
Winter Semester 2002/2003 Prof. Dr. H. -A. Loeliger

Semester Project

Continuous-Time

Synchronization

Tobias Koch

Advisor: Justin Dauwels

Co-Advisors: Matthias Frey and Patrick Merkli

II

aufgabenstellung

III

IV

Acknowledgments

This project came into existence with friendly assistance of many people:
First of all, many thanks to Justin, Matthias and Patrick for their kind

help and for supporting me at any time during the last seven weeks.
I am also grateful to Prof. Dr. H.-A. Loeliger for the interesting meetings

we had and for brimming over with enthusiasm for the topic of my project.
It was a pleasure for me to work here during the last seven weeks!

Zurich, March 28, 2003

Tobias Koch

V

VI

Abstract

We design a novel low-complexity pseudonoise (PN) sequence synchronizer

referred to as Noise Lock Loop (NLL). The NLL achieves synchronization

by estimating the probabilities of the bits in the PN sequence.

The NLL is interesting for several reasons. In classical spread spectrum

communication systems, PN synchronization is separated into two phases:

There is an initial acquisition phase and a tracking phase after the sig-

nal has been acquired. Acquisition and tracking are typically performed

by two separate synchronization systems. The NLL is a single system of

low-complexity that both acquires and tracks noisy PN-sequences. Further-

more, classical PN synchronizers are clocked. We develop both clocked and

unclocked NLLs and study their behavior by simulation.

We proceed in two steps. First we a consider a clocked PN communica-

tion system. It consists of a Linear Feedback Shift Register (LFSR) whose

sequences are transmitted over an additive white Gaussian noise (AWGN)

channel and are fed into a clocked NLL subsequently. In this case the com-

munication system operates in discrete time. The unit of time is determined

by the clocks in the LFSR and the NLL, which are assumed to be perfectly

aligned. We refer to this operation mode as discrete-time synchronization.

Then two different unclocked PN communication systems are considered.

In the first system LFSR sequences are transmitted, in the other system

one transmits arbitrary PN sequences. In both systems the sequences are

corrupted by AWGN and received by an unclocked NLL. In this case the

communication system operates so as to say in continuous time. The system

does not contain clocks. We refer to this operation mode as continuous-time

synchronization.

For the discrete-time system the Probability of Synchronization

PSynch(k) and the Time Until Acquisition (TUA) are defined as a per-

formance measure. The performance of both continuous-time systems is

measured by the Mean-Square-Error computed between the signals in the

transmitter and the signals in the receiver.

We summarize our results as follows. The simulations of the discrete-

time system show that PSynch(k) tends asymptotically to a value P0 ≤ 1.

VIII

The lower the signal-to-noise ratio (SNR), the smaller P0. In addition, the

rise of PSynch(k) depends on the SNR as well as on the length of the LFSR:

the lower the SNR or the longer the LFSR, the smaller the rise. The same

holds for the TUA, i.e. the lower the SNR or the larger the LFSR length,

the larger the TUA.

The simulations of the continuous-time system show that the MSE de-

creases monotonically as a function of time until it reaches a value ε ≥ 0.

The lower the signal-to-noise ratio (SNR), the larger ε becomes and the

slower the MSE decreases.

The NLL is just in its infancy, especially the unclocked NLL. However,

we have shown that the design of both clocked and unclocked NLLs is theo-

retically possible. The natural next step is the implemention of such systems

in hardware.

Contents

Project-Description III

Abstract VII

List of Figures XI

1 Introduction 1

2 Discrete-Time Synchronization 5

2.1 The Linear Feedback Shift Register 6

2.2 The Noise-Lock Loop . 8

2.3 Results . 12

2.4 Discussion . 14

2.5 Outlook . 15

3 Continuous-Time Synchronization 17

3.1 Pseudo-Continuous-Time Synchronization 18

3.1.1 The Linear Feedback Shift Register 18

3.1.2 The Noise-Lock Loop 19

3.2 Continuous-Time Synchronization 21

3.2.1 Continuous-Time Transmitter 21

3.2.2 Continuous-Time Receiver 26

3.3 Results . 36

3.3.1 Results of the Pseudo-Continuous-Time System 36

3.3.2 Results of the Continuous-Time System 36

3.4 Discussion . 40

3.4.1 Discussion of the Results of the Pseudo-Continuous-

Time System . 42

3.4.2 Discussion of Results of the Continuous-Time System 42

IX

X CONTENTS

3.5 Outlook . 43

4 Conclusion 45

A Proof of Theorem 3.1 47

Bibliography 51

List of Figures

1.1 Shift register with feedback 1

1.2 Block diagram of a spread spectrum communication system . 2

2.1 Discrete-time communication system 5

2.2 Delay cell . 6

2.3 Linear Feedback Shift Register of length 4 7

2.4 State evolution for an LFSR with x[k] = x[k − 1] ⊕ x[k − 4] . 7

2.5 State evolution for an LFSR with x[k] = x[k − 2] ⊕ x[k − 4] . 8

2.6 Trellis section for a LFSR of length 4 9

2.7 Noise-Lock Loop with NLL length 4 10

2.8 Soft-Equal gate . 10

2.9 Soft-XOR gate . 11

2.10 Discrete-time communication system using an LFSR of length

4 as a transmitter and an NLL as a receiver 12

2.11 Probability of Synchronization after k time steps for different

LFSR lengths . 13

2.12 Time Until Acquisition for different LFSR lengths 14

3.1 Continuous-time LFSR . 18

3.2 PN sequences for discrete-time, pseudo-continuous-time and

continuous-time . 19

3.3 Continuous-time Noise-Lock loop 20

3.4 Pseudo-continuous-time Noise-Lock loop with NLL length 2

and 5 samples per bit . 20

3.5 Continuous-time transmitter 21

3.6 Hard Limiter . 21

3.7 The waveform g(t) and a possible sequence of ǔ(t) 22

XI

XII LIST OF FIGURES

3.8 Waveforms depending on Xi−1, Xi and Xi+1. (i) Xi−1 = Xi =

Xi+1. (ii) Xi−1 = Xi 6= Xi+1. (iii) Xi−1 6= Xi = Xi+1. (iv)

Xi−1 = Xi+1 6= Xi. 23

3.9 Output signals of Filter 1 and Filter 2 similar to the signals

in an LFSR . 24

3.10 Filter 1 and Filter 2 . 24

3.11 Zoom of the output signals of Filter 1 and Filter 2 similar to

the signals in an LFSR . 25

3.12 LFSR sequence and spectrum at the output of the continuous-

time receiver . 26

3.13 Output signals of Filter 1 and Filter 2 for arbitrarily chosen

filters . 27

3.14 Signal and spectrum at the output of the continuous-time

transmitter for arbitrary chosen filters 27

3.15 Continuous-Time Receiver . 27

3.16 Soft Limiter . 29

3.17 Algorithm to compute Em [g(θ)] 31

3.18 p (Xi = 1) and p (Xj = 1) . 32

3.19 Probabilities p (u(t) = 0) and p (w(t) = 0) computed with the

algorithm, compared to the probabilities computed according

to (3.46),(3.47),(3.48) and (3.49) 34

3.20 Circuit with I1 − I2 = IBtanh
(

U(t)
2UT

)

. 36

3.21 The Probability of Synchronization of the pseudo-continuous-

time system after time t for different LFSR lengths 37

3.22 Continuous-time communication system 38

3.23 Signals ˇu(t), ˇw(t),mFilter1 and mFilter2 in the LFSR se-

quences transmitting system 39

3.24 The MSE of the LFSR sequences transmitting system 40

3.25 Signals ǔ(t), w̌(t),mFilter1 and mFilter2 in the arbitrary se-

quences transmitting system 41

3.26 The MSE of the arbitrary sequences transmitting system . . . 41

3.27 Pseudo-continuous-time Noise-Lock loop with LFSR length 2

and 2 samples per bit . 42

Chapter 1

Introduction

Nowadays spread spectrum signals are often used to transmit information

over a communication channel at a given rate. Spread spectrum signals are

characterized by the fact that their bandwidth is much greater than neces-

sary to achieve this information rate. This large redundancy is inherent in

spread spectrum signals and in consequence these signals are robust against

interference.

One type of spread spectrum signals are pseudorandom signals, also re-

ferred to as pseudonoise (PN) signals. The best known binary PN sequences

are the maximum-length shift-register sequences generated with a shift reg-

ister with feedback as shown in Figure 1.1. We discuss the generation of

PN sequences here not in more detail. We refer to [1] for more information.

x[k]
TTTT

XOR

Figure 1.1: Shift register with feedback

Pseudorandom signals are similar to random noise and, therefore, dif-

ficult to demodulate by receivers other than the intended ones. Due to

this possible message privacy spread sprectrum signals are interesting in

multiple-user communication systems in which a number of users share a

common channel.

Figure 1.2 shows a block diagram of a pseudorandom spread spectrum

communication system. It consists of a modulator, a demodulator and two

pseudorandom pattern generators.

1

2 Introduction

data signaldata signal

generator

Pseudorandom
pattern

ChannelModulator

Pseudorandom
pattern

generator

Demodulator

ReceiverTransmitter

Figure 1.2: Block diagram of a spread spectrum communication system

The modulator impresses the pseudorandom sequence, generated by the

pseudorandom pattern generator, on the transmitted information bearing

signal and maps then the digital information onto analog waveforms that

match the characteristics of the channel. In order to recover the data the

receiver needs to know the PN sequence generated in the transmitter.

In a typical spread spectrum modulation scheme, referred to as direct

sequence modulation, the binary data signal is multiplied with the PN se-

quence pk(t):

pk(t) = (1 − 2x[k])p(t − iTc),

where x[k] is the output of the shift register shown in Figure 1.1 with

elements {0, 1}, p(x) is a pulse shape and Tc is called the the chip interval.

The bandwidth W of the PN sequence pk(t) is given by Tc = 1/W .

In order to recover the data bits, the receiver needs to multiply the

received sequence with the proper PN sequence. This PN sequence needs

to be aligned to the received signal. This alignment, referred to as PN

synchronization, is achieved in two phases: The acquisition and the tracking

phase. During PN synchronization, the data signal is held constant.

In the acquisition phase, the receiver needs to decide on the PN sequence

generated in the transmitter. Acquisition is achieved when the PN sequences

generated in the transmitter and in the receiver are identical and time-

synchronized to within one half chip interval Tc.

In the tracking phase the receiver aligns its internal PN sequence further

to the incoming signal until no timing offset remains.

In this project we design a novel low-complexity PN sequence synchro-

nizer referred to as Noise Lock Loop (NLL). The NLL achieves synchroniza-

tion by estimating the probabilities of the bits in the PN sequence.

The NLL is interesting for two reasons. As stated in the above, in

classical spread spectrum communication systems, PN synchronization is

separated into two phases: There is an initial acquisition phase and a track-

3

ing phase after the signal has been acquired. Acquisition and tracking are

typically performed by two separate synchronization systems. The NLL is

a single system of low-complexity that both acquires and tracks noisy PN

sequences. Furthermore, classical PN synchronizers are clocked. We develop

both clocked and unclocked NLLs and study their behavior by simulation.

We proceed in two steps. First we a consider a clocked PN commu-

nication system. It consists of an LFSR whose sequences are transmitted

over an additive white Gaussian noise (AWGN) channel and are fed into a

clocked NLL subsequently. In this case the communication system operates

in discrete time. The unit of time is determined by the clocks in the LFSR

and the NLL, which are assumed to be perfectly aligned. We refer to this

operation mode as discrete-time synchronization.

Then two different unclocked PN communication systems are considered.

In the first system LFSR sequences are transmitted, in the other system

one transmits arbitrary PN-sequences. In both systems the sequences are

corrupted by AWGN and received by an unclocked NLL. In this case the

communication system operates so as to say in continuous-time. The system

does not contain clocks. We refer to this operation mode as continuous-time

synchronization.

This report is organized as follows: In Chapter 2, the discrete-time

communication system is considered. In Chapter 3, we investigate the

continuous-time system. We conclude this report with Chapter 4 where an

overview of this project is shown and a summary of the results is presented.

4 Introduction

Chapter 2

Discrete-Time

Synchronization

We investigate a discrete-time communication system shown in Figure 2.1.

This system consists of a Linear Feedback Shift Register (LFSR) as a trans-

mitter and the Noise-Lock Loop (NLL) as a receiver. The in the LFSR gen-

erated PN sequence is transmitted over an Additive White Gaussian Noise

(AWGN) channel using Binary Phase Shift Keying (BPSK) modulation.

The AWGN channel is characterized by its variance σ2.

Channel

Modulation NLLAWGNLFSR

ReceiverTransmitter

Figure 2.1: Discrete-time communication system

In a discrete-time system the transmitter and the receiver are time-

synchronized. Therefore the job of the receiver is to estimate the transmitted

PN sequence x[k] given the noisy observation y[k].

In order to study this communication system, we perform a simulation

for several SNRs (i.e. σ−values) and different LFSR lengths. In order to

measure the performance of our system we define the Probability of Syn-

chronization and the Time Until Acquisition (TUA).

We investigate this discrete-time communication system as follows: In

Section 2.1 we consider the LFSR. Section 2.2 is about the NLL that we use

as a receiver. Then results from the simulation are presented and discussed.

5

6 Discrete-Time Synchronization

2.1 The Linear Feedback Shift Register

In order to generate PN sequences we use a Linear Feedback Shift Register

(LFSR) that consists of a cascade of delay cells (a so called shift register)

and a logic XOR.

T
y[k]x[k]

Figure 2.2: Delay cell

The delay cell shown in Figure 2.2 stores the actual value at the input

x[k]1 and repeats it after one time step, so the output y[k] can be written

as

y[k] = x[k − 1]. (2.1)

We define the length of an LFSR as the number of delay cells that are

in the register, so an LFSR with L delay cells has length L.

The input of the first delay cell x[k] in the LFSR depends on the signals

in the registers such that

x[k] = x[k − M] ⊕ x[k − N] (2.2)

where ⊕ denotes the logic XOR.

Note that if N is not equal to the LFSR length L then we can substitute

this LFSR with one that has length N , since the signals x[k − i] ∀ i > N

have no influence on x[k]. So in the following we will assume without loss

of generality that N is equal to L.

Figure 2.3 shows an LFSR with M = 1 and length L = 4. Here the

input of the first delay cell is equal to

x[k] = x[k − 1] ⊕ x[k − 4]. (2.3)

In an LFSR of length L there are 2L different combinations of the sig-

nals x[k − 1], x[k − 2], . . . , x[k − L] possible. We call these combinations the

states of the LFSR.

The signal x[k] depends on M as well as on the initial state. If the initial

state is the all-zero state with x[k − 1] = x[k − 2] = · · · = x[k − L] = 0, the

output x[k] will be the zero sequence (x[k] = 0 ∀k) since the next input of

1
x[k] denotes a discrete-time signal

2.1 The Linear Feedback Shift Register 7

x[k−4]x[k−3]x[k−2]x[k−1]

x[k]
TTTT

XOR

Figure 2.3: Linear Feedback Shift Register of length 4

the register will be a zero and so the LFSR stays in the all-zero state. Note

that this holds independent of the choice of M and L. The zero sequence is

no PN sequence. In order to generate a PN sequence we need to initialize

the LFSR with a state different to the all-zero state.

If we compute the state evolution of an LFSR, after at most 2L − 1

iterations we return to the initial state. This evolution can be represented

by a circle. Figure 2.4 shows such circles for the LFSR in Figure 2.3. One

circle corresponds to the all-zero state. The second circle shows the state

evolution, if the initial state is different to the all-zero state. For example, if

the state is 0001, the output of the XOR is 1, which is fed into the register.

The next state is therefore 1000. After fifteen steps the LFSR returns to

the initial state. Since the signal x[k] depends on the state in the LFSR,

the output sequence is periodic with a period of fifteen time steps. Note

that this is the maximum period of a PN sequence that can be generated by

an LFSR of length four. In general the maximum period of a PN sequence

generated by an LFSR of length L is 2L − 1.

0000

1100

0001

1001
1110

1000

1101

1111

0100

0011

0110

1010 0101

1011

0111

0010

Figure 2.4: State evolution for an LFSR with x[k] = x[k − 1] ⊕ x[k − 4]

The circles shown in Figure 2.5 were created by an LFSR defined by

8 Discrete-Time Synchronization

x[k] = x[k − 2] ⊕ x[k − 4]. Contrary to the state evolution in Figure 2.4

we have four circles. The bottom right circle is the circle corresponding

to the all-zero state. The generated PN sequences have a period of 6 time

steps (top left and top right) and 3 time steps (bottom left), which is smaller

than 15 and therefore not the maximum period. Since the number of possible

states is equal to 2L, the LFSR creating the state evolution with the fewest

circles is able to generate a PN sequence of maximum period. It happens

to be the LFSR defined by x[k] = x[k − 1] ⊕ x[k − L] that creates only two

circles in the state evolution and is therefore able to generate a PN sequence

of maximum period (note that one circle is always the circle corresponding

to the all-zero state and, therefore, two is the minimum number of circles).

0011

1110

1100

1001

0111

1111

0000

0010

0100

1011 0110

1101

1010

0101

0001

1000

Figure 2.5: State evolution for an LFSR with x[k] = x[k − 2] ⊕ x[k − 4]

As mentioned before, the output of the LFSR is modulated using

BPSK. The sequence of logic bits x[k] ∈ {0, 1} is mapped to a signal

x̌[k] ∈ {+1,−1}, where a logic 0 is mapped to 1 and a logic 1 to −1.

The examination of the LFSR is here finished. In the next section we

consider the Noise-Lock loop that we use as receiver.

2.2 The Noise-Lock Loop

The task of the receiver is to decide on the state in the transmitter based on

the received signal y[k]. If the receiver does a maximum a posteriori (MAP)

decision it is optimal, since it decides on the most likely state given the

observation y[k] and, therefore, minimizes the probability of an error [2].

2.2 The Noise-Lock Loop 9

A MAP decision can be done with a trellis, where the most likely state

is determined by using the Viterbi algorithm [3]. Figure 2.6 shows one

trellis section for an LFSR defined in (2.3). Note that from every state

there is only one transition to a next state allowed since the state evolution

is deterministic, so the receiver only needs to decide on the initial state.

However, for an LFSR of length L, 2L − 1 possible paths exist through

the trellis (if we assume that the zero sequence is not allowed) and so the

computational demand of the Viterbi algorithm grows exponentially in L

(for L = 16 there exist 65′535 possible paths, for L = 32 there are more

than 4 · 109 paths).

1101

1100

1011

1110

1111

0100

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0001

0010

0011

0101

0110

0111

1000

1001

1010

Figure 2.6: Trellis section for a LFSR of length 4

Therefore, we propose a less complex receiver: The Noise-Lock loop

(NLL) shown in Figure 2.7. It estimates the a posteriori probability of the

state in the LFSR given the noisy observation y[k].

The NLL consists of a cascade of delay cells, a Soft-Equal and a Soft-XOR

gate and the block p(y|x) that translates the signal y[k] into a probability.

10 Discrete-Time Synchronization

In the following we will explain these components.

p(y|x) = TT TT
y[k] p(x[k]) p(x[k−1]) p(x[k−2]) p(x[k−3]) p(x[k−4])

Figure 2.7: Noise-Lock Loop with NLL length 4

Contrary to the LFSR in Section 2.1 the NLL works with probabilities

instead of bit sequences. The translation from the signal y[k] into a proba-

bilty is done by the block p(y|x). According to Bayes’ Rule, we can write

the probability of x[k] given y[k] as

p(x|y) =
f(y|x)p(x)

f(y)
= γf(y|x) (2.4)

where the last equality follows by the fact, that p(X = 1) = p(X = 0). Note

that p(x) denotes a probability and f(y) a probability density function. γ

is chosen so that p(X = 1|y) + p(X = 0|y) = 1. Since the PN sequence is

transmitted over an AWGN channel, f(y|x) is a Gaussian distribution.

=p(x)

p(y)

p(z)

Figure 2.8: Soft-Equal gate

The component shown in Figure 2.8 is called the Soft-Equal gate and

computes the probability p(z) given p(x), p(y) and the condtion z = y = x:

p(Z = 0) = βp(X = 0)p(Y = 0)

p(Z = 1) = βp(X = 1)p(Y = 1)
(2.5)

where β is a scale-factor to ensure that p(Z = 0) + p(Z = 1) = 1.

Figure 2.9 shows the Soft-XOR gate. It computes the probability p(z)

given p(x), p(y) and the condition z = x ⊕ y, where ⊕ denotes the logic

XOR:

p(Z = 0) = p(X = 0)p(Y = 0) + p(X = 1)p(Y = 1)

p(z = 1) = p(X = 0)p(Y = 1) + p(X = 1)p(Y = 0).
(2.6)

2.2 The Noise-Lock Loop 11

p(x)

p(y)

p(z)

Figure 2.9: Soft-XOR gate

The delay cell in the NLL delays the probability at the input p (x[k]) by

one time step. The output p (z[k]) of the delay cell can be written as

p (z[k]) = p (x[k − 1]) (2.7)

In the LFSR the input is binary, whereas in the NLL the input is a bit

probability namely the probability of the corresponding binary signal in the

LFSR. We define the length L of the NLL as the number of delay cells.

By comparing the Noise-Lock loop shown in Figure 2.7 to the LFSR

shown in Figure 2.3, it can be seen that except the Soft-Equal gate and the

block p(y|x) the components of the NLL are a soft-version of the components

in the LFSR.

An NLL that is able to synchronize to a PN sequence generated with

an LFSR needs to have the same structure, i.e. MLFSR = MNLL and

LLFSR = LNLL.

The input of the register p (x[k]) depends on the contents of the register

and, different from the LFSR, on the observation y[k]. We can write it as

p (x[k]) =
[

p (x[k − M])
⊕

p (x[k − L])
]

= p
(

x[k]
∣

∣ y[k]
)

= p
(

x[k] = (x[k − M] ⊕ x[k − L]) = y[k]
)

(2.8)

where
⊕

denotes the Soft-XOR and = the Soft-Equal. The second equality

follows by (2.5) and (2.6).

The NLL computes the bit probabilities of the signals

x[k], x[k − 1], . . . , x[k − L] in the LFSR given the observation y[k] and

is therefore a soft-version of the LFSR in Section 2.1.

Contrary to the trellis, the NLL considers only the probabilities

p (x[k − M]) and p (x[k − L]) and is therefore sub-optimal. Note that even

if the NLL length L goes to infinity the NLL considers only these two

probabilities, so it is not possible to improve the receiver by increasing the

NLL length.

12 Discrete-Time Synchronization

C
ha

nn
el

T TT T=p(y|x)

y[k]

XOR

T

M
od

ul
at

io
n

A
W

G
N

x[k]
TTT

T
ra

ns
m

itt
er

R
ec

ei
ve

r

Figure 2.10: Discrete-time communication system using an LFSR of length

4 as a transmitter and an NLL as a receiver

With the Linear Feedback Shift Register and the Noise-Lock loop we in-

vestigated all components of the communication system. In the next section

we present results from the simulations we performed.

2.3 Results

In order to examine the behavior of the discrete-time communication system

described further up we perform simulations for several SNRs and different

LFSR lengths. The investigated communication system is shown in Fig-

ure 2.10 and consist of an LFSR as a transmitter and an NLL as a receiver.

To measure the performance of our receiver we define the two measures

Probability of Synchronization and the Time Until Acquisition.

Definition 2.1 Synchronization is reached if the state in the receiver is

equal to the actual state in the transmitter. The state in the receiver is

2.3 Results 13

found by a hard-decision on the contents of the delay elements.

Definition 2.2 The Probability of Synchronization PSynch(k) is the prob-

ability that the receiver has reached synchronization after k steps.

Definition 2.3 The Time Until Acquisition (TUA) is the time k until

PSynch(k) > Θ.

In order to compute the Probability of Synchronization we simulate a

sequence of 400 bits 106 times.

After any time step k we determine how often the receiver has reached

Synchronization and divide this number by the number of simulations (here

106). The Time Until Acquisition can be computed based on PSynch(k) as

can be seen from its definition.

50 100 150 200 250 300 350 400

0.2

0.4

0.6

0.8

1
Probability of Synchronization with N = 8, N = 16 & N = 32

P
S

yn
ch

(k
)

w
ith

 N
 =

 8 Sigma = 0.6
Sigma = 1
Sigma = 1.4

50 100 150 200 250 300 350 400

0.2

0.4

0.6

0.8

1

P
S

yn
ch

(k
)

w
ith

 N
 =

 1
6

Sigma = 0.6
Sigma = 1
Sigma = 1.4

50 100 150 200 250 300 350 400
0

0.5

1

k [time steps]

P
S

yn
ch

(k
)

w
ith

 N
 =

 3
2

Sigma = 0.6
Sigma = 1
Sigma = 1.4

Figure 2.11: Probability of Synchronization after k time steps for different

LFSR lengths

These simulations are performed for several LFSR lengths and noise

powers. Figure 2.11 shows the Probability of Synchronization after k bits.

In Figure 2.12 the TUA is shown for Θ = 0.9 for varying SNR values. The

SNR is defined as

SNR = 10 log

(

Eb

σ2

)

= 20 log

(

1

σ

)

(2.9)

14 Discrete-Time Synchronization

−2 −1 0 1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350
Time Until Acquisition

SNR

T
U

A
 [t

im
e

st
ep

s]

N = 8
N = 16
N = 24
N = 32

Figure 2.12: Time Until Acquisition for different LFSR lengths

where σ2 is the variance of the AWGN channel. Equality (2.9) follows be-

cause the transmitted signal x̌[k] ∈ {+1,−1}.

2.4 Discussion

In this Section we discuss the results of the performed simulations shown in

Figure 2.11 and 2.12.

Figure 2.11 shows the Probability of Synchronization after k bits. From

this figure we see that initially PSynch(k) decreases and reaches a mini-

mum at k = L, where L is the LFSR length. Then it increases and

tends asymptotically to P0 ≤ 1. The fact that PSynch(k) decreases for

k < L is due to a measurement artefact. In order to determine the state

in the receiver a hard-decision is made such that p (x[k]) ≤ 1
2 is set to 0

and p (x[k]) ≥ 1
2 is set to 1. Since we initialized the NLL with proba-

bilities p ([x[−1] = 1) = p (x[−2] = 1) = . . . = p (x[−L] = 1) = 1
2 it is more

likely to reach Synchronization after the first bits, therefore, the minimum

of PSynch(k) is after L bits, when the contents of the register are different

to 1
2 .

There are values of σ where P0 < 1. The reason is that in

2.5 Outlook 15

order to achieve Synchronization the contents of the delay elements

p (x[x − 1]) , p (x[k − 2]) , . . . , p (x[k − L]) need to be close to one or zero and

for low SNRs this is not very likely. In contrary a receiver using the Viterbi

algorithm on a trellis is able to reach Synchronization for every σ. As de-

scribed in section 2.2 the Viterbi algorithm considers the probabilities of all

bits in the past and is therefore able to estimate the state in the transmitter.

Furthermore, we observe that the rise of PSynch(k) depends on the length

of the LFSR. This can be explained by the fact that the larger the LFSR

length, the more probabilities are stored in the NLL and, therefore, it takes

longer to achieve Synchronization.

As mentioned in Section 2.2, the NLL considers only the two probabilities

p (x[k − M]) and p (x[k − L]) and, therefore, it is not possible to improve

this receiver by increasing the length.

Figure 2.12 shows the Time Until Acquisition (TUA). It can be seen

that for low SNRs the TUA becomes very large. Additionally, the larger the

LFSR length, the higher the SNR must be to reach the same TUA.

2.5 Outlook

The results of the simulation we performed gave us more insight into the

behavior of the Noise-Lock loop. However, some questions remain. For

example we do not know yet how to calculate the σ-values above which

Synchronization cannot be achieved. Furthermore, we have not implemented

this communication system in hardware yet.

However, this is a topic of future research. In this semester project we

leave the field of discrete-time synchronization at this point and consider

the continuous-time case in the next chapter.

16 Discrete-Time Synchronization

Chapter 3

Continuous-Time

Synchronization

In Chapter 2 we have presented a discrete-time communication system, con-

sisting of an LFSR as a transmitter and an NLL as a receiver. Both the

transmitter and the receiver require a clock signal to trigger the delay cells.

Furthermore both clock signals need to be aligned to each other.

In this chapter we present continuous-time communication systems

where no clock signals are required.

These systems are discussed as follows: First a pseudo-continuous-time

system is investigated. This system is a straightforward extension of the

discrete-time system presented in Chapter 2. The discrete-time delay cells

are replaced by ideal continuous-time delay cells. Then a continuous-time

system is discussed, where the delay cells in both the receiver and the trans-

mitter are replaced by IIR filters. We consider two different approaches to

design the IIR filters. In the first approach sequences similar to LFSR se-

quences are transmitted. In the second approach the transmitted sequences

are arbitrary.

For both systems simulations are performed for various noise levels. For

the pseudo-continuous-time system we use the Probability of Synchronization

defined in Section 2.3 as a measure of it performance. For the continuous-

time system the Probability of Synchronization is not appropriate. Instead,

we compute the Mean-Square-Error (MSE) between the signals in the trans-

mitter and the signals in the receiver.

We investigate both continuous-time communication systems in the fol-

17

18 Continuous-Time Synchronization

lowing order. In section 3.1 the pseudo-continuous-time system is explained.

In Section 3.2 we discuss the continuous-time system. The results of the sim-

ulations are presented in Section 3.3 and discussed in Section 3.4.

3.1 Pseudo-Continuous-Time Synchronization

The pseudo-continuous-time system is a straightforward extension of the

discrete-time system. In the following subsection the LFSR in Section 2.1

is being adapted in order to get a continuous-time transmitter. In Subsec-

tion 3.1.2 the pseudo-continuous-time NLL is presented.

3.1.1 The Linear Feedback Shift Register

In order to generate continuous-time PN sequences we can use the

Linear Feedback Shift Register in Figure 2.3 and transform the discrete-time

output into a continuous-time signal [2] as follows

x(t) =
∑

k

x[k]h(t − kT), (3.1)

where

h(t) =

{

1, 0 ≤ t < T

0, otherwise.
(3.2)

x(t)x[k]
h(t)LFSR

hold element

Figure 3.1: Continuous-time LFSR

Figure 3.1 shows a transmitter consisting of a discrete-time LFSR and

a hold element. The input of the hold element is the output of the LFSR

x[k]. The output is a continuous-time signal according to (3.1).

In another approach, the discrete-time delay cells used in the LFSR

shown in Section 2.1 could be replaced by ideal continuous-time delay cells.

If the outputs of these ideal delay cells are held constant during the time

T , then the so designed LFSR generates PN sequences identical to the

PN sequences generated with the LFSR shown in Figure 3.1.

However, one cannot perform a computer simulation in continuous-time.

Therefore, instead of a continuous-time PN sequence it is sufficient to over-

sample the discrete-time sequence x[k], which means that N samples per

3.1 Pseudo-Continuous-Time Synchronization 19

bit are transmitted. We call this oversampled PN sequence a pseudo-

continuous-time sequence. Figure 3.2 shows a discrete-time sequence, a

pseudo-continuous-time sequence and a continuous-time sequence. The

pseudo-continuous-time sequence is the oversampled discrete-time sequence

using 5 samples per bit.

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PN sequences of an LFSR of length 4

t

Discrete−Time
Pseudo−Continuous
Continuous−Time

Figure 3.2: PN sequences for discrete-time, pseudo-continuous-time and

continuous-time

In the next subsection we present a continuous-time receiver that is de-

duced from the NLL presented in Section 2.2.

3.1.2 The Noise-Lock Loop

The receiver is similar to the NLL presented in Section 2.2. Again, the

receiver works with probabilities instead of bit sequences. The number or

delay cells defines the length of the NLL. Figure 3.3 shows an NLL with

length 2 with ideal delay cells.

In general, the input of the register p (x(t)) of an NLL of length L can

20 Continuous-Time Synchronization

DelayDelay

p(x(t−2T))p(x(t−T))p(x(t))y(t)

p(y|x) =

Figure 3.3: Continuous-time Noise-Lock loop

be written as

p (x(t)) =
[

p (x(t − T))
⊕

p (x(t − LT))
]

= p
(

x(t)
∣

∣ y(t)
)

= p
(

x(t) = (x(t − T) ⊕ x(t − LT)) = y(t)
)

(3.3)

where
⊕

denotes the Soft-XOR and = the Soft-Equal. This

continuous-time receiver computes the probabilities of the signals

x(t), x(t − T), . . . , x(t − LT) given the observation y(t) and is, therefore,

the soft-version of an LFSR using ideal delay cells.

In order to design a receiver that is able to synchronize to pseudo-

continuous-time sequences that are oversampled with N samples per bit,

the ideal delay cells can be replaced by N discrete-time delay cells. We

call this receiver a pseudo-continuous-time NLL. As an example, Figure 3.4

shows a pseudo-continuous-time NLL of length two with five discrete-time

delay cells instead of one ideal delay cell.

y(t) p(x(t)) p(x(t−T)) p(x(t−2T))

p(y|x) T/5 T/5 T/5 T/5 T/5 T/5 T/5 T/5 T/5T/5=

Figure 3.4: Pseudo-continuous-time Noise-Lock loop with NLL length 2 and

5 samples per bit

We have seen that it is possible to design a pseudo-continuous-time com-

munication system by oversampling the discrete-time output of the LFSR

with N samples per bit and replacing every ideal delay cell by N discrete-

time delay cells. However, the goal of this project is to study a continuous-

time system that can be built in hardware. The pseudo-continuous-time

approach is not practicable since, in order to emulate the delay cells, stor-

age elements are needed. Furthermore, both the transmitter and the receiver

still need a clock signal, however both clock signals do not need to be aligned

3.2 Continuous-Time Synchronization 21

to each other. pseudo-continuous-time synchronization is therefore only of

academic interest. In the next section we present an approach to design a

continuous-time communication system that can be realized in hardware.

3.2 Continuous-Time Synchronization

In this section a continuous-time communication system is designed that

can be realized in hardware. Therefore, the ideal delay cells are replaced

by IIR filters. Same as in Section 3.1 we will first study the continuous-

time transmitter. Then in Subsection 3.2.2 the continuous-time receiver is

discussed.

3.2.1 Continuous-Time Transmitter

The continuous-time transmitter shown in Figure 3.5 consists of a cascade of

two filters, a logic XOR, two Hard Limiters and a mapper. In the following

we study these components more detailed.

Filter 1 Filter 2

x(t) u(t) w(t)

^
XOR

Mapper

x(t)

^

u(t)

^ w(t)

Figure 3.5: Continuous-time transmitter

The mapper maps the logic bits x(t) ∈ {0, 1} to signals x̌(t) ∈ {+1,−1}
such that

x̌(t) = 1 − 2x(t). (3.4)

u(t)

^

u(t)

Figure 3.6: Hard Limiter

The Hard Limiter shown in Figure 3.6 transforms the signals ǔ(t) ∈ R

back to a bit sequence u(t) ∈ {0, 1} (a negative number is mapped to 1 and

a positive to 0, i.e. ǔ(t) ≤ 0 → 1, ǔ(t) > 0 → 0).

22 Continuous-Time Synchronization

The input x̌(t) of Filter 1 depends on the output of the Hard Limiters

u(t) and w(t) and can be written as

x̌(t) = 1 − 2
(

u(t) ⊕ w(t)
)

(3.5)

Filter 1 and Filter 2 are common analog lowpass filters. In order to

simulate the continuous case we use the corresponding IIR filters. The

choice of the filters affects the characteristics of the generated PN sequence.

In the following we present two possible choices of the filters. First, the filters

are designed in order to generate signals ǔ(t) and w̌(t) that are similar to

the signals in an LFSR using ideal delay cells. Then the filters are chosen

arbitrarily, which leads to arbitrary sequences.

LFSR Sequences

We now want to design the filters in order to get signals ǔ(t) and w̌(t) that

are similar to the signals in an LFSR using ideal filters. A possible sequence

could be

ǔ(t) =
∑

i

Xig(t − iT) (3.6)

with Xi ∈ {+1,−1} and g(t) = 0 ∀|t| > T/2. T is the bit length.

X = {. . . , X−1, X0, X+1, . . .} is a binary sequence. ǔ(t) corresponds to

the modulation of the sequence on the waveform g(t). Figure 3.7 shows a

possible signal generated according to (3.6).

t

ǔ(t)g(t)

Figure 3.7: The waveform g(t) and a possible sequence of ǔ(t)

However, we were not able to generate a signal where the waveform is

independent of the binary sequence X. So we consider the case where the

waveform g(t) depends on Xi−1, Xi and Xi+1 (figure 3.8 shows an example)

with

ǔ(t) =
∑

i

XigX̃i−1X̃i+1
(t − iT) (3.7)

where gX̃i−1X̃i+1
(t) = 0, |t| > T/2 and

3.2 Continuous-Time Synchronization 23

X̃i−1 =

{

“ = “ Xi−1 = Xi

“ 6= “ Xi−1 6= Xi

(3.8)

X̃i+1 =

{

“ = “ Xi+1 = Xi

“ 6= “ Xi+1 6= Xi.
(3.9)

This condition can be fulfilled by a cascade of a delay filter and a lowpass

filter. The delay filter has a linear phase and therefore a constant group

delay in the chosen frequency range. The lowpass filter is needed in order

to smoothen the shape of the signal.

(i) (ii)

(iii) (iv)

T/2 T/2 T/2 T/2

T/2 T/2 T/2 T/2

g
==

(t) g
=6=(t)

g 6==
(t) g 6=6=(t)

t t

t t

Figure 3.8: Waveforms depending on Xi−1, Xi and Xi+1. (i) Xi−1 = Xi =

Xi+1. (ii) Xi−1 = Xi 6= Xi+1. (iii) Xi−1 6= Xi = Xi+1. (iv) Xi−1 = Xi+1 6=
Xi.

Figure 3.9 shows the outputs of Filter 1 and Filter 2 in the transmitter

in Figure 3.5. Here, Filter 1 consists of a cascade of a delay filter1 of order

N = 6 with a linear phase in the normalized frequency range ωc ∈ [0, 0.17]

and a Chebyshev lowpass filter of order N = 2 with normalized bandwidth

ωc = 0.13 and peak-to-peak ripple in the passband of Rp = 0.01dB. Filter

2 is the cascade of two of those filters. Figure 3.10 shows a picture of both

filters. This transmitter corresponds to an LFSR of length L = 4.

As can be seen in Figure 3.9 the signals after Filter 1 and Filter 2

consists of two parts; in the first part for t < 3000 the signals are aperiodic.

Then, after 3000 samples the signals become periodic.
1Designed in Matlab with the function iirgrpdelay.

24 Continuous-Time Synchronization

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−2

−1

0

1

2

3
Signals after Filter 1 and Filter 2

S
ig

na
l a

fte
r

F
ilt

er
 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−2

−1

0

1

2

t

S
ig

na
l a

fte
r

F
ilt

er
 2

Figure 3.9: Output signals of Filter 1 and Filter 2 similar to the signals in

an LFSR

delay
filter filter

lowpass

delay
filter

lowpass
filter

delay
filter

lowpass
filter

Filter 2

Filter 1

Filter 1 Filter 1

Figure 3.10: Filter 1 and Filter 2

3.2 Continuous-Time Synchronization 25

In order to get signals of the form described in (3.7) the outputs of Filter

1 and Filter 2 need to be periodic. Therefore, one has to wait 3000 samples

until the transmitter generates LFSR sequences.

Figure 3.11 shows a enlarged region of the outputs of Filter 1 and Filter

2.

2 2.005 2.01 2.015 2.02 2.025

x 10
4

−1

−0.5

0

0.5

1

Signals after Filter 1 and Filter 2
S

ig
na

l

t

Signal after Filter 1
Signal after Filter 2

Figure 3.11: Zoom of the output signals of Filter 1 and Filter 2 similar to

the signals in an LFSR

The PN sequence at the output x̌(t) of the continuous-time transmitter

shown in Figure 3.12 is identical to the PN sequence generated with the

continuous-time LFSR of length L = 3 presented in Subsection 3.1.1. Note

that the sequence is periodic with a period of ≈ 100 samples. The corre-

sponding bit sequence is 1110100. Consequently the spectrum is discrete.

The presented continuous-time transmitter is able to generate

PN sequences. However, the larger the delay of Filter 2, the more difficult

becomes to properly determine the filter parameters. Because of the feed-

back a small error in the delay distorts the signals so that the assumption of

the waveforms that depend only on Xi−1, Xi and Xi+1 is invalid. Therefore,

we were only able to design transmitters with short LFSR lengths.

26 Continuous-Time Synchronization

2 2.005 2.01 2.015 2.02 2.025

x 10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Signal generated at the Output of the Transmitter

T
ra

ns
m

itt
er

−
O

ut
pu

t

t
−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 10
4

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Absolute Value of the Spectrum of the Output of the Transmitter

|X
(f

)|

f

Figure 3.12: LFSR sequence and spectrum at the output of the continuous-

time receiver

Arbitrary Sequences

Contrary to the approach above it is now not the goal of this approach

to have LFSR sequences according to (3.7). Instead, the filters are chosen

arbitrary.

Figure 3.13 shows the output signals ǔ(t) and w̌(t) of both filters in

the transmitter. Filter 1 is a Chebyshev lowpass filter of order 5 with

normalized frequency ωc = 0.02 and peak-to-peak ripple in the passband of

Rp = 0.01dB. Filter 2 is the cascade of three of those filters.

The PN sequence at the output x̌(t) of the continuous-time transmitter

with arbitrarily chosen filters is shown in Figure 3.14. Regarding the spec-

trum of the PN sequence it can be seen that the generated sequence is either

aperiodic or has a very large period.

As shown in Figure 3.14 the continuous-time transmitter with arbitrar-

ily chosen filters is able to generate PN sequences that have a continuous

spectrum. As we have chosen the parameters of the filters arbitrarily, it is

less demanding to design the transmitter, even if Filter 2 has a large delay.

3.2.2 Continuous-Time Receiver

The continuous-time receiver shown in Figure 3.15 consists of two filters, a

Soft-Equal and a Soft-XOR gate, the block p(y|x), a mapper and the Soft

Limiter. Again this receiver runs with probabilities instead of bit sequences.

The Soft-Equal and the Soft-XOR gate are equal to the soft gates de-

scribed in Section 2.2. The Soft-Equal gate computes the probability p(z)

given p(x) and p(y) and the condition z = x = y. The Soft-XOR gate com-

3.2 Continuous-Time Synchronization 27

2 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.1

x 10
4

−3

−2

−1

0

1

2

3

Signals after Filter 1 and Filter 2

S
ig

na
l

t

Signal after Filter 1
Signal after Filter 2

Figure 3.13: Output signals of Filter 1 and Filter 2 for arbitrarily chosen

filters

2 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.1

x 10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Signal generated at the Output of the Transmitter

T
ra

ns
m

itt
er

−
O

ut
pu

t

t
−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

x 10
4

0

1000

2000

3000

4000

5000

6000

Absolute Value of the Spectrum of the Output of the Transmitter

|X
(f

)|

f

Figure 3.14: Signal and spectrum at the output of the continuous-time trans-

mitter for arbitrary chosen filters

y(t) p(x(t)) m(t)

p(u(t)) p(w(t))

Filter 1 Filter 2=p(y|x) Mapper

Figure 3.15: Continuous-Time Receiver

28 Continuous-Time Synchronization

putes the probability p(z) given p(x) and p(y) and the condition z = x⊕ y.

The block p(y|x) has the same function as in the NLL since the channel is

still modelled as an AWGN channel.

The mapper computes the expectation of x̌(t) given the observation y(t):

m(t) = E [x̌(t)]

= p (x̌(t) = 1) − p (x̌(t) = −1)

= p (x(t) = 0) − p (x(t) = 1) (3.10)

where the second equality follows from (3.4).

Filter 1 and Filter 2 are identical to the filters in the continuous-time

transmitter presented in Subsection 3.2.1. mFilter1 and mFilter2 denote the

outputs of Filter 1 resp. Filter 2. In the following we proof that mFilter1

and mFilter2 are the expectations E [ǔ(t)] and E [w̌(t)] of the outputs ǔ(t)

and w̌(t) of the filters in the transmitter shown in Figure 3.5:

ǔ(t) = (x̌(t) ∗ hFilter1) (t) (3.11)

w̌(t) = (ǔ(t) ∗ hFilter2) (t) (3.12)

and

E [ǔ(t)] = E

[
∫

hFilter1(τ)x̌(t − τ) dτ

]

=

∫

hFilter1(τ)E [x̌(t − τ)] dτ

= (hFilter1 ∗ m) (t)

= mFilter1(t) (3.13)

where the last equality follows from (3.10).

Likewise

E [w̌(t)] = (hFilter2 ∗ mFilter1) (t)

= mFilter2(t) (3.14)

where the last equality follows from (3.13). Filter 1 and Filter 2 in the

continuous-time receiver filter the expectations of the corresponding signals

in the continuous-time transmitter.

Figure 3.16 shows a Soft Limiter. The Soft Limiter computes the prob-

ability of the signal u(t) given the expectation m(t) at the input. In order

3.2 Continuous-Time Synchronization 29

m(t) p(u(t))

Figure 3.16: Soft Limiter

to design the Soft Limiter, knowledge of the probability density functions

of the filter outputs mFilter1 and mFilter2 is needed. Consequently, the Soft

Limiter depends on the choice of the filters.

First, the approach leading to LFSR sequences is investigated. Then,

the approach, where the filters are chosen arbitrarily, is studied.

LFSR Sequences

As presented in Subsection 3.2.1 the signals ǔ(t) and w̌(t) can be written as

ǔ(t) =
∑

i

XigX̃i−1X̃i+1
(t − iT − τ) (3.15)

and likewise

w̌(t) =
∑

j

XjqX̃j−1X̃j+1
(t − jT − τ) (3.16)

with Xi, Xj ∈ {1,−1} and where the waveforms gX̃i−1X̃i+1
(t) = 0 ∀|t| > T/2

and qX̃j−1
˜j+1(t) = 0 ∀|t| > T/2. τ is a stochastic variable and denotes

the unknown time shift of the signal. Note that the waveforms depend on

Xi−1, Xi and Xi+1 resp. Xj−1, Xj and Xj+1.

The Soft Limiter computes the probabilities of p (u(t)) and p (w(t)) given

the inputs mFilter1 and mFilter2. However, it is sufficient to compute the

probabilities p (Xi) and p (Xj). The reason is, that the outputs of the Hard

Limiters u(t) and w(t) can be written as

u(t) =
1

2

(

1 − sign (ǔ(t))
)

=
1

2
(1 − Xi) (3.17)

and similarly

w(t) =
1

2
(1 − Xj) (3.18)

where sign(x) denotes the signum-function. The equations (3.17) and (3.18)

follow from (3.15), (3.16) and the fact that the waveforms gX̃i−1X̃i+1
(t) ≥ 0

and qX̃j−1
˜j+1(t) ≥ 0.

30 Continuous-Time Synchronization

The waveforms depend on Xi−1, Xi, Xi+1 resp. Xj−1, Xj , Xj+1. We as-

sume the bits Xi and Xj to be unknown and thus:

p (Xi−1 = 0) = p (Xi−1 = 1) = p (Xi+1 = 0) = p (Xi+1 = 1) =
1

2
(3.19)

p (Xj−1 = 0) = p (Xj−1 = 1) = p (Xj+1 = 0) = p (Xj+1 = 1) =
1

2
. (3.20)

Theorem 3.1 Assuming the probabilities p (Xi) and p (Xj) to be 1
2 , the

outputs of the Soft Limiters p (Xi = 1) and p (Xj = 1) can be written as

p (Xi = 1) =
1

2

(

1 +
mFilter1(t)

κ1(mFilter1)

)

(3.21)

p (Xj = 1) =
1

2

(

1 +
mFilter2(t)

κ2(mFilter2)

)

(3.22)

where

κ1(m) =
Em [g==(θ)]+Em [g=6=(θ)]+Em [g 6==(θ)]+Em [g 6=6=(θ)]

4
(3.23)

κ2(m) =
Em [q==(θ)]+Em [q=6=(θ)]+Em [q 6==(θ)]+Em [q 6=6=(θ)]

4
(3.24)

with

θ = t − τ (3.25)

and

Em [g(θ)] =

∫

D1(m)
g(θ)f(θ) dθ (3.26)

D1(m) =
{

θ ∈ [−T/2, T/2]
∣

∣ g(θ) ≥ |m|
}

(3.27)

resp.

Em [q(θ)] =

∫

D2(m)
q(θ)f(θ) dθ (3.28)

D2(m) =
{

θ ∈ [−T/2, T/2]
∣

∣ q(θ) ≥ |m|
}

(3.29)

where f(θ) denotes the probability density function of θ.

Proof: See appendix A.

The algorithm used to compute Em [g(θ)] and Em [q(θ)] is shown in Fig-

ure 3.17. It works as follows: θ is chosen from a uniform distribution. If

g(θ) ∈ D(m) (i.e. g(θ) ≥ |m|), then g(θ) is used to compute Em [g(θ)]

3.2 Continuous-Time Synchronization 31

no

yes

choose

θ ∈ [−T/2, T/2]

distribution
from a uniform

valid = valid + 1

value = value + g(θ)

Em [g(θ)] = value/valid

θ ∈ D(m)?

Figure 3.17: Algorithm to compute Em [g(θ)]

resp. Em [q(θ)]. If θ is not valid, another one is chosen. This is done for

several iterations.

The algorithm is executed for different expectations m. By substitut-

ing Em [g(θ)] and Em [q(θ)] in (3.26) and (3.28) by the expectations com-

puted with this algorithm one can determine the probabilities p (Xi = 1)

and (Xj = 1). Figure 3.18 shows the so computed probabilities p (Xi = 1)

and p (Xj = 1) of a continuous-time transmitter which generates LFSR se-

quences.

In the following we investigate the continuous-time receiver where arbi-

trary sequences are generated.

Arbitrary Sequences

In contrast to the approach that leads to LFSR sequences, the filter out-

puts here are not periodic. Consequently, a lot more waveforms would be

necessary to describe those signals. Therefore, we propose a waveform by

ǔ(t) = (1 − 2u(t)) g(t − τ) (3.30)

and likewise

w̌(t) = (1 − 2w(t)) q(t − τ) (3.31)

32 Continuous-Time Synchronization

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probabilities after the Soft Limiter

m

P
(X

=
1)

after Filter 1
after Filter 2

Figure 3.18: p (Xi = 1) and p (Xj = 1)

where u(t) and w(t) are the outputs of the Hard Limiter in the transmitter.

ǔ(t) is the modulation of the bit u(t) on the waveform g(t). The same holds

for w̌(t). The waveforms g(t) ≥ 0 and q(t) ≥ 0 are stochastic. τ is the

unknown time shift of the signals.

The expectations mFilter1(t) and mFilter2(t) can be written as

mFilter1(t) = EmFilter1
[ǔ(t)]

= EmFilter1
[(1 − 2u(t)) g(t − τ)]

= E [1 − 2u(t)] EmFilter1
[g(θ)] (3.32)

and similarly

mFilter2(t) = E [1 − 2w(t)] EmFilter2
[q(θ)] (3.33)

with θ = t−τ . The equalities (3.32) and (3.33) follow from the fact that the

waveforms do not depend on the bits u(t) and q(t). Em [g(θ)] and Em [q(θ)]

denote

Em [g(θ)] =

∫

D1(m)
g(θ)f(θ) dθ (3.34)

D1(m) =
{

θ ∈ [−T/2, T/2]
∣

∣ g(θ) ≥ |m|
}

(3.35)

3.2 Continuous-Time Synchronization 33

resp.

Em [q(θ)] =

∫

D2(m)
q(θ)f(θ) dθ (3.36)

D2(m) =
{

θ ∈ [−T/2, T/2]
∣

∣ q(θ) ≥ |m|
}

(3.37)

where f(θ) is the probability density function of θ.

In the following we assume the time shift τ resp. θ to be uniformly

distributed. Note that |m| cannot be greater than g(θ) or q(θ) because

|m(t)| = |E [1 − 2u(t)] Em [g(θ)]| (3.38)

= |E [1 − 2u(t)]| |Em [g(θ)]| (3.39)

≤ |1 − 2u(t)|Em [g(θ)] (3.40)

= Em [g(θ)] (3.41)

and likewise

|m(t)| ≤ |1 − 2w(t)|Em [q(θ)] (3.42)

= Em [q(θ)] (3.43)

where (3.40) and (3.42) follow from the fact that u(t), w(t) ∈ {0, 1} and

g(θ), q(θ) ≥ 0.

In order to compute the probabilities p (u(t) = 0) and p (w(t) = 0), it

suffices to know the expectations E [1 − 2u(t)] and E [1 − 2w(t)] since

p (u(t) = 0) = p ((1 − 2u(t)) = 1)

=
1

2
(1 + E [1 − 2u(t)])

=
1

2

(

1 +
mFilter1(t)

EmFilter1(t) [g(θ)]

)

(3.44)

and similarly

p (w(t) = 0) =
1

2

(

1 +
mFilter2(t)

EmFilter2
[q(θ)]

)

. (3.45)

The equalities (3.44) and (3.45) follow from (3.32) and (3.33).

In order to compute EmFilter1
[g(t)] and EmFilter2

[q(t)] we use the algo-

rithm shown in Figure 3.17. The stochastic waveforms g(t) and q(t) are

approximated by the absolute values of the filter outputs ǔ(t) and w̌(t).

Figure 3.19 shows the probabilities p (u(t) = 0) and p (w(t) = 0) com-

puted with this algorithm shown in Figure 3.17, compared to the probabil-

ities computed according to (3.46), (3.47), (3.48) and (3.49).

34 Continuous-Time Synchronization

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mean of the Signal after the Soft Limiter

m

p(
u(

t)
=

0)
 a

nd
 p

(w
(t

)=
0)

computed, after Filter 1
computed, after Filter 2
tanh, after Filter 1
tanh, after Filter 2
error function, after Filter 1
error function, after Filter 2

Figure 3.19: Probabilities p (u(t) = 0) and p (w(t) = 0) computed with

the algorithm, compared to the probabilities computed according to

(3.46),(3.47),(3.48) and (3.49)

3.2 Continuous-Time Synchronization 35

The probabilities computed by the algorithm can be well approximated

by the following probabilities:

p (u(t) = 0) =
1

2

(

1 + erf

(

mFilter1(t)√
2ς1

))

(3.46)

P (w(t) = 0) =
1

2

(

1 + erf

(

mFilter2(t)√
2ς2

))

(3.47)

or

p (u(t) = 0) =
1

2

(

1 + tanh

(

1.15mFilter1(t)√
2ς1

))

(3.48)

P (w(t) = 0) =
1

2

(

1 + tanh

(

1.15mFilter2(t)√
2ς2

))

(3.49)

with ς1 = 0.6 and ς2 = 1.1. Note that the Hard Limiter maps a negative

value at the input to a 1 and a positive to a 0. Therefore, the probabilities

can be written as

p (u(t) = 0) = p (ǔ(t) > 0) (3.50)

p (w(t) = 0) = p (w̌(t) > 0) . (3.51)

If we consider the Central Limit Theorem [4] and assume ǔ(t) to be

Gaussian distributed with mean mFilter1 and variance ς2
1 , equation (3.50)

leads to (3.46). Similarly, if we assume w̌(t) to be Gaussian distributed with

mean mFilter2 and variance ς2
2 , the equation (3.51) leads to (3.47). Therefore,

the equations (3.46) and (3.47) are the probabilities of a Gaussian variable

being greater than zero [1].

In (3.48) and (3.49) we approximate the error function with tanh(1.15x).

In order to built a continuous-time receiver in hardware, it is necessary

to use components that can be easily implemented. The implementation of

the IIR filters can be done without any problems. In addition, the Soft-

Equal and the Soft-XOR gates have already been designed in hardware.

Furthermore, it is known how to implement the block p(y|x) [5].

The implementation of the Hard Limiter using the probabilities com-

puted with the algorithm seems to be difficult. Therefore, especially the

approach, where the probabilities are computed according to (3.48) and

(3.49) is very interesting, since the tanh(x) can be emulated easily with a

circuit consisting of two transistors as shown in Figure 3.20 [6].

We have presented a continuous-time system that can be implemented

in hardware. In the next section we show results of the simulations we

performed in order to investigate this system.

36 Continuous-Time Synchronization

BI

U(t)

I1 I 2

Figure 3.20: Circuit with I1 − I2 = IBtanh
(

U(t)
2UT

)

3.3 Results

In Sections 3.1 and 3.2 two possible continuous-time communication sys-

tems are presented. In the following we show results of simulations of both

systems.

The results of the pseudo-continuous-time communication system are

investigated in Subsection 3.3.1. Then in Subsection 3.3.2 we present the

results of the continuous-time system.

3.3.1 Results of the Pseudo-Continuous-Time System

The pseudo-continuous-time and the discrete-time communication system

are very similar. As a matter of fact, the discrete-time system can be inter-

preted as a special case of a pseudo-continuous-time one, where the output

of the LFSR is oversampled with one sample per bit. As a consequence,

the simulations and the results for pseudo-continuous-time are very similar

to the simulations of the discrete-time system. Again we use the Probabil-

ity of Synchronization (PSynch(t)) defined in Chapter 2 as a measure of the

performance.

In order to compute PSynch(t) we generate a PN sequence with length

of 400 with an LFSR and oversample the output of the discrete-time LFSR

with 10 samples per bit. These simulations are performed for several LFSR

lengths and noise powers. Figure 3.21 shows PSynch(t).

3.3.2 Results of the Continuous-Time System

We investigate the continuous-time system shown in Figure 3.22. In Sub-

section 3.3.1 we use the Probability of Synchronization as a measure of the

performance of the pseudo-continuous-time system. However, this quan-

3.3 Results 37

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1
Probability of Synchronization with N = 8, N = 16 and N = 32

P
S

yn
ch

(t
)

w
ith

 N
 =

 8 Sigma = 0.6
Sigma = 1
Sigma = 1.4

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

P
S

yn
ch

(t
)

w
ith

 N
 =

 1
6

Sigma = 0.6
Sigma = 1
Sigma = 1.4

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

t

P
S

yn
ch

(t
)

w
ith

 N
 =

 3
2

Sigma = 0.6
Sigma = 1
Sigma = 1.4

Figure 3.21: The Probability of Synchronization of the pseudo-continuous-

time system after time t for different LFSR lengths

tity is not appropriate for the continuous-time system. In contrast to the

pseudo-continuous-time transmitter, where the outputs of the delay cells are

constant over one bit, the outputs of the filters vary in the continuouos-time

transmitter. A small signal is more sensitive to noise than a large one, there-

fore, PSynch(t) depends on the values of the filter outputs. Consequently,

PSynch(t) varies over one bit and is not useful as a measure of the system

performance.

We measure the performance of the continuous-time receiver by com-

puting the Mean-Square-Error (MSE) between the signals ǔ(t) and w̌(t) in

the transmitter and the signals p (ǔ(t)) and p (w̌(t)) in the receiver. The

MSE is the average of the Square-Error (SE) over several realizations of the

simulations. The SE is defined as

SE(t) =
SE1(t) + SE2(t)

2
(3.52)

38 Continuous-Time Synchronization

y(t)

C
ha

nn
el

p(y|x) = Filter 2Filter 1

Filter 2Filter 1

Mapper

A
W

G
N

Mapper

XOR

x(t)

^

T
ra

ns
m

itt
er

R
ec

ei
ve

r

Figure 3.22: Continuous-time communication system

3.3 Results 39

with

SE1(t) =

[

ǔ(t) − mFilter1(t)
]2

4max
{

ǔ2(t),m2
Filter1(t)

} (3.53)

SE2(t) =

[

w̌(t) − mFilter2(t)
]2

4max
{

w̌2(t),m2
Filter2(t)

} . (3.54)

where SE1(t) and SE2(t) are normalized to one.

In order to measure the performance of the continuous-time receiver we

generate a sequence of 50′000 samples using the continuous-time transmit-

ter presented in Subsection 3.2.1. After any time t we compute the SE

and average over 5000 realisations. This simulation is performed for both

continuous-time communication systems for several noise powers.

First the results of the LFSR sequences transmitting system are pre-

sented. Figure 3.23 shows the signals ǔ(t) and mFilter1(t) resp. w̌(t) and

mFilter2(t) evaluated in a simulation with noise power σ2 = 0.62. In Fig-

ure 3.24 the MSE is shown, computed for different noise powers.

2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500
−1.5

−1

−0.5

0

0.5

1

1.5

Output Signals of FIlter 1 and Filter 2 in the Transmitter and the Receiver for Sigma = 0.6

S
ig

na
ls

 a
fte

r
F

ilt
er

 1

signal in the transmitter
signal in the receiver

2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500

−1

−0.5

0

0.5

1

1.5

S
ig

na
ls

 a
fte

r
F

ilt
er

 2

t

signal in the transmitter
signal in the receiver

Figure 3.23: Signals ˇu(t), ˇw(t),mFilter1 and mFilter2 in the LFSR sequences

transmitting system

In the following the results of the arbitrary sequences transmitting sys-

tem are presented. In Figure 3.25 the signals ǔ(t) and mFilter1 resp. w̌(t) and

40 Continuous-Time Synchronization

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
−2

10
−1

10
0

Mean−Square−Error

M
S

E

t

Sigma = 0.6
Sigma = 1
Sigma = 1.4

Figure 3.24: The MSE of the LFSR sequences transmitting system

mFilter2 are shown, evaluated in a simulation with noise power σ2 = 0.62.

The receiver determines the probabilities p (u(t) = 0) and p (w(t) = 0) with

the numerically computed values using the algorithm shown in Figure 3.17.

Figure 3.26 shows the MSE. The probabilities p (u(t) = 0) and

p (w(t) = 0) are computed in three different ways: First the probabilities are

determined using the numerically computed values of E [g(θ)] and E [q(θ)].

The second and the third probabilities are computed according to (3.48) and

(3.49). In this case ς1 = 0.6 and ς2 = 1.1.

3.4 Discussion

Section 3.3 shows the results of the simulations performed for the pseudo-

continuous-time and the continuous-time communication system. In the

following two subsections we discuss those results. In Subsection 3.4.1 we

investigate the results of the pseudo-continuous-time system. In Subsec-

tion 3.4.2, we study the results of the continuous-time system.

3.4 Discussion 41

0 500 1000 1500 2000 2500
−2

−1

0

1

2
Output Signals of Filter 1 and Filter 2 in the Transmitter and the Receiver for Sigma = 0.6

S
ig

na
l a

fte
r

F
ilt

er
 1

Signal in the Transmitter
Signal in the Receiver

0 500 1000 1500 2000 2500
−10

−5

0

5

10

S
ig

na
l a

fte
r

F
ilt

er
 2

t

Signal in the Transmitter
Signal in the Receiver

Figure 3.25: Signals ǔ(t), w̌(t),mFilter1 and mFilter2 in the arbitrary se-

quences transmitting system

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
−2

10
−1

10
0

Comparison of the Mean−Square−Errors using the computed value, tanh and the error function

M
S

E

t

computed, Sigma = 0.6
computed, Sigma = 1
computed, Sigma = 1.4
tanh, Sigma = 0.6
tanh, Sigma = 1
tanh, Sigma = 1.4
error function, Sigma = 0.6
error function, Sigma = 1
error function, Sigma = 1.4

Figure 3.26: The MSE of the arbitrary sequences transmitting system

42 Continuous-Time Synchronization

3.4.1 Discussion of the Results of the Pseudo-Continuous-

Time System

In Figure 3.21 the Probability of Synchronization after time t is shown. The

discrete-time output of the LFSR is oversampled with 10 samples per bit.

We can see that PSynch(t) is equal to PSynch(10k).

In order to explain this result we consider the pseudo-continuous-time

NLL shown in Figure 3.27 with LFSR length two and two samples per bit.

a(t−T)a(t+T/2) a(t)

a(t−3T/2)a(t−T)

a(t−T/2)y(t+T/2)

a(t−2T)a(t−T/2)

a(t−3T/2)

p(y|x)

p(y|x)

y(t) a(t)

T=

TTTT=

T TT

Figure 3.27: Pseudo-continuous-time Noise-Lock loop with LFSR length 2

and 2 samples per bit

We denote the signals after the delay cells with a(t). We see that a(t)

only depends on a(t−T), a(t−2T) and y(t). Likewise depends a(t+T/2) only

on a(t−T/2), a(t−3T/2) and y(t+T/2). Therefore, this pseudo-continuous-

time NLL can be divided into a cascade of two discrete-time NLLs. Note

that both NLLs are independent. Consequently, PSynch(t) = PSynch(2k) and

in general PSynch(t) = PSynch(Nk).

The simulation of the pseudo-continuous-time communication system

leads to the same results obtained in the discrete-time simulation. In the

next subsection we discuss the results of the simulations performed with the

continuous-time system.

3.4.2 Discussion of Results of the Continuous-Time System

Figure 3.23 and Figure 3.25 show the signals ǔ(t), w̌(t),mFilter1 and mFilter2

in both communication systems.

We can see that for the chosen value σ = 0.6 both receivers are able to

synchronize to the generated sequences.

Figure 3.24 and Figure 3.26 show the MSE computed for both systems.

By comparing both figures we observe, that the continuous-time system that

3.5 Outlook 43

transmits LFSR sequences has a higher MSE than the arbitrary sequences

transmitting system. The reason is, that in the second system the filters have

a lower bandwidth and, therefore, more noise is filtered out. Consequently,

especially with large noise powers this communication system has a better

performance.

3.5 Outlook

Several possibilities to design a continuous-time communication system were

presented in this chapter. Furthermore, we have shown that the presented

receivers are able to synchronize to the generated PN sequences .

However, Continuous-Time Synchronization is just in its infancy and a

lot of questions remain. For example, the choice of the filters needs to be

investigated in more detail. Furthermore, the designed Soft Limiter may

be improved by assuming another probability density function for the time

shift τ . Additionally, it will be necessary to investigate the performance of

the continuous-time receiver and compare it to the discrete-time receiver.

Moreover it is not clear yet, how to use the proposed communication sys-

tem to transmit information. And, last but not least, this continuous-time

system should be implemented in hardware.

44 Continuous-Time Synchronization

Chapter 4

Conclusion

In this semester project we designed novel low-complexity PN sequence syn-

chronizers, referred to as Noise Lock Loops (NLL).

An NLL is interesting for two reasons. In classical spread spectrum

communication systems PN synchronization is separated into two phases:

There is an initial acquisition phase and a tracking phase after the signal

has been acquired. Acquisition and tracking are typically performed by

two separate synchronization systems. The NLL consists of one single sys-

tem of low-complexity that both acquires and tracks noisy PN sequences.

Furthermore, classical PN synchronizers are clocked. We developed both

clocked (discrete-time) and unclocked (continuous-time) NLLs and studied

their behavior by simulation.

Our results are the following. The simulations of the discrete-time system

show that PSynch(k) tends asymptotically to a value P0 ≤ 1. The lower the

signal-to-noise ratio (SNR), the smaller P0. In addition the rise of PSynch(k)

depends on the SNR as well as on the length of the LFSR: the lower the

SNR or the longer the LFSR, the smaller the rise. The same holds for the

TUA, i.e. the lower the SNR or the larger the LFSR length, the larger the

TUA.

The simulations of the continuous-time system show that the MSE de-

creases monotonically as a function of time until it reaches a value ε ≥ 0.

The lower the signal-to-noise ratio (SNR), the larger ε becomes and the

slower the MSE decreases.

The NLL is just in its infancy, especially the unclocked NLL. However,

we have shown that the design of both clocked and unclocked NLLs is theo-

retically possible. The natural next step is the implemention of such systems

45

46 Conclusion

in hardware.

Appendix A

Proof of Theorem 3.1

Theorem A.1 Assuming the probalities p (Xi) and p (Xj) to be 1
2 , the out-

puts of the Soft Limiters p (Xi = 1) and p (Xj = 1) can be written as

p (Xi = 1) =
1

2

(

1 +
mFilter1(t)

κ1(mFilter1)

)

(A.1)

p (Xj = 1) =
1

2

(

1 +
mFilter2(t)

κ2(mFilter2)

)

(A.2)

where

κ1(m) =
Em [g==(θ)]+Em [g=6=(θ)]+Em [g 6==(θ)]+Em [g 6=6=(θ)]

4
(A.3)

κ2(m) =
Em [q==(θ)]+Em [q=6=(θ)]+Em [q 6==(θ)]+Em [q 6= 6=(θ)]

4
(A.4)

with

θ = t − τ (A.5)

and

Em [g(θ)] =

∫

D1(m)
g(θ)f(θ) dθ (A.6)

D1(m) =
{

θ ∈ [−T/2, T/2]
∣

∣ g(θ) ≥ |m|
}

(A.7)

resp.

Em [q(θ)] =

∫

D2(m)
q(θ)f(θ) dθ (A.8)

D2(m) =
{

θ ∈ [−T/2, T/2]
∣

∣ q(θ) ≥ |m|
}

(A.9)

where f(θ) denotes the probability density function of θ.

47

48 Proof of Theorem 3.1

Let Xi ∈ {1,−1} be a stochastic variable with probability p(x). The

signal after Filter 1 or Filter 2 can be written as:

x(t) =
∑

i

XigX̃i−1X̃i+1
(t − iT − τ) (A.10)

where the waveform gX̃i−1X̃i+1
(t) = 0 ∀|t| > T/2. Note that the waveform

depends on Xi−1, Xi and Xi+1.

Without loss of generality we will assume that i = 0. So (A.10) can be

written as

x(t) = X0gX̃
−1X̃+1

(t − τ) (A.11)

τ is uniformly distributed in ∆(m) =
{

τ ∈ [t − T/2, t + T/2]
∣

∣ gX̃
−1X̃+1

(t − τ) ≥ |m|
}

with m = E [x(t)]. g(t − τ) ≥ |m| because

|m| = |E [x(t)]|
=

∣

∣

∣
E

[

X0gX̃
−1X̃+1

(t − τ)
]
∣

∣

∣

=
∣

∣

∣
E [X0] E

[

gX̃
−1X̃+1

(t − τ)
]∣

∣

∣

≤
∣

∣

∣
X0E

[

gX̃
−1X̃+1

(t − τ)
]∣

∣

∣

= |X0|
∣

∣

∣
gX̃

−1X̃+1
(t − τ)

∣

∣

∣

= gX̃
−1X̃+1

(t − τ) (A.12)

where we use the fact that

E [Xo] = p (X0 = 1) − p (X0 = −1)

= 2p (X0 = 1) − 1

≤ 1 (A.13)

In order to design the Soft Limiter in subsection 3.2.2 we need to know

p (x0) as a function of m. So we have

m = E [x(t)] (A.14)

= E
[

X0gX̃i−1X̃i+1
(t − τ)

]

(A.15)

=

∫

∆(m)

∑

x
−1,x0,x+1

p (x−1, x0, x+1) p(τ)x0gX̃
−1X̃+1

(t − τ) dτ (A.16)

=
∑

x
−1,x0,x+1

p (x−1, x0, x+1)x0

∫

∆(m)
p(τ)gX̃

−1X̃+1
(t − τ) dτ (A.17)

49

In (A.16) we used the fact that τ is independent of X−1, X0 and X+1.

We substitute t − τ by θ so we get

m =
∑

x
−1,x0,x+1

p (x−1, x0, x+1)x0

∫

D(m)
p(θ)gX̃

−1X̃+1
(θ) dθ (A.18)

=
∑

xi−1,x0,x+1

p (x−1) p (x0) p (x+1)x0Em

[

gX̃
−1X̃+1

(θ)
]

(A.19)

= p (X0 = 1)
[

p (X−1 = 1) p (X+1 = 1)Eθ [g==(θ)]

+p (X−1 = 1) p (X+1 = −1)Em [g=6=(θ)]

+p (X−1 = −1) p (X+1 = 1)Em [g 6==(θ)]

+p (X−1 = −1) p (X+1 = −1) Em [g 6=6=(θ)]
]

−p (X0 = −1)
[

p (X−1 = 1) p (X+1 = 1) Em [g 6=6=(θ)]

+p (X−1 = −1) p (X+1 = 1)Em [g=6=(θ)]

+p (X−1 = 1) p (X+1 = −1)Em [g 6==(θ)]

+p (X−1 = −1) p (X+1 = −1) Em [g==(θ)]
]

(A.20)

With D(m) =
{

θ ∈ [−T/2, T/2]
∣

∣ gX̃i−1X̃i+1
(θ) ≥ |m|

}

. (A.19) follows

because X−1, X0 and X+1 are independent.

By using (A.20) and the fact that p (X0 = −1) = 1 − p (X0 = 1) we get

p (X0 = 1) =
m + κ(m)

Π=

(

Em [g==(θ)] + Em [g 6=6=(θ)]
)

+ Π 6=

(

Em [g=6=(θ)] + Em [g 6==(θ)]
)

(A.21)

with

Π= = p (X−1 = 1) p (X+1 = 1)

+p (X−1 = −1) p (X+1 = −1) (A.22)

Π 6= = p (X−1 = 1) p (X+1 = −1)

+p (X−1 = −1) p (X+1 = +1) (A.23)

κ(m) = p (X−1 = 1) p (X+1 = 1) Em [g 6=6=(θ)]

+p (X−1 = 1) p (X+1 = 1)Em [g=6=(θ)]

+p (X−1 = 1) p (X+1 = −1)Em [g 6==(θ)]

+p (X−1 = −1) p (X+1 = −1) Em [g==(θ)] (A.24)

Assuming that

p (X−1 = 1) = p (X−1 = −1) = 1
2

p (X+1 = 1) = p (X+1 = −1) = 1
2

(A.25)

50 Proof of Theorem 3.1

we get

Π= =
1

2
(A.26)

Π 6= =
1

2
(A.27)

κ(m) =
Em [g==(θ)]+Em [g=6=(θ)]+Em [g 6==(θ)]+Em [g 6=6=(θ)]

4
(A.28)

By using (A.26), (A.27) and (A.28), p (X0 = 1) becomes

p (X0 = 1) =
1

2

(

1 +
m

κ(m)

)

(A.29)

�

Bibliography

[1] John G. Proakis. Digital Communications. McGraw-Hill, 2001.

[2] Hans-Andrea Loeliger. Stochastische Modelle und Signalverarbeitung.

Lecture notes, Signal and Information Processing Laboratory, ETH

Zurich, 2001/02.

[3] A. J. Viterbi. CDMA, Principles of Spread Spectrum Communication.

Reading, MA: Addison-Wesley Longman Inc., 1995.

[4] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.

Wiley Series in Telecommunication, 1991.

[5] Felix Lustenberger. On the design of analog VLSI interative decoders.

PhD thesis, Swiss Federal Institute of Technology, Zurich, 2000.

[6] Norbert R. Malik. Electronic Circuits: Analysis, Simulation and Design.

Prentice Hall, 1995.

51

