indepen-

dent of the realization of A−1, A−2, . . . , A−n. We denote the variance by ǫ2n
since it corresponds to the minimum mean squared error in predicting A0

from past values A−1, A−2, . . . , A−n.

11



Chapter 3 Linear Prediction

Furthermore, it follows by [2] and references therein, that if {Ak} is

additionally stationary, then the prediction error ǫ2n is monotonically non-

increasing in n and

lim
n→∞

ǫ2n = ǫ2MSE, (3.8)

with ǫ2MSE as in (3.4) and (3.5), respectively.

3.2 Multivariate Prediction

In the following we give an overview over the prediction theory of multivari-

ate stochastic processes that is based on work by Wiener and Masani [7].

The concepts are similar to that in the univariate case.

We consider a multivariate zero-mean stationary stochastic process

{Ak}. Since Ak is a vector, the spectral distribution function F(λ) is now

a matrix with diagonal entries that are real-valued and monotonically non-

decreasing on [−1/2, 1/2] [7]. The matrix-valued spectral distribution func-

tion satisfies

E

[
Ak+mA

†
k

]
=

∫ 1/2

−1/2
ei2πmλ dF(λ), k, m ∈ Z. (3.9)

Thus, the (r, t)-th entry of the nR × nR covariance matrix E

[
Ak+mA

†
k

]
is

given by

E

[
A

(r)
k+mA

(t)*
k

]
=

∫ 1/2

−1/2
ei2πmλ dF

(r,t)(λ), k, m ∈ Z. (3.10)

In the following we assume that all entries in F(λ) are absolutely continuous.

Then, like in the univariate case, F′(λ) denotes the derivative of F(λ) and is

referred to as the (matrix-valued) spectral density function.

Notice that if the entries in Ak are uncorrelated, then the covariance

matrix E

[
Ak+mA

†
k

]
is diagonal for all k, m ∈ Z and it follows that the

spectral density function F′(λ) is diagonal as well. This can be verified

by noting that the covariance matrix and the spectral density function are

Fourier pairs. Thus, if the (r, t)-th entry in the covariance matrix is zero for

all k, m ∈ Z, then the corresponding entry in the spectral density matrix

must be zero as well.

In order to predict the random vector A0 from past values A−1,A−2, . . .,

we form an estimate A0 of A0 such that the determinant of the prediction

12



3.2 Multivariate Prediction Chapter 3

error covariance matrix Σ, given by

Σ = E

[
(A0 − A0)(A0 −A0)

†
]
, (3.11)

is minimized. In general, the estimate that minimizes the prediction error

given the past values a−1,a−2, . . . is given by

a0 = E
[
A0

∣∣A−1
−∞

]
. (3.12)

However, if the stochastic process {Ak} is Gaussian, then A0 is of the form

A0 =
−1∑

k=−∞

CkAk, (3.13)

where the matrix-valued parameters Ck have to be chosen such that the

prediction error is minimized. Remember that we refer to this case as linear

prediction.

Wiener and Masani showed that if one is restricted to a linear predictor

and if the minimum prediction error covariance matrix Σ is nonsingular (i.e.,

det Σ > 0), then there exists a determinantal expression that connects Σ to

the matrix-valued spectral density function F′(λ) [7]:

det Σ = exp

{∫ 1/2

−1/2
log det F

′(λ) dλ

}
. (3.14)

Note, however, that the problem of expressing the covariance matrix Σ itself

in terms of the spectral density function F′(λ) has not yet been solved.

As in the univariate case, we refer to processes with detΣ > 0 as regular

and to those for which det Σ = 0 as non-regular or deterministic. Note that

Wiener and Masani [7] use the term non-deterministic instead of regular.

As mentioned above the expression for the prediction error covariance

matrix holds only if detΣ > 0. In order to study non-regular processes

(i.e., det Σ = 0), we shall extend the noisy prediction problem for univariate

stochastic processes to the multivariate case.

Let {Wk} be a sequence of i.i.d. NC (0, δ2I
)

random variables with I

being the identity matrix. Furthermore, let the stochastic process {Ak}

be Gaussian and independent from the process {Wk}. The noisy prediction

problem for multivariate processes is to predict A0 based on the observations

A−1 + W−1,A−2 + W−2, . . .. It follows that in this case the minimum

13
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prediction error covariance matrix Σ is connected to the spectral density

function F′(λ) by the following expression:

det
(
Σ + δ2

I
)

= exp

{∫ 1/2

−1/2
log det

(
F
′(λ) + δ2

I
)

dλ

}
. (3.15)

The derivation of this expression is analogous to that in the univariate case.

We shall often consider stochastic processes {Ak} where the entries A
(r)
k

are uncorrelated, i.e.,

E

[
A

(r)
k+mA

(t)*
k

]
= 0 for r 6= t, k, m ∈ Z. (3.16)

In this case we are able to express the prediction error covariance matrix Σ

in terms of the density F′(λ). The result is stated in the following lemma.

Lemma 3.1 Consider a multivariate zero-mean stationary stochastic pro-

cess {Ak} with matrix-valued spectral distribution function F(λ). Further-

more, assume that the entries A
(r)
k are uncorrelated, i.e., (3.16) holds. Then,

the prediction error covariance matrix Σ of the optimal linear predictor is

diagonal. Moreover, the diagonal entries are given by

Σ(r,r) = exp

{∫ 1/2

−1/2
log F

′(r,r)(λ) dλ

}
, 1 ≤ r ≤ nR, (3.17)

where F′(λ) denotes the derivative of F(λ).

Proof: See Appendix A. �

Note that Lemma 3.1 is also of use for matrix-valued stochastic processes

{Ak}. Indeed, we can stack the components of Ak into one huge vector and

consider the vector-valued case.
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Chapter 4

The Channel

In this chapter we investigate the physical behavior of wireless links and

derive the channel model that we will use in the following chapters.

The chapter is divided into two parts. In Section 4.1 we begin by de-

scribing the channel physically and show how this channel can be modeled

mathematically. Section 4.2 shows the channel model that will be used in

this thesis.

4.1 The Physical Description of the Channel

In this section, we study the transfer behavior of wireless transmission chan-

nels. We aim at deriving a mathematical channel model practical for the

investigation of the capacity.

In contrast to wired transmission through copper or optical fibers, a wire-

less link is highly affected by its environment and the interference therefrom.

The transmitted signal can be reflected by objects in the surrounding area

(e.g., buildings, mountains) or perturbed by atmospheric effects (e.g., rain,

snow, electromagnetic interference). Figure 4.1 shows a model of a wireless

transmission channel. It illustrates the environmental influences represented

by a mountain, a building and scatterers in the atmosphere. The arrows

picture possible propagations of radiation referred to as paths. Note that

transmitter and receiver are depicted by cars having in mind that both can

be mobile.

The signal at the receiver is a superposition of signals corresponding

to different paths. Depending on the environment, the paths will differ in

length and occupy therefore different path delays. This affects the received

15
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Transmitter Receiver

Line of Sight

Scatterers

Figure 4.1: Physical channel model
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signal in two ways: first of all, the signals arrive at different times which

causes a temporal spread of the signal. Secondly, any path delay induces an

appropriate phase-shift that leads to constructive and destructive interfer-

ence1 at the receiver.

Due to movements of transmitter, receiver, or the scatterers, the channel

behavior may vary over time. This variation is called fading. It follows that

a mathematical description of a fading channel must consider the time-

dependency of the channel behavior. We may write the continuous-time

signal Y (t) at the receiver as

Y (t) = (h ⋆ x) (t) + Z(t) =

∫ ∞

−∞
h(t, τ)x(t − τ) dτ + Z(t), t ∈ R, (4.1)

where the zero-mean additive white Gaussian noise Z(t) models the distur-

bance introduced by the receiver. Note that the impulse response h(t, τ)

depends on the time index t.

So far, the channel impulse response h(t, τ) has been regarded as deter-

ministic, since it can be determined for a given environment. However, the

channel behavior depends on many parameters and, thus, a deterministic

description of the channel is not feasible. Therefore, we resort to a stochas-

tic description by trying to characterize the channel statistics. Then, Y (t)

is given by

Y (t) =

∫ ∞

−∞
H(t, τ)x(t − τ) dτ + Z(t), t ∈ R (4.2)

with the random time-varying impulse response H(t, τ). We continue by

replacing H(t, τ) and x(t) with their Fourier transforms, i.e.,

LH(t, f) =

∫ ∞

−∞
H(t, τ)e−i2πfτ dτ (4.3)

and

x̆(f) =

∫ ∞

−∞
x(t)e−i2πft dt, t, f ∈ R, (4.4)

where LH(t, f) is referred to as time-varying transfer function or Weyl sym-

bol. It follows that

Y (t) =

∫ ∞

−∞
LH(t, f)x̆(f)ei2πft df + Z(t), t ∈ R. (4.5)

1With interference we shall mean the superposition of several signals. If the signals

differ in the phase by a multiple of 2π, then the interference is called constructive, if the

phase difference can be written as (2m + 1)π, m ∈ Z , then the interference is referred to

as destructive.
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Under the condition that the bandwidth W of the signal x(t) is sufficiently

small we may assume that the transfer function LH(t, f) is constant on the

interval [−W, W], i.e., LH(t, f) = LH(t) for f ∈ [−W, W], t ∈ R. In this

case the signal Y (t) is given by

Y (t) =

∫ ∞

−∞
LH(t, f)x̆(f)ei2πft df + Z(t)

= LH(t)

∫ ∞

−∞
x̆(f)ei2πft df + Z(t)

= H(t)x(t) + Z(t), t ∈ R, (4.6)

where the last equality should be taken as a definition. We refer to this

case as flat fading addressing the assumption of the transfer function being

“flat” on the interval [−W, W]. It should be noted that the question whether

the fading is flat or not depends on the signal-bandwidth as well as on the

channel behavior.

For mathematical convenience people often use a discrete-time analog to

(4.6), i.e.,

Yk = Hkxk + Zk, k ∈ Z. (4.7)

Additionally, Hk is often chosen to be Gaussian distributed. This is justified

by the assumption of having a large number of independent scatterers in the

environment that affect Hk. The claim then follows from the central limit

theorem.

Y
(4)
k

Y
(3)
k

Y
(2)
k

Y
(1)
k

H
(4,4)
k

x
(1)
k

x
(2)
k

x
(3)
k

x
(4)
k

H
(1,1)
k

Figure 4.2: Multiple-input multiple-output channel

18



4.2 The Channel Model Chapter 4

So far, we only considered a single-antenna system. However, the exten-

sion to multiple antennas is straightforward. Figure 4.2 shows a multiple-

input multiple-output (MIMO) channel where any arrow depicts a single-

input single-ouput (SISO) channel described by the channel model in (4.7).

It follows that the time-k ouput Y
(r)
k ∈ C at the r-th receive antenna is given

by

Y
(r)
k =

nT∑

t=1

H
(r,t)
k x

(t)
k + Z

(r)
k , 1 ≤ r ≤ nR, (4.8)

where H
(r,t)
k denotes the channel that connects the t-th transmit antenna

with the r-th receive antenna. Using vectors and the fading matrix Hk we

can write (4.8) as

Yk = Hkxk + Zk. (4.9)

In the following this channel model (4.9) will be used to describe the

channel. The laws of Yk, Hk and Zk are established in the next section.

4.2 The Channel Model

We consider a discrete-time MIMO channel whose time-k complex-valued

output Yk ∈ C
nR is given by

Yk = Hkxk + Zk, (4.10)

where xk ∈ CnT is the nT-dimensional complex-valued input at time k; the

complex process {Hk} with Hk ∈ C
nR×nT , k ∈ Z models multiplicative noise;

and the complex process {Zk} models additive noise. The processes {Hk}

and {Zk} are assumed to be independent and of a joint law that does not

depend on the input sequence {xk}.

We assume that {Zk} is a sequence of independent and identically dis-

tributed (i.i.d.) circularly symmetric complex Gaussian random variables

of zero-mean and variance σ2, i.e., Zk ∼ NC (0, σ2I
)
, where I denotes the

identity matrix. The fading process {Hk} is assumed to be such that for a

deterministic mean matrix D = E[Hk] the process {Hk − D} is a zero-mean

circularly symmetric stationary Gaussian process. Additionally, we assume

that both {Hk} and {Zk} have finite second moments, i.e.,

E
[
‖Hk‖

2
]
,E
[
‖Zk‖

2
]

< ∞, k ∈ Z. (4.11)
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In this thesis we often consider channels with only one receive antenna.

In this case, the fading can be described by a vector instead of a matrix and

the channel output at time k is given by

Yk = HT

kxk + Zk. (4.12)

Note that we view channels with only one transmit antenna as a special case

of the more general case with nT ≥ 1.

The law of the fading process {Hk} can be described by the specular

component d = E[Hk] and by the matrix-valued spectral distribution func-

tion F(λ), −1/2 ≤ λ ≤ 1/2. In general, F(λ) is such that

E

[
(Hk+m − d)(Hk − d)†

]
=

∫ 1/2

−1/2
ei2πmλ dF(λ) (4.13)

and

E

[
(Hk − d)(Hk − d)†

]
= K, k, m ∈ Z (4.14)

with K being the covariance matrix of the fading process. In the following,

we will assume that the spectral distribution function F(λ) is absolutely

continuous and denote its derivative by F′(λ). Remember that if the chan-

nels are uncorrelated, i.e., E
[
(Hk+m − d)(Hk − d)†

]
is diagonal, then the

spectral density matrix F′(λ), −1/2 ≤ λ ≤ 1/2, is diagonal as well.

When considering MIMO channels, the covariance matrix has to be re-

placed by a tensor. Consequently, notation gets more laborious. However,

if the entries in the fading matrix {Hk} are independent, i.e.,

E

[
(H

(r,t)
k+m − d(r,t))(H

(r′,t′)
k − d(r′,t′))*

]
= 0, for r 6= r′ and t 6= t′,

k, m ∈ Z, (4.15)

then we shall define the matrix-valued spectral distribution function

F(λ) ∈ RnR×nT such that

E

[
(H

(r,t)
k+m − d(r,t))(H

(r,t)
k − d(r,t))*

]
=

∫ 1/2

−1/2
ei2πmλ dF

(r,t)(λ), k, m ∈ Z.

(4.16)

We will study both, regular and non-regular fading processes. In the

case where the fading is regular, we consider an average-power constraint

on the input, i.e.,

1

n

n∑

k=1

E
[
‖Xk‖

2
]
≤ Es, (4.17)
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and we define the signal-to-noise ratio (SNR) by

SNR =
Es

σ2
. (4.18)

In the case of a non-regular fading process, we replace the average-power

constraint by a peak-power constraint, i.e.,

‖xk‖ ≤ A. (4.19)

In this case, the SNR is defined by

SNR =
A

2

σ2
. (4.20)

Note that if the spectral density function is a diagonal matrix and its

diagonal entries are constant on [−1/2, 1/2], then {Hk} is a sequence of

i.i.d. Gaussian random variables. Thus, our channel model includes as spe-

cial cases the Rayleigh and Ricean channel models corresponding to zero-

mean and non zero-mean i.i.d. fading.
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Chapter 5

Results

This chapter gives an overview over all results obtained in this thesis. Addi-

tionally, we summarize previous work done by Lapidoth and Moser [1] and

by Lapidoth [2], where we will focus on the results that are associated with

our work.

The chapter is divided into two parts. The first part presents the re-

sults corresponding to fading channels with a regular fading process, i.e.,

the present state of the channel cannot be estimated precisely from its past.

Here, the emphasis is on the fading number, i.e., the second order term

in the high signal-to-noise ratio (SNR) expansion of the capacity, intro-

duced by Lapidoth and Moser in [1]. After resuming some previous results

we present an upper bound on the fading number of multiple-input single-

output (MISO) Gaussian fading channels with memory. Moreover, we show

that this bound is tight (i.e., it coincides with a lower bound) in the case

where the channels are uncorrelated and where the fading process is either

zero-mean or its spectral density matrix contains identical entries. The

derivations of these results can be found in Chapter 6.

In the second part, we consider fading channels with a non-regular fading

process, i.e., the present state of the channel can be estimated precisely from

its past. Since the capacity of these channels can grow faster than double-

logarithmically in the SNR, the fading number will be infinite in many cases

and is thus not an appropriate performance measure anymore. Instead, we

study the pre-log, i.e., the limiting ratio of the capacity to the logarithm of

the SNR. We present upper bounds on the pre-log of MISO and multiple-

input multiple-output (MIMO) Gaussian fading channels with memory. In

the case of MISO fading channels, we show that the upper bound is tight
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if the channels are uncorrelated. Additionally, we present a lower bound

on the capacity of single-input single-output (SISO) channels that is tight

when channel capacity only grows double-logarithmically in the SNR. The

derivations of these results can be found in Chapter 7.

5.1 Regular Processes

In this section we study fading channels with a regular fading process, i.e.,

the present state of the channel cannot be estimated precisely from its past.

According to Section 4.2, we consider in this case an average-power con-

straint on the input (4.17) and it follows that the SNR is given by

SNR =
Es

σ2
. (5.1)

Lapidoth and Moser showed [1] that if the fading process is regular,

channel capacity grows double-logarithmically in the SNR. Furthermore,

they defined the fading number of a fading process {Hk} as

χ({Hk}) = lim
Es→∞

{
C(Es) − log log

Es

σ2

}
, (5.2)

where C(Es) denotes the capacity of a channel under an average-power con-

straint Es on the input. The fading number has the following interpretation.

The region where capacity only grows double-logarithmically in the SNR is

very power-inefficient. So, in order to communicate power-efficiently, one

should avoid this region and design the communication systems for lower

rates. The fading number can be viewed as an indication of roughly how

high the rate need be before one enters the double-logarithmic regime. In

other words, at rates that are significantly higher than the fading number

capacity grows only double-logarithmically in the SNR and communication

is very power-inefficient.

In [1] several upper and lower bounds on the fading number are pre-

sented. We will show some of those in Section 5.1.1. In the subsequent

section, we present an upper bound on the fading number of MISO Gaus-

sian fading channels with memory. This upper bound is tight in the case

where the channels are uncorrelated, i.e., E
[
(Hk+m − d)(Hk − d)†

]
is diag-

onal, and where the fading process is either zero-mean or its spectral density

matrix contains identical entries.
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5.1.1 Previous Results

In the following we restate those results in [1] that we need to derive the

upper bound presented in Section 5.1.2.

Lemma 5.1 Consider a stationary fading process {Hk} with nT transmit

antennas and nR receive antennas. Let F and G be nonsingular deterministic

matrices of dimensions nT × nT and nR × nR, respectively. Then

χ({GHkF}) = χ({Hk}). (5.3)

Proof: See [1, Lemma 4.7]. �

The next corollary gives a formula for the fading number of memoryless

MISO Gaussian fading channels. It is shown that the fading number is

achievable by inputs of the form X · x̂, where x̂ is a deterministic unit

vector. We refer to this case as beam forming.

Corollary 5.2 Consider a memoryless Gaussian MISO fading channel

where the fading matrix is a row vector HT ∈ C
nT , where H ∼ NC (d,K),

det K 6= 0. Then the fading number is given by

χ(HT) = −1 + log d2
∗ − Ei(−d2

∗) (5.4)

where

d∗ = max
‖x̂‖=1

|E[HT] x̂|√
Var(HTx̂)

(5.5)

and Ei(−x) denotes the exponential integral function defined as

Ei(−x) = −

∫ ∞

x

e−t

t
dt, x > 0. (5.6)

Proof: See [1, Corollary 4.28]. �

It should be noted that if the mean vector d is zero, then d∗ is zero as

well and the fading number is equal to −1 − γ, where γ ≈ 0.577 denotes

Euler’s constant. It is achievable by beam forming with an arbitrarily chosen

direction.

Theorem 5.3 Consider a MIMO fading channel

Yk = Hkxk + Zk (5.7)
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where the fading process {Hk} is stationary and independent of the station-

ary additive noise process {Zk}. Assume further that {Zk} is a sequence

of independent and identically distributed (i.i.d.) random variables and the

joint law ({Hk}, {Zk}) does not depend on the input sequence {xk}. Then,

the fading number χ({Hk}) can be upper bounded by

χ({Hk}) ≤ χi.i.d.(H1) + lim
n→∞

I(Hn; Hn−1)

= χi.i.d.(H0) + I(H0; H
−1
−∞), (5.8)

where χi.i.d.(H0) denotes the fading number in the memoryless case with

equal marginal.

Proof: Follows directly from [1, Lemma 4.5]. �

For SISO systems, this bound is tight and we can give a formula for the

fading number.

Corollary 5.4 Consider a SISO fading process {Hk} such that for some

specular component d ∈ C the process {Hk−d} is a zero-mean unit-variance

circularly symmetric stationary complex Gaussian process whose spectrum

is of continuous part F
′(λ), −1/2 ≤ λ ≤ 1/2. Then

χ({Hk}) = −1 + log |d|2 − Ei(−|d|2) + log
1

ǫ2MSE

(5.9)

where ǫ2MSE > 0 denotes the minimum mean squared error in predicting the

present fading from its past

ǫ2MSE = exp

{∫ 1/2

−1/2
log F

′(λ) dλ

}
. (5.10)

Proof: See [1, Corollary 4.42]. �

In the next section we give an improved upper bound on the fading

number of MISO fading channels with memory.

5.1.2 The Fading Number of MISO Fading Channels

As stated before, the upper bound on the fading number given in Theo-

rem 5.3 is only tight for SISO systems. Here, we present an improved upper

bound on the fading number of MISO Gaussian fading channels with mem-

ory.
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Theorem 5.5 Consider a MISO Gaussian fading channel with fading pro-

cess {Hk} such that for some specular component d ∈ CnT the process

{Hk − d} is a zero-mean circularly symmetric stationary Gaussian process

with a matrix-valued spectral distribution function F(λ) such that

E

[
(Hk+m − d)(Hk − d)†

]
=

∫ 1/2

−1/2
ei2πmλ dF(λ) (5.11)

and

det
(
E

[
(Hk − d)(Hk − d)†

])
6= 0, k, m ∈ Z. (5.12)

Then, the fading number can be upper bounded by

χ({HT

k}) ≤ −1 + log d2
∗ − Ei(−d2

∗) + log
1

λmin
(5.13)

with

d∗ = max
‖x̂‖=1

|dTx̂| (5.14)

and where λmin is the minimum eigenvalue of the prediction error covariance

matrix Σ in predicting the present fading from its past defined as in (3.11).

Proof: See Chapter 6. �

Note that since the fading process is regular, the present fading cannot

be estimated precisely from its past and, therefore, λmin > 0. Furthermore,

remember that we are not able to determine λmin in the case where the

channels are correlated due to the fact that in this case only a determinantal

identity is known that connects the prediction error covariance matrix Σ to

the spectral density F′(λ) (see Chapter 3).

In general, the upper bound given in Theorem 5.5 is not tight. However,

we can show two special cases where this bound can be achieved. The

corresponding fading numbers are presented in Corollaries 5.6 and 5.7.

Corollary 5.6 Consider a MISO zero-mean circularly symmetric station-

ary Gaussian fading channel with a matrix-valued spectral distribution func-

tion F(λ) as in Theorem 5.5. Furthermore, let the channels be uncorrelated,

i.e., F′(λ) is a diagonal matrix. Then

χ({HT

k}) = −1 − γ + log
1

ǫ2min

, (5.15)
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where ǫ2min > 0 is the minimum mean squared error in predicting that compo-

nent of the present fading H
(t)
0 which leads to the smallest prediction error,

i.e.,

ǫ2min = min
1≤t≤nT

exp

{∫ 1/2

−1/2
log F

′(t,t)(λ) dλ

}
, (5.16)

Moreover, this fading number is achievable by transmitting from only one

antenna, i.e., the one that yields the smallest prediction error in predicting

the fading from its past.

Proof: See Chapter 6. �

Note that the fading number achieving strategy proposed in Corollary 5.6

can be viewed as a special case of beam forming (i.e., the inputs are of the

form Xk = x̂X̃k), where the components of x̂ are given by

x̂(t) =

{
1 t = t∗

0 otherwise
(5.17)

and where t∗ has to be chosen such that the minimum prediction error given

in (5.16) is achieved.

Corollary 5.7 Consider a MISO Gaussian fading channel with fading pro-

cess {Hk} such that for some specular component d ∈ C
nT the process

{Hk − d} is a zero-mean circularly symmetric stationary Gaussian pro-

cess with a matrix-valued spectral distribution function F(λ) as in Theo-

rem 5.5. Furthermore, assume that F′(λ) is a diagonal matrix with entries

F
′(t,t)(λ) = F

′(λ) for 1 ≤ t ≤ nT. Then

χ({HT

k}) = −1 + log d2
∗ − Ei(−d2

∗) + log
1

ǫ2
(5.18)

with

d∗ = max
‖x̂‖=1

|dTx̂| (5.19)

and where ǫ2 > 0 is the minimum mean squared error in predicting the

present fading from its past, i.e.,

ǫ2 = exp

{∫ 1/2

−1/2
log F

′(λ) dλ

}
. (5.20)

Moreover, this fading number can be achieved by beam forming.
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Proof: See Chapter 6. �

In general, the direction has to be chosen such that the resulting specular

component d∗ is maximized. However, if the specular component d is zero,

then the fading number is equal to −1 − γ + log 1
ǫ2

and can be achieved by

beam forming with an arbitrarily chosen direction.

5.2 Non-Regular Processes

In this section we study fading channels with a non-regular fading process,

i.e., the present state of the channel can be predicted precisely from its past.

According to Section 4.2, we consider in this case a peak-power constraint

(4.19) instead of an average-power constraint and it follows that the SNR is

given by

SNR =
A

2

σ2
. (5.21)

The capacity of fading channels with a non-regular fading process can

grow faster than double-logarithmically in the SNR. So, for most of these

channels the fading number will be infinite and is thus not an appropriate

performance measure anymore. Instead, we will consider the capacity pre-

log in cases where capacity grows logarithmically, and the capacity pre-log-

log in cases where capacity grows double-logarithmically in the SNR. The

capacity pre-log Π is the limiting ratio of the capacity to the logarithm of

the SNR, i.e.,

Π = lim
SNR→∞

C(SNR)

log SNR
, (5.22)

where C(SNR) denotes capacity under a peak-power constraint on the input.

Similarly, the pre-log-log Λ is defined as

Λ = lim
SNR→∞

C(SNR)

log log SNR
. (5.23)

Note that the capacity of a fading channel in the presence of perfect

receiver side information, i.e., when the receiver has perfect knowledge of

the fading realization, is given by [8]

CPSI(SNR) = min{nT, nR} · log SNR + O(1), (5.24)

where O(1) is bounded by a constant and where nT is the number of transmit

and nR the number of receive antennas. It follows by (5.24) and by noting
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that capacity in the absence of perfect receiver side information cannot be

greater than capacity in its presence, that the pre-log can never be larger

than min{nT, nR}, i.e., Π ≤ min{nT, nR}.

The capacity of SISO Gaussian fading channels where the fading process

is non-regular was studied by Lapidoth in [2]. In the next section we show

some of those results. Then, we present continuative results obtained in this

thesis.

5.2.1 Previous Results

In this section we state some of the achievements in [2] needed to derive the

results presented in Sections 5.2.2, 5.2.3 and 5.2.4.

Theorem 5.8 Consider a SISO fading process {Hk} such that for some

specular component d ∈ C the process {Hk−d} is a zero-mean unit-variance

circularly symmetric stationary complex Gaussian process with spectral dis-

tribution function F(λ) and where the spectrum fulfills

E
[
(Hk+m − d)(Hk − d)*

]
=

∫ 1/2

−1/2
ei2πmλ dF(λ), k, m ∈ Z. (5.25)

Then, capacity can be upper bounded by

C(SNR) ≤ log
1

ǫ2MSE(1/SNR)
+ log log SNR + O(1) (5.26)

where O(1) depends on d only and ǫ2MSE(1/SNR) denotes the minimum mean

squared error in predicting the present fading from a noisy observation of its

past, i.e.,

ǫ2MSE(δ2) = exp

{∫ 1/2

−1/2
log(F

′(λ) + δ2) dλ

}
− δ2. (5.27)

Additionally, capacity can be lower bounded by

C(SNR) ≥ log
1

ǫ2MSE(4/SNR) + 2
5 · (4/SNR)

+ O(1). (5.28)

Proof: See [2]. �

Note that the prediction error ǫ2MSE(1/SNR) goes to zero as the SNR

tends to infinity and therefore capacity can increase faster than double-

logarithmically with the SNR. Lapidoth derived an expression for the ca-

pacity pre-log when capacity grows logarithmically in the SNR.
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Corollary 5.9 Consider a SISO fading process {Hk} as in Theorem 5.8.

Then, the capacity pre-log Π is determined by the nulls of the spectral density

Π = µ
({

λ : F
′(λ) = 0

})
, (5.29)

where µ(·) denotes the Lebesgue measure on the interval [−1/2, 1/2].

Proof: See [2]. �

When capacity has a double-logarithmic increase with the SNR, i.e.,

lim
SNR→∞

C(SNR)

log log SNR
< ∞, (5.30)

then the lower bound (5.28) given in Theorem 5.8 is not tight. In the next

section we present a tight lower bound on channel capacity for the case

where (5.30) holds.

5.2.2 The Pre-Log-Log of SISO Fading Channels

In order to find an expression for the channel pre-log-log Λ, a tight lower

bound on the capacity is required. The following lower bound is tight when

channel capacity has a double-logarithmic increase with the SNR.

Theorem 5.10 Consider a SISO fading process as in Theorem 5.8. Fur-

thermore, assume that the capacity has a double-logarithmic increase with

the SNR, i.e.,

lim
SNR→∞

C(SNR)

log log SNR
< ∞. (5.31)

Then, channel capacity can be lower bounded by

C(SNR) ≥ log
1

ǫ2MSE(δ2) + δ2

∣∣∣∣
δ2= σ2

A2α

+ log log SNR + O(1), (5.32)

where 0 < α < 1 and where ǫ2MSE(δ2) is defined as in (5.27). The O(1) term

depends on α and on d.

Proof: See Chapter 7. �

From Theorem 5.8 and 5.10 one can derive an expression for the channel

pre-log-log.
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Corollary 5.11 Consider a SISO fading process {Hk} as in Theorem 5.8.

Furthermore, assume that channel capacity grows double-logarithmically in

the SNR, i.e.,

lim
SNR→∞

C(SNR)

log log SNR
< ∞. (5.33)

Then, the capacity pre-log-log Λ is given by

Λ = 1 + K (5.34)

with

K = lim
δ2↓0

−
∫ 1/2
−1/2 log

(
F
′(λ) + δ2

)
dλ

log log 1
δ2

. (5.35)

Proof: See Chapter 7. �

5.2.3 The Pre-Log of MISO Fading Channels

In this section we present an upper bound on the capacity of MISO

fading channels. It can be shown that this upper bound is tight in

the case where the channels are uncorrelated, i.e., the covariance matrix

E
[
(Hk+m − d)(Hk − d)†

]
is diagonal.

Theorem 5.12 Consider a MISO fading process {Hk} such that for some

specular component d the process {Hk − d} is a zero-mean circularly sym-

metric stationary complex Gaussian process with matrix-valued spectral dis-

tribution function F(λ) such that

E

[
(Hk+m − d)(Hk − d)†

]
=

∫ 1/2

−1/2
ei2πmλ dF(λ) (5.36)

and

det
(
E

[
(Hk − d)(Hk − d)†

])
6= 0, k, m ∈ Z. (5.37)

Then, channel capacity can be upper bounded by

C(SNR) ≤ log
1

λmin(1/SNR)
+ log log SNR + O(1), (5.38)

where λmin(1/SNR) denotes the minimum eigenvalue of the prediction error

covariance matrix Σ(1/SNR) in predicting the present fading vector from a

noisy observation of its past.
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Proof: See Chapter 7. �

Remember that when the channels are correlated, i.e., F′(λ) is not a

diagonal matrix, only a determinantal identity is known that connects the

spectral density function F′(λ) to the prediction error covariance matrix

Σ(1/SNR) (see Chapter 3). However, if F′(λ) is diagonal , then Σ(1/SNR)

is diagonal as well and we can express the minimum eigenvalue λmin(1/SNR)

in terms of F′(λ). In this case, the pre-log is given as follows.

Corollary 5.13 Consider a MISO fading process as in Theorem 5.12. Fur-

thermore, assume that the channels are uncorrelated, i.e., F′(λ) is a diagonal

matrix. Then the pre-log Π is given by

Π = max
1≤t≤nT

µ
({

F
′(t,t)(λ) = 0

})
. (5.39)

Moreover, this pre-log is achievable by transmitting from only one antenna,

i.e., the one that yields the smallest prediction error in predicting the present

fading from its past.

Proof: See Chapter 7. �

As commented in Section 5.1.2, transmitting from only one antenna can

be viewed as a special case of beam forming.

5.2.4 The Pre-Log of MIMO Fading Channels

In the following we present an upper bound on the capacity of MIMO fading

channels as well as an upper bound on the corresponding capacity pre-log.

We can show that if the number of transmit antennas nT is larger than the

number of receive antennas nR, this upper bound is at least as tight as the

trivial upper bound Π ≤ min{nT, nR}.

We assume that all entries in the nR × nT fading matrix Hk are inde-

pendent, i.e., for the deterministic nR × nT mean matrix D

E

[(
H

(r,t)
k+m − d(r,t)

)(
H

(r′,t′)
k − d(r′,t′)

)
*

]
= 0, for r 6= r′ and t 6= t′,

k, m ∈ Z. (5.40)

We further assume that

det
(
E

[
(H

(r)
k − d(r))(H

(r)
k − d(r))†

])
6= 0, 1 ≤ r ≤ nR, k ∈ Z, (5.41)
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where H
(r)
k and d(r) denote the r-th row of the fading matrix Hk and the

mean matrix D, respectively.

To simplify notation we define the matrix-valued spectral distribution

function F(λ) ∈ RnR×nT such that

E

[(
H

(r,t)
k+m − d(r,t)

)(
H

(r,t)
k − d(r,t)

)
*

]
=

∫ 1/2

−1/2
ei2πmλ dF

(r,t)(λ), k, m ∈ Z.

(5.42)

Theorem 5.14 Consider a MIMO fading process {Hk} such that for some

nR × nT mean matrix D the process {Hk − D} is a zero-mean stationary

circularly symmetric complex Gaussian process with a matrix-valued spectral

distribution function F(λ) fulfilling (5.42). Furthermore, assume that (5.41)

and (5.40) hold. Then, capacity can be upper bounded by

C(SNR) ≤ sup
‖x̂‖=1

{
nR∑

r=1

log
1

x̂TΣr(1/SNR)x̂* + 1/SNR

}
+log log SNR+O(1),

(5.43)

where Σr(1/SNR) is a diagonal nT × nT matrix with entries

Σ(t,t)
r (δ2) = exp

{∫ 1/2

−1/2
log(F

′(r,t)(λ) + δ2) dλ

}
− δ2. (5.44)

Proof: See Chapter 7. �

With the aid of Theorem 5.14 we can upper bound the capacity pre-log

Π.

Corollary 5.15 Consider a MIMO fading process as in Theorem 5.14.

Then, the capacity pre-log Π can be upper bounded by

Π ≤ max
1≤t≤nT

nR∑

r=1

µ
({

λ : F
′(r,t)(λ) = 0

})
. (5.45)

Proof: See Chapter 7. �

Note that µ
({

λ : F
′(r,t)(λ) = 0

})
can never be larger than 1 and, there-

fore, the pre-log Π is always bounded by nR. So, if the number of transmit

antennas nT is larger than the number of receive antennas nR, then

Π ≤ max
1≤t≤nT

nR∑

r=1

µ
({

λ : F
′(r,t)(λ) = 0

})
≤ nR = min{nT, nR}, (5.46)
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and the upper bound given in Corollary 5.15 is at least as tight as the trivial

upper bound Π ≤ min{nT, nR}.
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Chapter 6

Regular Processes

In this chapter, we show the derivations of the results presented in Sec-

tion 5.1, i.e., where the fading process is regular. We consider channel

capacity under an average-power constraint Es on the inputs. The emphasis

is on the high signal-to-noise ratio (SNR) regime, where the SNR is defined

as Es/σ
2. In particular, bounds on the fading number are derived.

In Section 6.1 we derive an upper bound on the fading number of

multiple-input single-output (MISO) fading channels. The result was stated

in Theorem 5.5. Then, we present special cases where this bound is tight. In

Section 6.2 an expression for the fading number of MISO zero-mean fading

channels is deduced. This result was presented in Corollary 5.6. In Sec-

tion 6.3 we derive an expression for the fading number, when the spectral

density matrix of the fading process contains identical entries. This result

was presented in Corollary 5.7.

6.1 A Proof of Theorem 5.5

We consider a MISO fading channel with a regular fading process. In the

following we derive an upper bound on the corresponding fading number.

To upper bound the fading number we begin by noting that the channel

output at time k is given by

Yk = HT

kxk + Zk, (6.1)

where Hk, xk and Zk are as in Section 4.2. The fading vector {Hk} is a

Gaussian regular process with mean d and covariance matrix

K = E

[
(Hk − d)(Hk − d)†

]
, k ∈ Z (6.2)
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with detK 6= 0. From Lemma 5.1 we know that the fading number is un-

changed under multiplication of Hk by a nonsingular deterministic matrix.

So, we might as well consider the case where the covariance matrix K is the

identity I. This will simplify our derivations.

In order to find an upper bound on the fading number, we first upper

bound channel capacity which is defined as

C(SNR) = lim
n→∞

1

n
sup
pXn

I(Xn;Y n), (6.3)

where the supremum is taken over all input distributions fulfilling the

average-power constraint (4.17). Using the chain rule [5] we can write

I(Xn;Y n) =
n∑

k=1

I(Yk;X
n|Y k−1). (6.4)

We now proceed by upper bounding each of the terms in the sum as follows

I(Yk;X
n|Y k−1) = I(Yk;X

n, Y k−1) − I(Yk;Y
k−1)

≤ I(Yk;X
n, Y k−1)

= I(Yk;X
k, Y k−1)

= I(Yk;Xk) + I(Yk;X
k−1, Y k−1|Xk)

≤ I(Yk;Xk) + I(Yk;X
k−1, Y k−1,Hk−1|Xk)

= I(Yk;Xk) + I(Yk;H
k−1|Xk)

≤ I(Y0;X0) + I(Y0;H
−1
−∞|X0), (6.5)

where the first equality follows from the chain rule; the subsequent inequal-

ity from the non-negativity of mutual information; the next equality from

the absence of feedback, which results in future inputs being independent of

the present output given the present input and the past inputs and outputs.

The following equality follows from the chain rule. In the next inequality we

used the fact that adding information cannot reduce mutual information;

the subsequent equality follows because the present output is independent

of the past inputs and outputs given the present input and the past chan-

nel realizations; and the last inequality from stationarity and from adding

information.

We now consider the maximization in (6.3) under an average-power con-
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straint on the input sequence:

1

n
sup
pXn

I(Xn;Y n) = sup
pXn

1

n

n∑

k=1

I(Yk;X
n|Y k−1)

≤
1

n

n∑

k=1

sup
pXn

I(Yk;X
n|Y k−1)

= sup
pX0

{
I(Y0;X0) + I(Y0;H

−1
−∞|X0)

}

≤ sup
pX0

I(Y0;X0) + sup
pX0

I(Y0;H
−1
−∞|X0) (6.6)

which follows by (6.5) and from splitting up the supremum.

We study the two terms on the RHS of (6.6) separately. The first term

corresponds to the case of memoryless fading:

sup
pX0

I(Y0;X0) = log log SNR + χi.i.d(H
T

0) + o(1)

= −1 + log d2
∗ − Ei(−d2

∗) + log log SNR + o(1) (6.7)

with

d∗ = max
‖x̂‖=1

|E[HT

0] x̂|√
Var(HT

0x̂)
, (6.8)

where we used the expression of the fading number (5.4) given in Corol-

lary 5.2. The denominator in (6.8) can be simplified by choosing the covari-

ance matrix K to be the identity matrix I. In this case,

Var(HT

0x̂) = 1 (6.9)

and the specular component d∗ is given by

d∗ = max
‖x̂‖=1

|dTx̂|, (6.10)

with d = E[H0].

To study the second term on the RHS of (6.6), we write I(Y0;H
−1
−∞|X0)

as

I(Y0;H
−1
−∞|X0) = h(Y0|X0) − h(Y0|X0,H

−1
−∞) (6.11)

and note that (Y0|X0 = x0) ∼ NC (dTx0,x
T

0Kx*

0 + σ2
)
. It follows that

h(Y0|X0 = x0) = log π + 1 + log
(
xT

0Kx*

0 + σ2
)
, (6.12)

where we used the expression for the differential entropy of a Gaussian ran-

dom variable [5].
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To compute the second term on the RHS of (6.11), we express the fading

H0 as

H0 = H0 + H̃0, (6.13)

where H0 is the best estimate of the fading H0 given the past channel

realizations. Thus, for given past values h−1,h−2, . . . the estimate h0 is

given by

h0 = E
[
H0

∣∣H−1
−∞

]
. (6.14)

Furthermore, we note that H̃0 ∼ NC (0,Σ) where Σ = E

[
H̃H̃†

]
denotes the

prediction error covariance matrix in predicting the present fading from its

past. It follows that

h(Y0|X0 = x0,H
−1
−∞) = h((H0 + H̃0)

TX0 + Z0|X0 = x0,H0)

= h(H̃T

0X0 + Z0|X0 = x0)

= log π + 1 + log
(
xT

0Σx*

0 + σ2
)
, (6.15)

where the second equality follows from the fact that differential entropy

is invariant under deterministic translation and the last equality from the

expression for the differential entropy of a Gaussian random variable.

Combining (6.15), (6.12), and (6.11) and averaging over all realizations

of X0 we get

I(Y0;H
−1
−∞|X0) = E

[
log

XT

0KX*

0 + σ2

XT

0ΣX*

0 + σ2

]

≤ sup
x0

log
xT

0Kx*

0 + σ2

xT

0Σx*

0 + σ2

= sup
x0

log
x̂T

0Kx̂*

0‖x0‖2 + σ2

x̂T

0Σx̂*

0‖x0‖2 + σ2

= sup
‖x̂0‖=1

log
x̂T

0Kx̂*

0

x̂T

0Σx̂*

0

= sup
‖x̂0‖=1

log
1

x̂T

0Σx̂*

0

, (6.16)

where the inequality follows from the fact that the supremum is always

larger than the expectation; the subsequent equality by expressing the in-

put vector x0 in terms of its magnitude ‖x0‖ and its direction x̂0 = x0
‖x0‖

.

The next equality follows by noting that the minimum prediction error in

predicting the fading H
(t)
0 from its past cannot be greater than its variance

E

[
|H

(t)
0 − d(t)|2

]
. Thus, the entries in the prediction error covariance matrix
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Σ are always smaller than the corresponding entries in K and, consequently,

x̂T

0Σx̂*

0 ≤ x̂T

0Kx̂*

0 in which case the mutual information is monotonically in-

creasing in ‖x0‖
2. The equality follows then by letting ‖x0‖

2 go to infinity.

Finally, the last equality follows by replacing K with I.

To maximize the RHS in (6.16) we have to minimize x̂T

0Σx̂*

0 over all unit

vectors x̂0. It follows then by the Rayleigh-Ritz Theorem [9, Theorem 4.2.2]

that

min
‖x̂‖=1

x̂TΣx̂* = λmin, (6.17)

where λmin is the minimum eigenvalue of the prediction error covariance

matrix Σ. Thus, I(Y0;H
−1
−∞|X0) can be upper bounded by

I(Y0;H
−1
−∞|X0) ≤ log

1

λmin
. (6.18)

Combining (6.18), (6.7), and (6.6) and using the expressions for channel

capacity and the fading number, we obtain the following upper bound on

the fading number:

χ({HT

k}) ≤ −1 + log d2
∗ − Ei(−d2

∗) + log
1

λmin
(6.19)

with

d∗ = max
‖x̂‖=1

|dTx̂|. (6.20)

This concludes the proof.

Note that if the channels are correlated, we are not able to express the

minimum eigenvalue λmin in terms of the spectral distribution function F(λ),

since in this case there exists only a determinantal identity that connects

λmin with the spectrum.

When the channels are uncorrelated and the fading process is either zero-

mean or its spectral density matrix contains identical entries, then we can

find a lower bound on the fading number that is tight, i.e., it coincides with

the upper bound (6.19). The corresponding fading numbers are given in

Corollaries 5.6 and 5.7, which are proven in the next two sections.

6.2 A Proof of Corollary 5.6

In this section we give an expression for the fading number of MISO

zero-mean fading channels, where the channels are uncorrelated, i.e.,

E

[
Hk+mH

†
k

]
is a diagonal matrix.

41



Chapter 6 Regular Processes

We first use (6.19) to derive an upper bound on the fading number. The

fading is zero-mean, thus d∗ = 0 and we have [1]

log d2
∗ − Ei(−d2

∗) = −γ, (6.21)

where γ ≈ 0.577 denotes Euler’s constant. Thus, the fading number can be

upper bounded by

χ({HT

k}) ≤ −1 − γ + log
1

λmin
. (6.22)

To express λmin in terms of the spectral distribution function F(λ), we begin

by noting that if the channels are uncorrelated, then due to Lemma 3.1 the

prediction error covariance matrix Σ is diagonal and the diagonal entries are

given by

Σ(t,t) = exp

{∫ 1/2

−1/2
log F

′(t,t)(λ) dλ

}
, 1 ≤ t ≤ nT. (6.23)

It follows that the minimum eigenvalue λmin is just the smallest entry in Σ,

i.e.,

λmin = ǫ2min = min
1≤t≤nT

exp

{∫ 1/2

−1/2
log F

′(t,t)(λ) dλ

}
. (6.24)

Combining (6.24) and (6.22) we get the following upper bound:

χ({HT

k}) ≤ −1 − γ + log
1

ǫ2min

. (6.25)

In the following we show that this fading number can be achieved by

transmitting from only one antenna. We note that transmitting from one

antenna is equivalent to choosing the inputs to be of the form Xk = x̂ · X̃k,

where x̂ is a deterministic unit vector with components

x(t) =

{
1 t = t∗

0 otherwise
, (6.26)

for a given t∗. We notice that this restriction on the inputs yields a lower

bound on the fading number. In the following we show that the lower bound

is tight, i.e., it coincides with the upper bound (6.25).

We use the expression for the fading number of SISO fading channels with

memory (5.9) given in Corollary 5.4 and lower bound the fading number by

χ({HT

k}) ≥ −1 − γ + log
1

ǫ2t∗
(6.27)
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with

ǫ2t∗ = exp

{∫ 1/2

−1/2
log F

′(t∗,t∗)(λ) dλ

}
. (6.28)

By maximizing (6.27) over all possible choices of t∗, we get

χ({HT

k}) ≥ −1 − γ + log
1

ǫ2min

(6.29)

with

ǫ2min = min
1≤t≤nT

exp

{∫ 1/2

−1/2
log F

′(t,t)(λ) dλ

}
(6.30)

which coincides with the upper bound given in (6.25).

6.3 A Proof of Corollary 5.7

Another special case, where the upper bound on the fading number given

in Theorem 5.5 is tight, is the case where the channels are uncorrelated and

the spectral density matrix of the fading process contains identical entries,

i.e., F′(λ) is a diagonal matrix with entries

F
′(t,t)(λ) = F

′(λ), for 1 ≤ t ≤ nT. (6.31)

To upper bound the fading number, we use the general upper bound

(6.19):

χ({HT

k}) ≤ −1 + log d2
∗ − Ei(−d2

∗) + log
1

λmin
(6.32)

with

d∗ = max
‖x̂‖=1

|dTx̂|. (6.33)

In our case, λmin can be expressed as

λmin = min
1≤t≤nT

exp

{∫ 1/2

−1/2
log F

′(t,t)(λ) dλ

}

= exp

{∫ 1/2

−1/2
log F

′(λ) dλ

}
, (6.34)

where the first equality follows from the fact that the channels are uncorre-

lated and by Lemma 3.1, and the second equality from (6.31).

In the following we derive a lower bound on the fading number and

show that this bound is tight, i.e., it coincides with the upper bound (6.32).
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We obtain a lower bound by restricting ourselves to inputs of the form

Xk = x̂ · X̃k where the deterministic unit vector x̂ is chosen such that the

maximum in (6.33) is achieved. We express the channel output at time k as

Yk = HT

kx̂X̃k + Zk

= (HT

kx̂)X̃k + Zk

= H̃kX̃k + Zk, (6.35)

where the last equality should be taken as a definition.

In order to determine the spectral distribution function F̃(λ) of the fading

process {H̃k} we begin by noting that

d̃ = E

[
H̃k

]
= dTx̂. (6.36)

Then, it follows

∫ 1/2

−1/2
ei2πmλF̃

′
(λ) dλ = E

[
(H̃k+m − d̃)(H̃k − d̃)*

]

= E
[
(x̂THk+m − x̂Td)(x̂THk − x̂Td)*

]

= x̂T
E

[
(Hk+m − d)(Hk − d)†

]
x̂*

= x̂T

(∫ 1/2

−1/2
ei2πmλ

F
′(λ) dλ

)
x̂*

=

∫ 1/2

−1/2
ei2πmλx̂T

F
′(λ)x̂* dλ, (6.37)

where the first equality follows from the definition of the spectral distribution

function F̃(λ); the second equality from (6.35) and (6.36); the subsequent

equality from the fact, that x̂ is deterministic; the next inequality from the

definition of the spectral distribution function F(λ); and the last equality

from the linearity of the integral.

From (6.37) we obtain an expression for the spectrum F̃(λ):

F̃
′
(λ) = x̂T

F
′(λ)x̂*. (6.38)

The channels are uncorrelated, i.e., the covariance matrix

E
[
(Hk+m − d)(Hk − d)†

]
is diagonal and, consequently, F′(λ) is diag-
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onal as well. It follows that

F̃
′
(λ) =

nT∑

t=1

|x̂(t)|2F
′(t,t)(λ)

= F
′(λ)

nT∑

t=1

|x̂(t)|2

= F
′(λ), (6.39)

where the first equality follows from the fact that F′(λ) is a diagonal matrix;

the second equality from (6.31); and the last equality because x̂ is a unit

vector. It should be noted that the spectral density F̃
′
(λ) does not depend

on the choice of x̂.

Using the expression for the fading number of SISO fading channels with

memory given in Corollary 5.4, the fading number can be lower bounded by

χ({HT

k}) ≥ −1 + log d2
∗ − Ei(−d2

∗) + log
1

ǫ̃2
(6.40)

with

d∗ = max
‖x̂‖=1

|dTx̂| (6.41)

and

ǫ̃2 = exp

{∫ 1/2

−1/2
log F̃

′
(λ) dλ

}

= exp

{∫ 1/2

−1/2
log F

′(λ) dλ

}
, (6.42)

where the last equality follows from (6.39). Comparing (6.40) and (6.32) as

well as (6.42) and (6.34) proves the claim.
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Chapter 7

Non-Regular Processes

In this chapter, we show the derivations of the results presented in Sec-

tion 5.2, i.e., where the fading process is non-regular. In contrast to the

analysis in Chapter 6, we now consider channel capacity under a peak-power

constraint A on the inputs. The emphasis is on the high signal-to-noise ratio

(SNR) regime, where the SNR is defined as A
2/σ2. In particular, bounds

on the capacity pre-log are derived in the cases, where capacity grows loga-

rithmically in the SNR. In the case, where capacity only increases double-

logarithmically with the SNR, the capacity pre-log-log is considered.

In Section 7.1 we discuss a single-input single-output (SISO) fading chan-

nel with a double-logarithmic increase with the SNR. In particular, we derive

a lower bound on channel capacity which allows us to formulate an expres-

sion for the capacity pre-log-log. In Section 7.2 an upper bound on the

capacity of multiple-input single-output (MISO) fading channels is derived

that is tight in the case where the channels are uncorrelated. Section 7.3

studies the capacity of multiple-input multiple-output (MIMO) fading chan-

nels, where the channels are uncorrelated. We derive an upper bound on

the capacity as well as an upper bound on the capacity pre-log.

7.1 The Pre-Log-Log of SISO Fading Channels

In this section we consider a SISO fading channel where the corresponding

channel capacity only grows double-logarithmically in the SNR, i.e.,

lim
SNR→∞

C(SNR)

log log SNR
< ∞. (7.1)
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In this case, the capacity pre-log is zero and it is more interesting to study

the capacity pre-log-log. However, when (7.1) holds, the lower bound on

the capacity (5.28) given in Theorem 5.8 is not tight. In the next section

we derive a lower bound that is tight for this case. An expression for the

capacity pre-log-log is derived in Section 7.1.2.

7.1.1 A Proof of Theorem 5.10

To derive a lower bound on channel capacity we consider circularly symmet-

ric inputs {Xk} that are independent and identically distributed (i.i.d.) with

log |Xk|
2 uniformly distributed over the interval [α log A

2, log A
2] for

0 < α < 1.

We begin by considering the expression for channel capacity, i.e.,

C(SNR) = lim
n→∞

1

n
sup
pXn

I(Xn;Y n) (7.2)

and using the chain rule [5]:

I(Xn;Y n) =
n∑

k=1

I(Xk;Y
n|Xk−1). (7.3)

Then, channel capacity can be lower bounded by

C(SNR) ≥ lim
n→∞

1

n
I(Xn;Y n)

= lim
n→∞

1

n

n∑

k=1

I(Xk;Y
n|Xk−1)

≥ lim
n→∞

1

n

n∑

k=1

I(Xk;Y
k|Xk−1)

≥ lim
k→∞

I(Xk;Y
k|Xk−1), (7.4)

where the first inequality follows from the probably suboptimal choice of the

input distribution; the next equality from (7.3); the subsequent inequality

from removing information; and the last inequality by a Cesàro-type theorem

[5, Theorem 4.2.3].

Making use of the properties of the chosen input distribution, i.e., {Xk}

i.i.d. and satisfying |Xk|
2 ≥ A

2α, we can further lower bound (7.4) by

I(Xk;Y
k|Xk−1) = I(Xk;Yk, Y

k−1, Xk−1)
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= I

(
Xk;Yk,

{
Yν

Xν

}k−1

ν=1

, Xk−1

)

= I

(
Xk;Yk,

{
Hν +

Zν

Xν

}k−1

ν=1

∣∣∣∣∣X
k−1

)

≥ I(Xk;Yk, {Hν + W ′
ν}

k−1
ν=1)

= I(Xk;Yk|{Hν + W ′
ν}

k−1
ν=1), (7.5)

with {W ′
ν} i.i.d. NC (0, σ2

A
2α

)
. The last equality follows from the fact that

the present input Xk is independent of the channel realization.

To lower bound I(Xk;Yk|{Hν + W ′
ν}

k−1
ν=1) we express the fading at time

k as

Hk = Hk + H̃k, (7.6)

where Hk is the best estimate of Hk given a noisy observation of its past.

Thus, for given past values hk−1 +wk−1, . . . , h1 +w1 the estimate hk is given

by

hk = E

[
Hk

∣∣∣ {Hν + W ′
ν}

k−1
ν=1

]
. (7.7)

Moreover, we note that H̃k ∼ NC (0, ǫ2k) where ǫ2k is the minimum mean

squared error in predicting the present fading Hk from a noisy observation

of its past {Hν + W ′
ν}

k−1
ν=1. Additionally, it follows from [2] and references

therein

lim
k→∞

ǫ2k = ǫ2MSE(δ2)
∣∣∣
δ2= σ2

A2α

(7.8)

with

ǫ2MSE(δ2) = exp

{∫ 1/2

−1/2
log(F

′(λ) + δ2) dλ

}
− δ2. (7.9)

We continue (7.5)

I(Xk;Yk|{Hν + W ′
ν}

k−1
ν=1)

= I(Xk; (Hk + H̃k)Xk + Zk|Hk)

= h
(

(Hk + H̃k)Xk + Zk

∣∣∣Hk

)
− h

(
(Hk + H̃k)Xk + Zk

∣∣∣Xk,Hk

)

= h
(

(Hk + H̃k)Xk + Zk

∣∣∣Hk

)
− h

(
H̃kXk + Zk

∣∣∣Xk,Hk

)

= h
(

(Hk + H̃k)Xk + Zk

∣∣∣Hk

)
− h

(
H̃k +

Zk

Xk

∣∣∣∣Xk

)
− E

[
log |Xk|

2
]

≥ h
(

(Hk + H̃k)Xk + Zk

∣∣∣Hk

)
− h

(
H̃k + W ′

k

)
− E

[
log |Xk|

2
]

(7.10)

≥ h
(

(Hk + H̃k)Xk + Zk

∣∣∣Hk, H̃k, Zk

)
− h(H̃k + W ′

k) − E
[
log |Xk|

2
]
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= h(HkXk|Hk) − h(H̃k + W ′
k) − E

[
log |Xk|

2
]

= E
[
log |Hk|

2
]
+ h(Xk) − h(H̃k + W ′

k) − E
[
log |Xk|

2
]

= log 2π + h(|Xk|) − E[log |Xk|] + E
[
log |Hk|

2
]
− h(H̃k + W ′

k) (7.11)

= log 2π + h(log |Xk|) + E
[
log |Hk|

2
]
− h(H̃k + W ′

k)

= log π + h(log |Xk|
2) + E

[
log |Hk|

2
]
− h(H̃k + W ′

k)

= log π + log(log A
2 − α log A

2) + E
[
log |Hk|

2
]
− h(H̃k + W ′

k)

= log π + log log A
2 + log(1 − α) + E

[
log |Hk|

2
]
− h(H̃k + W ′

k)

= log π + log log
A

2

σ2
+ log(1 − α) + E

[
log |Hk|

2
]
− h(H̃k + W ′

k) + o(1),

(7.12)

where o(1) tends to zero as the SNR goes to infinity and {W ′
ν} is as in

(7.5). Here, the first equality follows by (7.6); the subsequent equality from

the definition of mutual information; the next equality because differential

entropy is invariant under deterministic translation; and the subsequent

equality from the behavior under scaling of the differential entropy of random

variables [5].

Inequality (7.10) follows from the fact that |Xk|
2 ≥ A

2α; the next in-

equality because conditioning reduces entropy; the subsequent equality from

the invariance of differential entropy under deterministic translation; and the

following equality from the behavior under scaling of the differential entropy

of random variables.

The next equality (7.11) follows by [1, Lemma 6.16] for the differential

entropy of circularly symmetric random variables; the subsequent equality

by relating the differential entropy of a positive random variable to that of

its logarithm as in [1, Lemma 6.15]; the following equality from the behavior

under scaling of the differential entropy of random variables; the following

equality by evaluating the differential entropy for the chosen input distribu-

tion; the subsequent equality by analyzing log(log A
2 − α log A

2); and the

last equality by the limiting behavior of the log log(·)-function under scaling,

i.e.,

lim
SNR→∞

{log log(αSNR) − log log SNR} = 0, α > 0. (7.13)

We proceed to evaluate the terms E
[
log |Hk|

2
]

and h(H̃k + W ′
k) on the

RHS of (7.12). Using the expression for the expectation of the logarithm

of a noncentral chi-square distributed random variable [1, Appendix X], the

50
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first term can be written as

E
[
log |Hk|

2
]

= log |d|2 − Ei(−|d|2). (7.14)

The second term can be computed by noting that (H̃k + W ′
k) ∼

NC (0, ǫ2k + σ2

A
2α

)
and using the expression for the differential entropy of a

Gaussian random variable:

h(H̃k + W ′
k) = log π + 1 − log

1

ǫ2k + δ2

∣∣∣∣
δ2= σ2

A2α

. (7.15)

Combining (7.15), (7.14), (7.12), (7.8), (7.5), and (7.4) we can lower

bound channel capacity by

C(SNR) ≥ lim
k→∞



log log SNR + log

1

ǫ2k + δ2

∣∣∣∣
δ2= σ2

A2α

+ O(1)





= lim
k→∞

log
1

ǫ2k + δ2

∣∣∣∣
δ2= σ2

A2α

+ log log SNR + O(1)

= log
1

ǫ2MSE(δ2) + δ2

∣∣∣∣
δ2= σ2

A2α

+ log log SNR + O(1), (7.16)

where O(1) only depends on d and on α.

7.1.2 A Proof of Corollary 5.11

In the following we derive an expression for the capacity pre-log-log. We

begin by using Theorem 5.8 to upper bound the capacity pre-log-log Λ:

C(SNR) ≤ log
1

ǫ2MSE(1/SNR)
+ log log SNR + O(1) (7.17)

and, consequently,

Λ = lim
SNR→∞

C(SNR)

log log SNR

≤ 1 + lim
SNR→∞

log 1
ǫ2MSE(1/SNR)

log log SNR
. (7.18)

To derive a lower bound on the capacity pre-log-log we use (7.16)

Λ = lim
SNR→∞

C(SNR)

log log SNR

≥ 1 + lim
A→∞

log 1
ǫ2MSE(δ2)+δ2

∣∣∣
δ2= σ2

A2α

log log A
2

σ2

(7.19)
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for 0 < α < 1.

Now, we show that the lower bound on the pre-log-log in (7.19) coincides

with the upper bound in (7.18):

lim
A→∞

log 1
ǫ2MSE(δ2)+δ2

∣∣∣
δ2= σ2

A2α

log log A
2

σ2

= lim
A→∞





log 1
ǫ2MSE(δ2)+δ2

∣∣∣
δ2= σ2

A2α

log log A
2α

σ2

·
log log A

2α

σ2

log log A
2

σ2





= lim
A→∞

log 1
ǫ2MSE(δ2)+δ2

∣∣∣
δ2= σ2

A2α

log log A
2α

σ2

· lim
A→∞

log log A
2α

σ2

log log A
2

σ2

= lim
SNR′→∞

log 1
ǫ2MSE(1/SNR′)+1/SNR′

log log SNR′ · lim
A→∞

log log A
2α

σ2

log log A
2

σ2

(7.20)

with SNR′ = A
2α

σ2 . To evaluate the RHS of (7.20), we first note that

lim
A→∞

log log A
2α

σ2

log log A
2

σ2

= lim
A→∞

log(α log A
2 − log σ2)

log log A
2

σ2

= lim
A→∞

log(α log A
2

σ2 + (α − 1) log σ2)

log log A
2

σ2

= lim
A→∞

log
(
α log A

2

σ2

)

log log A
2

σ2

= lim
A→∞

log α + log log A
2

σ2

log log A
2

σ2

= 1. (7.21)

The other term on the RHS of (7.20) can be evaluated by noting that

lim
δ↓0

ǫ2MSE(δ2)

δ2
= ∞, (7.22)

since otherwise

lim
SNR′→∞

log 1
ǫ2MSE(1/SNR′)+1/SNR′

log log SNR′ = ∞, (7.23)
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and, consequently, the capacity pre-log-log Λ would be infinite, which con-

tradicts (7.1). It follows that

lim
SNR′→∞

log 1
ǫ2MSE(1/SNR′)+1/SNR′

log log SNR′ = lim
SNR′→∞

log 1
ǫ2MSE(1/SNR′)

log log SNR′

= lim
SNR→∞

log 1
ǫ2MSE(1/SNR)

log log SNR
. (7.24)

Combining (7.24), (7.21), (7.20), and (7.19) we obtain the following lower

bound on the capacity pre-log-log Λ:

Λ ≥ 1 + lim
SNR→∞

log 1
ǫ2MSE(1/SNR)

log log SNR
, (7.25)

which coincides with the upper bound in (7.18).

We now show that (7.25) is identical to the expression for the pre-log-log

(5.35) given in Corollary 5.11:

Λ = 1 + lim
SNR→∞

log 1
ǫ2MSE(1/SNR)

log log SNR

= 1 + lim
δ2↓0

log 1
ǫ2MSE(δ2)

log log 1
δ2

= 1 + lim
δ2↓0

log 1
ǫ2MSE(δ2)+δ2

log log 1
δ2

= 1 + lim
δ2↓0

− log
(
ǫ2MSE(δ2) + δ2

)

log log 1
δ2

= 1 + lim
δ2↓0

− log
(
exp

{∫ 1/2
−1/2 log

(
F
′(λ) + δ2

)
dλ
})

log log 1
δ2

= 1 + lim
δ2↓0

−
∫ 1/2
−1/2 log

(
F
′(λ) + δ2

)
dλ

log log 1
δ2

, (7.26)

where the first equality follows by (7.25) and (7.18); the subsequent equality

by substituting δ2 = 1/SNR; the next equality by (7.22); the following

equality from the behavior of the logarithm function; the subsequent equality

from the expression for the minimum mean squared error in predicting the

present fading from a noisy observation of its past; and the last equality by

taking the logarithm of the exponential function.
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7.2 The Pre-Log of MISO Fading Channels

In this section we consider a MISO fading channel with a non-regular fading

process. An upper bound on capacity of such channels is derived in the next

section. In Section 7.2.2 we deduce from this upper bound an expression for

the capacity pre-log in the case where the channels are uncorrelated.

7.2.1 A Proof of Theorem 5.12

Channel capacity is defined as

C(SNR) = lim
n→∞

1

n
sup
pXn

I(Xn;Y n), (7.27)

where the supremum is taken over all input distributions fulfilling the peak-

power constraint (4.19). To upper bound the capacity we begin by using

the chain rule [5]

I(Xn;Y n) =
n∑

k=1

I(Yk;X
n|Y k−1) (7.28)

and upper bounding each of the terms in the sum by

I(Yk;X
n|Y k−1) = I(Yk;X

n, Y k−1) − I(Yk;Y
k−1)

≤ I(Yk;X
n, Y k−1)

= I(Yk;X
k, Y k−1)

= I(Yk;Xk) + I(Yk;X
k−1, Y k−1|Xk)

≤ sup
p
Xk

{
I(Yk;Xk) + I(Yk;X

k−1, Y k−1|Xk)
}

≤ sup
pXk

I(Yk;Xk) + sup
p
Xk

I(Yk;X
k−1, Y k−1|Xk)

(7.29)

where the first equality follows from the chain rule; the following inequality

from non-negativity of mutual information; the subsequent equality from

the absence of feedback, which results in future inputs being independent of

the present output given the present input and the past inputs and outputs;

the next equality follows from the chain rule; the following inequality by

maximizing over all possible input distributions satisfying the peak-power

constraint; and the last inequality from splitting up the supremum.
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The first term on the RHS of (7.29) corresponds to the capacity of a

memoryless MISO fading channel and is given by

sup
pXk

I(Yk;Xk) = χi.i.d.(H
T

0) + log log SNR + o(1), (7.30)

where χi.i.d.(H
T

0) denotes the fading number of MISO fading channels (5.4)

given in Corollary 5.2. Note that the expression for the fading number was

derived under an average-power constraint on the inputs. However, it can

be shown [1] that this expression holds also if the average-power constraint

is replaced with a peak-power constraint.

To evaluate the second term on the RHS of (7.29) we note that the

channel output Yk at time k is given by

Yk = HT

kXk + Zk. (7.31)

Now, we proceed by noting that if Xk is given, then Xk−1 and Y k−1 influence

the mutual information I(Yk;X
k−1, Y k−1|Xk) only through the information

they convey on the fading realizations Hk−1. If the number of transmit

antennas is larger than one, then the pair (Xk, Yk) does not provide infor-

mation about the fading vector Hk, but only about the projection of Hk

onto the input vector Xk. However, we will assume that (Xk, Yk) gives us

information about the whole vector Hk, which yields an upper bound. It

follows

sup
p
Xk

I(Yk;X
k−1, Y k−1|Xk)

≤ sup
p
Xk

I
(

Yk;X
k−1, {H(1)

ν X(1)
ν + Zν}

k−1
ν=1, . . . , {H

(nT)
ν X(nT)

ν + Zν}
k−1
ν=1

∣∣∣Xk

)

= sup
p
Xk

I


Yk;X

k−1,

{
H(1)

ν +
Zν

X
(1)
ν

}k−1

ν=1

, . . . ,

{
H(nT)

ν +
Zν

X
(nT)
ν

}k−1

ν=1

∣∣∣∣∣∣
Xk




≤ sup
pXk

I
(

Yk; {H
(1)
ν + W (1)

ν }k−1
ν=1, . . . , {H

(nT)
ν + W (nT)

ν }k−1
ν=1

∣∣∣Xk

)

= sup
pXk

I
(

Yk; {Hν + Wν}
k−1
ν=1

∣∣∣Xk

)
(7.32)

with

{Wν} i.i.d. ∼ NC
(

0,
σ2

A
2 I

)
. (7.33)

Here, the first inequality follows by assuming that (Xν , Yν) provides infor-

mation about the whole fading vector Hν ; and the following equality because
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dividing by X
(i)
ν does not influence the mutual information. The subsequent

inequality follows by recalling that the variables H
(t)
ν + Zν

X
(t)
ν

influence the

mutual information only through the information they give about the fad-

ing Hν . This information is maximized, if the inputs X
(t)
ν are as large as

possible since then the additive noise term is minimized. Furthermore, we

choose all inputs X
(t)
ν to be of maximum magnitude A, which violates the

peak-power constraint, i.e., ‖Xν‖ ≤ A, and yields an upper bound on the

mutual information.

We can further upper bound the RHS of (7.32) by

sup
pXk

I
(

Yk; {Hν + Wν}
k−1
ν=1

∣∣∣Xk

)

≤ sup
pX0

I
(
Y0; {Hν + Wν}

−1
ν=−∞

∣∣X0

)

≤ sup
‖x0‖≤A

I
(
Y0; {Hν + Wν}

−1
ν=−∞

∣∣X0 = x0

)
, (7.34)

where the first inequality follows from the stationarity of the channel and

from adding information; and the second inequality from the expression for

the conditional mutual information and from the fact that the expectation

of a random variable can never be larger than its largest value.

To evaluate (7.34) we express the fading as

H0 = H0 + H̃0, (7.35)

where H0 is the best estimate of the fading H0 given a noisy observation of

its past. Thus, for given past values h−1 +w−1,h−2 +w−2, . . . the estimate

h0 is given by

h0 = E
[
H0

∣∣ {Hν + Wν}
−1
ν=−∞

]
. (7.36)

Furthermore, note that H̃0 ∼ NC (0,Σ(1/SNR)) with the prediction error

covariance matrix Σ(1/SNR). It follows that

I
(
Y0; {Hν + Wν}

−1
ν=−∞

∣∣X0 = x0

)

= I
(

(H0 + H̃0)
TX0 + Z0;H0

∣∣∣X0 = x0

)

= h
(

(H0 + H̃0)
TX0 + Z0

∣∣∣X0 = x0

)

− h
(

(H0 + H̃0)
TX0 + Z0

∣∣∣H0,X0 = x0

)

= h
(

(H0 + H̃0)
TX0 + Z0

∣∣∣X0 = x0

)
− h

(
H̃T

0X0 + Z0

∣∣∣X0 = x0

)
,

(7.37)

56



7.2 The Pre-Log of MISO Fading Channels Chapter 7

where the first equality follows by (7.35) and by noting that H̃0 is inde-

pendent from the variables {Hν + Wν}
−1
ν=−∞ which results in the fact that

{Hν + Wν}
−1
ν=−∞ influence the mutual information only through the infor-

mation they convey on H0; the subsequent equality follows from the defi-

nition of mutual information; and the last equality from the invariance of

differential entropy under deterministic translation.

To evaluate the first term on the RHS of (7.37) we note that(
(H0 + H̃0)X0 + Z0

∣∣∣X0 = x0

)
∼ NC (dTx0,x

T

0Kx*

0 + σ2
)

with d = E[H0]

and K = E
[
(H0 − d)(H0 − d)†

]
. It follows that

h((H0 + H̃0)
TX0 + Z0|X0 = x0) = log π + 1 + log(xT

0Kx*

0 + σ2), (7.38)

where we used the expression for the differential entropy of a Gaussian ran-

dom variable.

To express the second term on the RHS of (7.37) we note that(
H̃T

0X0 + Z0

∣∣∣X0 = x0

)
∼ NC (0,xT

0Σ(1/SNR)x*

0 + σ2
)

and it follows

h(H̃T

0X0 + Z0|X0 = x0) = log π + 1 + log(xT

0Σ(1/SNR)x*

0 + σ2). (7.39)

Combining (7.39), (7.38), and (7.37) we obtain

sup
‖x0‖≤A

I
(
Y0; {Hν + Wν}

−1
ν=−∞|X0 = x0

)

= sup
‖x0‖≤A

log
xT

0Kx*

0 + σ2

xT

0Σ(1/SNR)x*

0 + σ2

= sup
‖x0‖≤A

log
x̂T

0Kx̂*

0‖x0‖
2 + σ2

x̂T

0Σ(1/SNR)x̂*

0‖x0‖2 + σ2

≤ sup
‖x̂0‖=1

log
x̂T

0Kx̂*

0

x̂T

0Σ(1/SNR)x̂*

0

≤ sup
‖x̂0‖=1

log
‖K‖

x̂T

0Σ(1/SNR)x̂*

0

= log
‖K‖

λmin(1/SNR)
, (7.40)

where λmin(1/SNR) denotes the minimum eigenvalue of Σ(1/SNR). Here,

the second equality follows by expressing the input vector x0 in terms of

its magnitude ‖x0‖ and its direction x̂0 = x0
‖x0‖

; the following inequality by

noting that1 x̂T

0Kx̂*

0 ≥ x̂T

0Σ(1/SNR)x̂*

0 in which case the mutual information
1The reasoning is identical to that in Section 6.1 when considering regular fading

processes. We therefore refer to Section 6.1 for a more elaborate explanation.
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is monotonically increasing in ‖x0‖
2, and by letting ‖x0‖

2 go to infinity; the

following inequality by the Rayleigh-Ritz Theorem [9] and the definition of

the Euclidean operator norm of matrices; and the last equality by minimizing

x̂T

0Σ(1/SNR)x̂*

0 over all unit vectors x̂0 (Rayleigh-Ritz Theorem [9]).

Combining (7.40), (7.34), (7.30), (7.29), and (7.28), and using the ex-

pression for channel capacity, we obtain the upper bound

C(SNR) ≤ log
1

λmin(1/SNR)
+ log log SNR + O(1). (7.41)

This concludes the proof.

As mentioned in Section 5.2.3, we are only able to express λmin(1/SNR),

when the channels are uncorrelated, i.e., E
[
(Hk+m − d)(Hk − d)†

]
is a di-

agonal matrix.

7.2.2 A Proof of Corollary 5.13

In the following we derive an expression for the capacity pre-log

of MISO fading channels, when the channels are uncorrelated, i.e.,

E
[
(Hk+m − d)(Hk − d)†

]
is a diagonal matrix.

We begin by noting that if the channels are uncorrelated, then due to

Lemma 3.1 the nT × nT prediction error covariance matrix Σ(1/SNR) is

diagonal and the diagonal entries are given by

Σ(t,t)(1/SNR) = exp

{∫ 1/2

−1/2
log(F

′(t,t)(λ) + 1/SNR) dλ

}
− 1/SNR,

1 ≤ t ≤ nT. (7.42)

In this case, the minimum eigenvalue of Σ(1/SNR) is just the smallest

entry, i.e.,

λmin(1/SNR) = ǫ2min(1/SNR)

= min
1≤t≤nT

exp

{∫ 1/2

−1/2
log(F

′(t,t)(λ) + 1/SNR) dλ

}
− 1/SNR.

(7.43)

Combining (7.43) and (7.41) we obtain the upper bound

C(SNR) ≤ log
1

ǫ2min(1/SNR)
+ log log SNR + O(1). (7.44)
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Note that this bound is identical to the upper bound on the capacity

of SISO channels where the fading process has the spectral distribution

function

F(λ) = F
(t∗,t∗)(λ) (7.45)

with

t∗ = arg min
1≤t≤nT

exp

{∫ 1/2

−1/2
log(F′(t,t)(λ) + 1/SNR) dλ

}
. (7.46)

It follows by Corollary 5.9 that the pre-log Π can be upper bounded by

Π ≤ µ
({

λ : F
′(t∗,t∗)(λ) = 0

})
(7.47)

≤ max
1≤t≤nT

µ
({

λ : F
′(t,t)(λ) = 0

})
, (7.48)

where the last inequality follows by maximizing over all indices t. Note that

there is, in fact, equality in (7.48). Indeed, the index t∗ that minimizes

(7.43) maximizes the pre-log as well.

In the following we show that this upper bound can be achieved by

transmitting from only one antenna. We begin by noting that transmitting

from one antenna is equivalent to choosing the inputs to be of the form

Xk = x̂ · X̃k, where x̂ is a deterministic unit vector with entries

x̂(t) =

{
1 t = t∗

0 otherwise
, (7.49)

for a given t∗. We notice that this restriction on the inputs yields a lower

bound on the capacity. In the following we show that the lower bound is

tight.

For the above-mentioned choice of inputs the channel output at time k

can be written as

Yk = HT

kx̂X̃k + Zk

= H
(t∗)
k X̃k + Zk, (7.50)

where t∗ is defined as in (7.49). We observe that (7.50) describes the output

of a SISO fading channel with spectral distribution function

F(λ) = F
(t∗,t∗)(λ). (7.51)
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Therefore, we can make use of Theorem 5.8 to further lower bound the

capacity by

C(SNR) ≥ log
1

ǫ2t∗(4/SNR) + 2
5 · (4/SNR)

+ O(1) (7.52)

with

ǫ2t∗(δ
2) = exp

{∫ 1/2

−1/2
log(F

′(t∗,t∗)(δ2) + δ2) dλ

}
− δ2. (7.53)

It follows again by Corollary 5.9 that the pre-log can be lower bounded by

Π ≥ µ
({

λ : F
′(t∗,t∗)(λ) = 0

})
. (7.54)

By maximizing (7.54) over all indices 1 ≤ t∗ ≤ nT we obtain the lower bound

Π ≥ max
1≤t≤nT

µ
({

λ : F
′(t,t)(λ) = 0

})
(7.55)

which coincides with the upper bound in (7.48).

7.3 The Pre-Log of MIMO Fading Channels

In this section we derive an upper bound on the capacity of MIMO fading

channels. All entries in the nR × nT fading matrix Hk are assumed to be

independent, i.e., for the deterministic nR × nT mean matrix D

E

[
(H

(r,t)
k+m − d(r,t))(H

(r′,t′)
k − d(r′,t′))*

]
= 0, for r 6= r′ and t 6= t′,

k, m ∈ Z. (7.56)

We further assume that

det
(
E

[
(H

(r)
k − d(r))(H

(r)
k − d(r))†

])
6= 0, 1 ≤ r ≤ nR, k ∈ Z, (7.57)

where H
(r)
k and d(r) denote the r-th row of the fading matrix Hk and the

mean matrix D, respectively.

To simplify notation we define the matrix-valued spectral distribution

function F(λ) ∈ R
nR×nT such that

E

[
(H

(r,t)
k+m − d(r,t))(H

(r,t)
k − d(r,t))*

]
=

∫ 1/2

−1/2
ei2πmλ dF

(r,t), k, m ∈ Z.

(7.58)

An upper bound on the capacity of MIMO fading channels under the

conditions above is presented in Theorem 5.14. In Section 7.3.2 we show

the corresponding proof. Preliminarily, we introduce some notations that,

hopefully, help us to make the derivations more concise.
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7.3.1 Notation

In contrast to the MISO case studied in Section 7.2, here the fading at time k

is expressed by a matrix Hk and, consequently, notation gets more laborious.

Therefore, we introduce some abbreviations that.

First of all, we will write the fading matrix H0 as

H0 =




H
(1)T
0
...

H
(nR)T
0


 , (7.59)

where H
(r)
0 is an nT-dimensional random vector.

Furthermore, we introduce the vector

Ỹ0 = (H0 − D)x0 (7.60)

with

Ỹ
(r)
0 = (H

(r)
0 − d(r))Tx0, (7.61)

where d(r) is the mean vector corresponding to H
(r)
0 , i.e., d = E

[
H

(r)
0

]
. It

follows that the entries in the covariance matrix of Ỹ0 are given by

E

[
Ỹ

(r)
0 Ỹ

(l)*
0

∣∣∣ X0

]
= xT

0E

[
(H

(r)
0 − d(r))(H

(l)
0 − d(l))†

]
x*

0

= ‖x0‖
2x̂T

0E

[
(H

(r)
0 − d(r))(H

(l)
0 − d(l))†

]
x̂*

0

(7.62)

with ‖x̂0‖ = 1. We define the nR × nR matrix ReY eY such that

R
(r,l)eY eY =

E

[
Ỹ

(r)
0 Ỹ

(l)*
0

∣∣∣ X0

]

‖x0‖2
= x̂T

0E

[
(H

(r)
0 − d(r))(H

(l)
0 − d(l))†

]
x̂*

0. (7.63)

Note that since the channels are uncorrelated the matrix ReY eY is diagonal.

We further note that the covariance matrix E

[
(H

(r)
0 − d(r))(H

(r)
0 − d(r))†

]

is always non-negative definite for 1 ≤ r ≤ nR. It follows by (7.57) that

E

[
(H

(r)
0 − d(r))(H

(r)
0 − d(r))†

]
is even positive definite and the diagonal en-

tries in ReY eY are strictly larger than zero.

As in Section 7.2 when dealing with MISO channels, we may express the

fading matrix H0 as

H0 = H0 + H̃0, (7.64)
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where H0 is the best estimate of the fading matrix given a noisy observation

of its past. For given past values H−1 + W−1,H−2 + W−2, . . . the estimate

H0 is given by

H0 = E
[
H0

∣∣ {Hν + Wν}
−1
ν=−∞

]
, (7.65)

with

W (r,t)
ν ⊥⊥ W (r′,t′)

ν , for r 6= r′ and t 6= t′, ∀ν (7.66)

and W
(r,t)
ν i.i.d. NC (0, δ2

)
, for a given δ2. The entries of the matrix H̃0 are

independently distributed with H̃
(r,t)
0 ∼ NC (0, ǫ2(r,t)(δ2)

)
, where

ǫ2(r,t)(δ
2) = exp

{∫ 1/2

−1/2
log(F

′(r,t)(λ) + δ2) dλ

}
− δ2, 1 ≤ r ≤ nR,

1 ≤ t ≤ nT (7.67)

is the minimum mean squared error in prediction the fading H
(r,t)
0 based on

a noisy observation of its past. This follows from Lemma 3.1 by stacking

the nR × nT components of H0 into one vector.

To express the covariance matrix of H̃0x0 we may write H̃0 in terms of

nR nT-dimensional vectors, i.e.,

H̃0 =




H̃
(1)T
0
...

H̃
(nR)T
0


 . (7.68)

Then it follows

E

[
(H̃(r)TX0)(H̃

(l)TX0)
*

∣∣∣ X0

]

= xT

0E

[
H̃

(r)
0 H̃

(l)†
0

]
x*

0

= ‖x0‖
2x̂T

0E

[
H̃

(r)
0 H̃

(l)†
0

]
x̂*

0 (7.69)

with ‖x̂0‖ = 1. We define the nR × nR matrix Rǫǫ such that

R
(r,l)
ǫǫ =

E

[
(H̃(r)TX0)(H̃

(l)TX0)
*

∣∣∣ X0

]

‖x0‖2
= x̂T

0E

[
H̃(r)H̃(l)†

]
x̂*

0. (7.70)

Since the channels are uncorrelated, i.e.,

E

[
H̃

(r)
0 H̃

(l)†
0

]
= 0, for r 6= l, (7.71)

the matrix Rǫǫ is diagonal. Note that E

[
H̃

(r)
0 H̃

(r)†
0

]
corresponds to the pre-

diction error covariance matrix of a MISO channel arising from the MIMO
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channel by considering only the r-th receive antenna. Therefore, we may of-

ten write Σr(δ
2) instead of E

[
H̃(r)H̃(r)†

]
, where δ2 is as above. Furthermore,

note that Σr(δ
2) is a diagonal matrix with diagonal entries

Σ(t,t)
r (δ2) = exp

{∫ 1/2

−1/2
log(F

′(r,t)(λ) + δ2) dλ

}
− δ2, 1 ≤ r ≤ nR,

1 ≤ t ≤ nT.(7.72)

7.3.2 A Proof of Theorem 5.14

In the following we derive an upper bound on the capacity of MIMO fading

channels. The derivation is very similar to that in the MISO case.

We begin by using the chain rule

I(Xn;Yn) =
n∑

k=1

I(Yk;X
n|Yk−1) (7.73)

and upper bounding each of the terms in the sum by

I(Yk;X
n|Yk−1)

= I(Yk;X
n,Yk−1) − I(Yk;Y

k−1)

≤ I(Yk;X
n,Yk−1)

= I(Yk;X
k,Yk−1)

= I(Yk;Xk) + I(Yk;X
k−1,Yk−1|Xk)

≤ sup
pXk

I(Yk;Xk) + sup
p
Xk

I(Yk;X
k−1,Yk−1|Xk)

≤ sup
pXk

I(Yk;Xk) + sup
p
Xk

I
(
Yk; {Hν + Wν}

k−1
ν=1

∣∣∣Xk

)
(7.74)

≤ sup
pX0

I(Y0;X0) + sup
pX0

I
(
Y0; {Hν + Wν}

−1
ν=−∞

∣∣X0

)

≤ sup
pX0

I(Y0;X0) + sup
‖x0‖≤A

I
(
Y0; {Hν + Wν}

−1
ν=−∞

∣∣X0 = x0

)

(7.75)

with

W (r,t)
ν ⊥⊥ W (r′,t′)

ν , for r 6= r′ and t 6= t′ (7.76)

and

W (r,t)
ν ∼ NC

(
0,

σ2

A
2

)
, ∀ν. (7.77)

Here, the first equality follows from the chain rule; the subsequent inequality

from the non-negativity of mutual information; the next equality from the
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absence of feedback which results in future inputs being independent of the

present output given the present input and the past inputs and outputs; the

subsequent equality from the chain rule; and the following inequality from

maximizing over all input distributions pXk satisfying ‖X‖ ≤ A.

Inequality (7.74) follows by assuming that the pairs (Xk−1,Yk−1) pro-

vide information about the entire fading matrix H
k−1 and by violating the

peak-power constraint, which both yield an upper bound2; the subsequent

inequality follows from stationarity and by adding information; and the last

inequality from the expression for the conditional mutual information and

from the fact that the expectation of a random variable can never be larger

than its largest value.

To evaluate the RHS of (7.75) we first note that the first term corre-

sponds to the memoryless case and is given by [1]

sup
pX0

I(Y0;X0) = χi.i.d.(H0) + log log SNR + o(1), (7.78)

where χi.i.d.(H0) denotes the fading number. Remember that the expres-

sion for the fading number holds for both average-power and peak-power

constraint [1].

To evaluate the second term on the RHS of (7.75), we express the fading

H0 as

H0 = H0 + H̃0, (7.79)

where H0 is the best estimate of the fading H0 (7.65). We obtain

I
(
Y0; {Hν + Wν}

−1
ν=−∞

∣∣X0 = x0

)

= I
(

(H0 + H̃0)X0 + Z0; {Hν + Wν}
−1
ν=−∞

∣∣∣X0 = x0

)

= h
(

(H0 + H̃0)X0 + Z0

∣∣∣X0 = x0

)

− h
(

(H0 + H̃0)X0 + Z0

∣∣∣ {Hν + Wν}
−1
ν=−∞,X0 = x0

)
, (7.80)

where the first equality follows by expressing the channel output Y0 in terms

of the input x0, the fading H0, and the noise Z0; and the subsequent equality

from the definition of the mutual information.

To compute the first term on the RHS of (7.80) we note that the

random variable
(

(H0 + H̃)X0 + Z0

∣∣∣X0 = x0

)
has a Gaussian distribution

2The reasoning is identical to that in Section 7.2 when dealing with MISO fading

channels. For convenience, we are doing here without any details and refer to Section 7.2

for a more elaborate explanation.

64



7.3 The Pre-Log of MIMO Fading Channels Chapter 7

with mean

E

[
(H0 + H̃0)x0 + Z0

]
= Dx0 (7.81)

and covariance matrix

K = ‖x0‖
2
ReY eY + σ2

I. (7.82)

This follows from the definition of ReY eY (7.63) and from the expression for

the covariance matrix. Indeed, the (r, l)-th entry of the covariance matrix

K is given by

E

[(
(H

(r)
0 + H̃

(r)
0 )Tx0 + Z

(r)
0 − d(r)Tx0

)

·
(
(H

(l)
0 + H̃

(l)
0 )Tx0 + Z

(l)
0 − d(l)Tx0

)
*

]

= E

[(
(H

(r)
0 + H̃

(r)
0 − d(r))Tx0

)(
(H

(l)
0 + H̃

(l)
0 − d(l))Tx0

)
*

]

+ E

[
Z

(r)
0 Z

(l)*
0

]

= xT

0E

[(
H

(r)
0 − d(r)

)(
H

(l)
0 − d(l)

)†]
x*

0 + E

[
Z

(r)
0 Z

(l)*
0

]

= ‖x0‖
2R

(r,l)eY eY + σ2δr−l, (7.83)

where d(r) denotes the mean vector corresponding to H
(r)
0 and δr−l denomi-

nates the Kronecker delta. Here, the first equality follows from the fact that

the additive noise Z0 is zero-mean and independent from the fading matrix

H0.

Using the expression for differential entropy of a multivariate Gaussian

random variable [5] we obtain

h
(

(H0 + H̃0)X0 + Z0

∣∣∣X0 = x0

)

= nR log π + nR + log det
(
‖x0‖

2
ReY eY + σ2

I
)

= nR log π + nR +

nR∑

r=1

log
(
‖x0‖

2R
(r,r)eY eY + σ2

)
, (7.84)

where the second equality follows by noting that ReY eY is a diagonal matrix

(see Section 7.3.1).

To compute the second term on the RHS of (7.80) we note

that for given values x0 and {Hν + Wν}
−1
ν=−∞ the random variable(

(H0 + H̃0)X0 + Z0

∣∣∣H−1 + W−1 = H−1 + W−1, . . . ,X0 = x0

)
has a Gaus-

sian distribution with mean

E

[
(H0 + H̃0)X0 + Z0

∣∣ {Hν + Wν}
−1
ν=−∞,X0

]
=
(
D + H0

)
x0 (7.85)
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and covariance matrix

K = ‖x0‖
2
Rǫǫ + σ2

I. (7.86)

This can be easily verified by an analysis similar to that in (7.83).

Using the expression for differential entropy of a multivariate Gaussian

random variable we obtain

h
(

(H0 + H̃0)X0 + Z0

∣∣∣ {Hν + Wν}
−1
ν=−∞,X0 = x0

)

= nR log π + nR + log det
(
‖x0‖

2
Rǫǫ + σ2

I
)

= nR log π + nR +

nR∑

r=1

log
(
‖x0‖

2R
(r,r)
ǫǫ + σ2

)
, (7.87)

where we used the fact, that Rǫǫ is a diagonal matrix.

Combining (7.87), (7.84), (7.80), (7.78), and (7.75) and using the expres-

sion for channel capacity, we obtain the upper bound

C(SNR) ≤ sup
‖x0‖≤A





nR∑

r=1

log
‖x0‖

2R
(r,r)eY eY + σ2

‖x0‖2R
(r,r)
ǫǫ + σ2



+ log log SNR + O(1)

≤ sup
‖x̂‖=1





nR∑

r=1

log
R

(r,r)eY eY + σ2

A
2

R
(r,r)
ǫǫ + σ2

A
2



+ log log SNR + O(1), (7.88)

where the last inequality follows by noting that3 R
(r,r)eY eY > R

(r,r)
ǫǫ in which case

the RHS of (7.88) is monotonically increasing in ‖x0‖2, and by choosing

‖x0‖
2 as large as possible, i.e., ‖x0‖

2 = A
2. It should be noted that ReY eY as

well as Rǫǫ depend on x0.

As mentioned in Section 7.3.1, we may write R
(r,r)
ǫǫ as

R
(r,r)
ǫǫ = x̂TΣr(1/SNR)x̂*, (7.89)

where Σr(1/SNR) is an nT × nT diagonal matrix with entries

Σ(t,t)
r (1/SNR) = exp

{∫ 1/2

−1/2
log(F

′(r,t)(λ) + 1/SNR) dλ

}
− 1/SNR. (7.90)

It follows that

C(SNR) ≤ sup
‖x̂‖=1

{
nR∑

r=1

log
1

x̂TΣr(1/SNR)x̂* + 1/SNR

}
+log log SNR+O(1).

(7.91)

This concludes the proof.
3The reasoning is identical to that in Section 6.1 when considering regular fading

processes. We therefore refer to Section 6.1 for a more elaborate explanation.
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7.3.3 A Proof of Corollary 5.15

To derive an upper bound on the capacity pre-log we begin by considering

(7.91) and minimizing

nR∑

r=1

log
(
x̂TΣr(1/SNR)x̂* + 1/SNR

)
(7.92)

over all unit-vectors x̂. We lower bound each of the terms in the sum by

log
(
x̂TΣr(δ

2)x̂* + δ2
)

= log

(
nT∑

t=1

|x̂(t)|2Σ(t,t)
r (δ2) + δ2

)

= log

(
nT∑

t=1

|x̂(t)|2
(
Σ(t,t)

r (δ2) + δ2
))

= log

(
nT∑

t=1

|x̂(t)|2 exp

{∫ 1/2

−1/2
log(F

′(r,t)(λ) + δ2) dλ

})

≥

nT∑

t=1

|x̂(t)|2 log

(
exp

{∫ 1/2

−1/2
log(F

′(r,t)(λ) + δ2) dλ

})

=

nT∑

t=1

(
|x̂(t)|2

∫ 1/2

−1/2
log(F

′(r,t)(λ) + δ2) dλ

)
, (7.93)

with δ2 = 1/SNR. Here, the first equality follows because Σr(δ
2) is a diag-

onal matrix; the subsequent equality from the fact that x̂ is a unit-vector;

the next equality from (7.90); the following inequality by noting that x̂ is

a unit vector and using Jensen’s inequality; and the last equality by taking

the logarithm of the exponential function.

Then, the capacity pre-log Π can be upper bounded by

Π = lim
SNR→∞

C(SNR)

log SNR

≤ lim
SNR→∞

sup
‖x̂‖=1

nR∑

r=1

log 1
x̂TΣr(1/SNR)x̂*+1/SNR

log SNR

= lim
δ2↓0

sup
‖x̂‖=1

nR∑

r=1

log 1
x̂TΣr(δ2)x̂*+δ2

log 1
δ2

= lim
δ2↓0

sup
‖x̂‖=1

nR∑

r=1

log
(
x̂TΣr(δ

2)x̂* + δ2
)

log δ2

≤ lim
δ2↓0

sup
‖x̂‖=1

nR∑

r=1

nT∑

t=1

|x̂(t)|2

∫ 1/2
−1/2 log(F

′(r,t)(λ) + δ2) dλ

log δ2
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= lim
δ2↓0

sup
‖x̂‖=1

nT∑

t=1

|x̂(t)|2
nR∑

r=1

∫ 1/2
−1/2 log(F

′(r,t)(λ) + δ2) dλ

log δ2

= lim
δ2↓0

max
1≤t≤nT

nR∑

r=1

∫ 1/2
−1/2 log(F

′(r,t)(λ) + δ2) dλ

log δ2

= max
1≤t≤nT

lim
δ2↓0

nR∑

r=1

∫ 1/2
−1/2 log(F

′(r,t)(λ) + δ2) dλ

log δ2
(7.94)

= max
1≤t≤nT

nR∑

r=1

lim
δ2↓0

∫ 1/2
−1/2 log(F

′(r,t)(λ) + δ2) dλ

log δ2

= max
1≤t≤nT

nR∑

r=1

µ
({

λ : F
′(r,t)(λ) = 0

})
. (7.95)

Here, the first equality follows from the definition of the capacity pre-log;

the subsequent inequality by upper bounding the capacity by (7.91); the

next equality by substituting δ2 = 1/SNR; the following equality from the

behavior of the logarithm; the subsequent inequality from (7.93); the fol-

lowing equality by interchanging both sums; and the next equality because

x̂ is a unit vector and therefore the upper bound is maximized by choosing

just the largest term in the sum.

Equality (7.94) follows by noting that for each index t the sum on the

RHS of (7.94) converges to
∑nR

r=1 µ
({

λ : F
′(r,t)(λ) = 0

})
as δ2 tends to zero.

Thus, it converges pointwise on the set T = {1, . . . , nT}. It follows that

since the set T is finite pointwise convergence implies uniform convergence

in which case we are allowed to interchange the maximization with the

limit [10].

The last two equalities follow by taking the limit into the sum; and from

the expression for the capacity pre-log of SISO channels [2]. This concludes

the proof.

Note that µ(·) cannot be larger than 1. Consequently, the upper bound

on the capacity pre-log given in (7.95) is always upper bounded by the

number of receive antennas nR, i.e.,

Π ≤ max
1≤t≤nT

nR∑

r=1

µ
({

λ : F
′(r,t)(λ) = 0

})
= ΠU ≤ nR, (7.96)

where the equality should be taken as a definition. It follows that if the

number of transmit antennas nT is larger than the number of receive anten-

nas nR, then the upper bound ΠU obtained in this thesis is always upper
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bounded by the trivial upper bound min{nT, nR} arising from the expression

for channel capacity in presence of perfect side information at the receiver,

i.e.,

ΠU ≤ nR = min{nT, nR}. (7.97)

69



Chapter 7 Non-Regular Processes

70



Discussion and Open Problems Chapter 8

Chapter 8

Discussion and Open

Problems

In this chapter the results presented in Chapter 5 are discussed. To the best

of our knowledge, the only studies that adress our channel model without any

simplifications are by Lapidoth and Moser [1] and by Lapidoth [2]. Thus,

we relate the results obtained in this thesis mostly to the studies in [1]

and [2]. Additionally, we compare our results with results corresponding to

the case, where the receiver has knowledge of the channel realization. This is

particularly interesting, if the fading process is non-regular, i.e., the channel

state can be predicted precisely from its past.

The chapter concludes with a listing of open questions emanating from

the study in this thesis.

8.1 Discussion

In the following, we discuss the results obtained in this thesis and relate them

to previous work. In contrast to Chapters 5, 6, and 7 we do not discuss reg-

ular and non-regular processes separately. Instead, it seems more reasonable

to divide the discussion into the following three parts: in Section 8.1.1 the re-

sults corresponding to single-input single-output (SISO) fading channels are

discussed; in Section 8.1.2 we study the multiple-input single-output (MISO)

case; and in Section 8.1.3 the multiple-input multiple-output (MIMO) case.
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8.1.1 SISO Fading Channels

In order to show the relevance of the obtained results, we give a review of

related studies.

The capacity of fading channels where neither transmitter nor receiver

has access to the fading process, though both are fully cognizant of the fading

laws, was recently studied by Lapidoth and Moser [1]. They show that if

the fading process is regular, then capacity increases double-logarithmically

with the signal-to-noise ratio (SNR), i.e.,

C(SNR) = log log SNR + χ({Hk}) + o(1), (8.1)

where χ({Hk}) denotes the fading number. This is in stark contrast to the

case where the receiver has perfect side information, in which case capacity

is given by [11]

CPSI(SNR) = log SNR − γ + o(1). (8.2)

To bridge the gap between the double-logarithmic and the logarithmic

behavior Lapidoth also considered non-regular fading processes [2]. He

showed that in this case the asymptotic dependence of channel capacity

on the SNR can be logarithmically, double-logarithmically, or in between,

e.g., as a fractional power of the logarithm of the SNR. However, Lapidoth

did not present a lower bound that is tight, when capacity grows double-

logarithmically in the SNR.

The lower bound presented in Section 5.2.2 is tight for this case and

allows for an analysis of the capacity pre-log-log. Thus, it completes the

study in [2] and may help us to better understand channel capacity at high

SNR.

8.1.2 MISO Fading Channels

The capacity of MISO fading channels with memory was studied in this

thesis for both, regular and non-regular fading processes. For regular fading,

an upper bound on the fading number was derived. This bound is tight if

the channels are uncorrelated and if the fading is either zero-mean or its

spectral density matrix contains identical entries.

In the following we compare the upper bound obtained in this thesis

with the upper bound presented in [1], i.e.,

χ({Hk}) ≤ χi.i.d(H0) + I(H0;H
−1
−∞) = χLM, (8.3)
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where the equality should be taken as a definition. The fading number

is invariant under multiplication of Hk with a deterministic nonsingular

matrix. Therefore, we can assume without loss of generality that the fading

has the covariance matrix K = I, where I is the identity matrix. Then, the

second term in (8.3) is given by

I(H0;H
−1
−∞) = log

1

det Σ
=

nT∑

t=1

log
1

λt
, (8.4)

where Σ denotes the prediction error covariance matrix in predicting the

present fading from its past and λt denominates the t-th eigenvalue of Σ.

Furthermore, we can write our upper bound χU given in Theorem 5.5 as

χ({Hk}) ≤ χi.i.d(H0) + log
1

λmin
= χU. (8.5)

It follows by noting that λt > 0, 1 ≤ t ≤ nT,

χU ≤ χLM, (8.6)

thus, the upper bound on the fading number obtained in this thesis is at

least as tight as the upper bound presented in [1].

For the case of non-regular fading processes, we derived an upper bound

on channel capacity that is tight when the channels are uncorrelated. It can

be viewed as an extension to the study in [2].

We note that the capacities on which we were able to find tight up-

per bounds can be achieved by beam forming, i.e., by inputs of the form

Xk = x̂ · X̃k, where x̂ is a deterministic unit vector. The optimal beam di-

rection x̂ is either a function of the specular component d or a function of

the spectrum, depending on the channel characteristic.

In general, the capacity of MISO fading channels depends on the specular

component d̃ = dTx̂ as well as on the prediction error ǫ2MSE in predicting the

present fading from its past. Both parameters d̃ and ǫ2MSE are influenced by

the choice of the beam direction x̂. Thus, when choosing x̂ we have to trade

off between maximizing d̃ and minimizing ǫ2MSE.

We note that ǫ2MSE is minimized by transmitting from only one antenna.

Thus, we transmit from one antenna if the fading is non-regular, since in

this case the asymptotic behavior depends highly on the decrease of the es-

timation error with the SNR. Transmitting from one antenna is also optimal

if the fading process is regular and zero-mean, in which case the resulting
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specular component d̃ is zero for any choice of x̂ and the best one can do is

to minimize the prediction error.

On the other hand, maximizing the specular component d̃ is optimal, if

an estimate of the channel is either not available (if the fading is memory-

less), or the channel estimate does not depend on the beam direction x̂ (if

the spectral density matrix of the regular fading process contains identical

entries).

We observe that in all cases where we could prove beam forming to be

optimal, one has to optimize only one of these two parameters. It is an open

question if beam forming is also optimal when one has to trade off between

both parameters.

Beam forming need not always be optimal for MISO fading channels. It

was shown by Jafar and Goldsmith [12] that if the receiver has perfect side

information the question whether beam forming is optimal or not depends

on the specular component d as well as on the SNR. Moreover, it can be

shown that asymptotically if the SNR tends to infinity beam forming is

never optimal.

8.1.3 MIMO Fading Channels

In order to discuss the results corresponding to MIMO fading channels, we

first note that channel capacity in the presence of perfect side information

at the receiver is given by [8]

CPSI(SNR) = min{nT, nR} log SNR + O(1). (8.7)

Thus, the use of multiple antennas at the transmitter and receiver offers

a min{nT, nR}-fold increase in capacity compared to the capacity of SISO

channels. The capacity pre-log min{nT, nR} is often referred to as multi-

plexing gain.

However, in the absence of perfect side information the situation may be

different. It was shown by Lapidoth and Moser [1] that if the fading process

is regular, then capacity is given by

C(SNR) = log log SNR + O(1), (8.8)

where only the O(1) term depends on the number of antennas. Thus, in

this case the use of multiple antennas has only a small impact on channel

capacity in the high SNR regime.
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It remains the question how big the multiplexing gain is if one is able to

predict the channel state perfectly (i.e., if the fading process is non-regular).

We can find a trivial upper bound on the pre-log by noting that capacity

in the absence of perfect side information can never be larger than in its

presence. Therefore, the pre-log (or multiplexing gain) Π is always upper

bounded by

Π ≤ min{nT, nR} = ΠPSI. (8.9)

A more elaborate upper bound is stated in Corollary 5.15. It is given by

Π ≤ max
1≤t≤nT

nR∑

t=1

µ
({

λ : F
′(r,t)(λ) = 0

})
= ΠU. (8.10)

Note that µ(·) cannot be larger than one, i.e., ΠU ≤ nR. In the case where

the number of transmit antennas is larger than the number of receive an-

tennas, it follows that

ΠU ≤ nR = ΠPSI, for nT ≥ nR. (8.11)

Thus, the upper bound derived in this thesis is at least as tight as the

trivial upper bound corresponding to capacity in the presence of perfect

side information.

However, if the number of transmit antennas is smaller than the number

of receive antennas, then situations may exist where the trivial upper bound

yields better results.

8.2 Open Problems

In the previous section several results were discussed, addressing the asymp-

totic behavior of channel capacity of SISO, MISO, and MIMO fading chan-

nels. However, some questions remain.

In the study of MISO fading channels with memory we could only find

tight upper bounds on channel capacity when the channels are uncorrelated.

Moreover, if the fading process is regular, then the upper bound is tight in

only two special cases: if the fading process is zero-mean or its spectral den-

sity matrix contains identical entries. So, it will be interesting to investigate

those cases where we could not find tight upper bounds and see whether

beam forming is optimal or not.
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Another interesting topic, not covered in this thesis, is the analysis of

single-input multiple-output (SIMO) fading channels where the fading pro-

cess is non-regular. We conjecture that the study of such channels may give

important indications about the behavior of MIMO channels.

And last but not least, MIMO fading channels with a non-regular fading

process need to be investigated in more detail. In particular, it will be

interesting to study the capacity in the absence of perfect side information

and see whether the use of multiple antennas at the transmitter and receiver

has a similarly beneficial effect on the capacity pre-log as in the presence of

perfect side information.
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Chapter 9

Summary and Conclusion

In this thesis the capacity of Gaussian fading channels with memory was

studied where neither transmitter nor receiver has access to the realization

of the fading, though both are fully cognizant of the fading laws.

Based on previous work by Lapidoth and Moser [1] and by Lapidoth [2],

channels with both regular (i.e., where the channel realization cannot be

predicted precisely from its past) and non-regular (i.e., where the channel

realization can be predicted precisely) fading processes were investigated.

In both cases the emphasis was on the high signal-to-noise ratio (SNR)

regime. In particular, in cases where the fading process is regular, the

fading number, i.e., the second order term in the high SNR expansion of

capacity, was studied. In cases where the fading process is non-regular, the

capacity pre-log was considered, i.e., the limiting ratio of the capacity to

the logarithm of the SNR.

Addressing the asymptotic analysis of channels with a regular fading

process, we derived an upper bound on the fading number of multiple-input

single-output (MISO) fading channels with memory. Moreover, we could

show that the upper bound is tight (i.e., it coincides with a lower bound) in

cases where the channels are uncorrelated and the fading process is either

zero-mean or its spectral density matrix contains identical entries. In the

former case, the fading number can be achieved by transmitting from only

one antenna, i.e., the one that allows for the smallest mean squared error in

predicting the channel from its past. In the latter case, the fading number

can be achieved by beam forming.

Investigating the capacity of channels with non-regular fading processes,

we presented upper bounds on the capacity of MISO as well as multiple-
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input multiple-output (MIMO) fading channels. We could show that the

upper bound on the capacity of MISO fading channels is tight in the case

where the channels are uncorrelated. Moreover, we presented an expression

for the capacity pre-log and demonstrated that this pre-log can be achieved

by transmitting from only one antenna, i.e., the one that yields the small-

est mean squared error in predicting the present fading from its past. In

addition, a lower bound on capacity of single-input single-output (SISO)

channels was derived which allowed us to express the capacity pre-log-log

(i.e., the limiting ratio of the logarithm to the logarithm of the SNR) in

cases where channel capacity only grows double-logarithmically in the SNR.

It should be noted that in the case where the fading process is regular we

considered an average-power constraint, whereas in the case where the fading

is non-regular, the average-power constraint was replaced, for mathematical

convenience, by a peak-power constraint. We suspect, however, that both

constraints lead to very similar results in the high SNR regime. Indeed, if

the fading is regular, both constraints yield the same fading number [1].

Most of the results in this thesis are new and cannot be compared to

previous work. In these cases where the problem has already been studied

we could find better upper bounds.

However, some open questions remain. When considering MISO fad-

ing channels, we could only find tight upper bounds for some special cases.

Thus, it would be interesting to study all the other cases to find out whether

beam forming is optimal or not. Moreover, the capacity of single-input

multiple-output (SIMO) channels with memory has not been investigated

in this thesis. We conjecture, however, that this may give important indi-

cations about the behavior of MIMO channels. And last but not least, it

will be interesting to study the capacity pre-log of MIMO fading channels

with memory, to explore the impact of using multiple antennas on channel

capacity.

While the behavior of channel capacity in the presence of perfect side

information is well understood, there remain many open questions address-

ing channel capacity in its absence. The study in this thesis answers some

of them and has a stake in understanding the asymptotic behavior of the

capacity of fading channels.
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Appendix A

Proof of Lemma 3.1

We consider a multivariate zero-mean stationary stochastic process {Ak}

with matrix-valued distribution function F(λ). Furthermore, we assume

that the entries in Ak are uncorrelated, i.e., the nR × nR covariance matrix

E

[
Ak+mA

†
k

]
is diagonal.

Since we are restricted to linear predictors, the estimate A0 of A0 is of

the form

A0 =
−1∑

k=−∞

CkAk. (A.1)

In order to minimize the error in predicting A0 from the past values

A−1,A−2, . . ., we have to choose the parameters Ck according to the or-

thogonality principle

E

[(
A0 − A0

)
A

†
l

]
= 0, l = −∞, . . . ,−1. (A.2)

Combining (A.2) and (A.1) and using the fact that the parameters Ck

are deterministic, we obtain

E

[
A0A

†
l

]
= E

[
A0A

†
l

]
=

−1∑

k=−∞

CkE

[
AkA

†
l

]
, l = −∞, . . . ,−1. (A.3)

We now rewrite (A.3) using the fact that the entries in Ak are uncorre-

lated, i.e., E

[
AkA

†
l

]
is diagonal for all k, l ∈ Z, and consider the diagonal

and the off-diagonal elements of E

[
A0A

†
l

]
separately. It follows

0 =
−1∑

k=−∞

c
(r,t)
k E

[
A

(t)
k A

(t)*
l

]
, l = −∞, . . . ,−1, r 6= t (A.4)
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and

E

[
A

(r)
0 A

(r)*
l

]
=

−1∑

k=−∞

c
(r,r)
k E

[
A

(r)
k A

(r)*
l

]
, l = −∞, . . . ,−1

1 ≤ r, t ≤ nR. (A.5)

We note that the off-diagonal elements of Ck only appear in (A.4), whereas

the diagonal elements only appear in (A.5). Thus, we can consider (A.4)

and (A.5) separately. Since the choice

c
(r,t)
k = 0, k ∈ Z, r 6= t, 1 ≤ r, t ≤ nT (A.6)

solves the equations in (A.4), we can reason that there is no loss in optimality

in choosing the matrices Ck to be diagonal.

Then, the prediction error covariance matrix Σ is given by

Σ = E



(

A0 −
−1∑

k=−∞

CkAk

)(
A0 −

−1∑

m=−∞

CmAm

)†



= E

[
A0A

†
0

]
− E

[
−1∑

k=−∞

CkAkA
†
0

]
− E


A0

(
−1∑

m=−∞

CmAm

)†



+ E



(

−1∑

k=−∞

CkAk

)(
−1∑

m=−∞

CmAm

)†



= E

[
A0A

†
0

]
− E

[
−1∑

k=−∞

CkAkA
†
0

]
− E

[
A0

−1∑

m=−∞

A†
mC

†
m

]

+ E

[
−1∑

k=−∞

CkAk

−1∑

m=−∞

A†
mC

†
m

]

= E

[
A0A

†
0

]
−

−1∑

k=−∞

CkE

[
AkA

†
0

]
−

−1∑

m=−∞

E

[
A0A

†
m

]
C
†
m

+
−1∑

k=−∞

Ck

−1∑

m=−∞

E

[
AkA

†
m

]
C
†
m

= E

[
A0A

†
0

]
−

−1∑

k=−∞

CkE

[
AkA

†
0

]
−

−1∑

m=−∞

(
CmE

[
AmA

†
0

])†

+
−1∑

k=−∞

Ck

(
−1∑

m=−∞

CmE

[
AmA

†
k

])†

= E

[
A0A

†
0

]
−

−1∑

k=−∞

CkE

[
AkA

†
0

]
−

−1∑

m=−∞

(
CmE

[
AmA

†
0

])†
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+
−1∑

k=−∞

Ck

(
E

[
A0A

†
k

])†
(A.7)

= E

[
A0A

†
0

]
−

−1∑

k=−∞

CkE

[
AkA

†
0

]
−

−1∑

m=−∞

(
CmE

[
AmA

†
0

])†

+
−1∑

k=−∞

CkE

[
AkA

†
0

]

= E

[
A0A

†
0

]
−

−1∑

m=−∞

(
CmE

[
AmA

†
0

])†
. (A.8)

Here, (A.7) follows from (A.3). We first note that since E

[
A0A

†
0

]
, Cm, and

E

[
AmA

†
0

]
are all diagonal for m ∈ Z, the prediction error covariance matrix

Σ is diagonal as well. This proves the first part of Lemma 3.1.

To prove the second part, we consider (A.8) and express each of the

diagonal elements of Σ as

Σ(r,r) = E

[
A

(r)
0 A

(r)*
0

]
−

−1∑

m=−∞

c(r,r)*
m E

[
A

(r)
0 A(r)*

m

]
, 1 ≤ r ≤ nR. (A.9)

We note that for any index r, the diagonal element Σ(r,r) only depends

on the parameters c
(r,r)
m , m = −1,−2, . . .. Thus, in order to minimize the

prediction error covariance matrix Σ over all matrices Cm, we can minimize

each diagonal element Σ(r,r) over all scalars c
(r,r)
m . Hence, we can reduce the

multivariate optimization problem to nR univariate optimization problems.

We know that in the univariate case, the minimum prediction error is given

by

ǫ2MSE = exp

{∫ 1/2

−1/2
log F

′(λ) dλ

}
(A.10)

and we obtain, consequently, the following expression for the diagonal entries

of Σ:

Σ(r,r) = exp

{∫ 1/2

−1/2
log F

′(r,r)(λ) dλ

}
, 1 ≤ r ≤ nR. (A.11)

This concludes the proof.
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