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Abstract—The nonnegativity of relative entropy implies that
the differential entropy of a random vector X with probability
density function (pdf) f is upper-bounded by −E[log g(X)]
for any arbitrary pdf g. Using this inequality with a cleverly
chosen g, we derive a lower bound on the asymptotic excess
rate of entropy-constrained vector quantization for d-dimensional
sources and rth-power distortion, where the asymptotic excess
rate is defined as the difference between the smallest output
entropy of a vector quantizer satisfying the distortion constraint
and the rate-distortion function in the limit as the distortion tends
to zero. Specialized to the one-dimensional case, this lower bound
coincides with the asymptotic excess rate achieved by a uniform
quantizer, thereby recovering the result by Gish and Pierce that
uniform quantizers are asymptotically optimal as the allowed
distortion tends to zero. Furthermore, in the one-dimensional case
the derivation of the lower bound reveals a necessary condition
for a sequence of quantizers to be asymptotically optimal. This
condition implies that any sequence of asymptotically-optimal
almost-regular quantizers must converge to a uniform quantizer
as the distortion tends to zero. While the obtained lower bound
itself is not novel, to the best of our knowledge, we present
the first rigorous derivation that follows the direct approach by
Gish and Pierce without resorting to heuristic high-resolution
approximations commonly found in the quantization literature.
Furthermore, our derivation holds for all d-dimensional sources
having finite differential entropy and whose integer part has
finite entropy. In contrast to Gish and Pierce, we do not require
additional constraints on the continuity or decay of the source
pdf.

Index Terms—Entropy constrained, high resolution, quantiza-
tion, rate-distortion theory.

I. INTRODUCTION

AVECTOR quantizer for a source X with probability dis-
tribution PX is a (deterministic) mapping q(·) from the

source alphabet X to the (countable) reconstruction alphabet
X̂ . The performance of a quantizer is typically measured by
the distortion and the rate. The former assesses the quantizer’s

This work has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement number 714161), from the 7th European Union
Framework Programme under Grant 333680, from the Ministerio de Economı́a
y Competitividad of Spain under Grants TEC2013-41718-R, RYC-2014-
16332, IJCI-2015-27020, TEC2015-69648-REDC, and TEC2016-78434-C3-
3-R (AEI/FEDER, EU), and from the Comunidad de Madrid under Grant
S2103/ICE-2845. The material in this paper was presented in part at the 2016
IEEE International Symposium on Information Theory, Barcelona, Spain, July
2016.

The authors are with the Signal Theory and Communications Department,
Universidad Carlos III de Madrid, 28911, Leganés, Spain and also with the
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resolution and the latter indicates the number of bits required
to describe the quantizer output. In this paper, we assume that
the source and reconstruction alphabets are subsets of the d-
dimensional Euclidean space, i.e., X , X̂ ⊆ Rd. We consider
the rth-power distortion E[‖X− q(X)‖r], where ‖ · ‖ is an
arbitrary norm on Rd and r > 0 is an arbitrary exponent,
and we define the rate of the quantizer as the entropy of its
output H

(
q(X)

)
, which by Shannon’s source coding theorem

[1] is roughly the average length of the shortest variable-
length source code that describes the quantizer output.1 A
quantizer whose rate is measured by the entropy of its output
is sometimes referred to as an entropy-constrained quantizer.

To describe the tradeoff between distortion and rate, we
define the smallest rate of an entropy-constrained quantizer
satisfying the distortion constraint D by

Rr,d(D) , inf
q(·)

H
(
q(X)

)
(1)

where the infimum is over the set of quantizers q(·) satisfying

E[‖X− q(X)‖r] ≤ D. (2)

We shall benchmark the rate Rr,d(D) of the entropy-
constrained quantizer against the rate-distortion function2

R(D), defined as

R(D) , inf
PX̂|X

I(X; X̂) (3)

where the infimum is over all conditional distributions of X̂
given X for which

E
[
‖X− X̂‖r

]
≤ D. (4)

Note that Rr,d(D) ≥ R(D). Indeed, X determines the
quantizer output q(X), so we have H(q(X)|X) = 0 and (1)
can be written as

Rr,d(D) = inf
q(·)

I
(
X; q(X)

)
. (5)

Since X̂ = q(X) corresponds to a deterministic PX̂|X, the
claim follows by comparing (3) with (5). To simplify notation,
we shall sometimes substitute X̂ = q(X) in our analysis of
Rr,d(D).

1The shortest uniquely decodable source code describing q(X) has an
average length that is between H

(
q(X)

)
and H

(
q(X)

)
+ 1, where a source

code is said to be uniquely decodable if any concatenation of codewords has
only one possible string of source symbols producing it [2, Chapter 5]. If the
assumption of unique decodability is dropped, then the shortest source code
has an average length that is between H

(
q(X)

)
−log

(
1+H

(
q(X)

))
−log e

and H
(
q(X)

)
[3], [4].

2In the literature, R(D) is sometimes also referred to as the Shannon rate-
distortion function or the information rate-distortion function.
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Intuitively, the rate-distortion function R(D) describes the
smallest rate of a vector quantizer that jointly quantizes a block
of n source symbols with an expected rth-power distortion
no larger than D. More precisely, suppose a source produces
the sequence of independent and identically distributed source
symbols {Xk, k ∈ Z} according to a distribution PX and, for
some blocklength n, we employ a vector quantizer that jointly
quantizes a block of n source symbols X1, . . . ,Xn to one of
enR possible sequences of quantized symbols X̂1, . . . , X̂n.
The rate-distortion function R(D) is the smallest rate R for
which there exists a blocklength n and a vector quantizer
satisfying [5]

1

n

n∑
k=1

E
[
‖Xk − X̂k‖r

]
≤ D. (6)

In this paper, we consider the quantization of a d-
dimensional, real-valued source vector X with probability
density function (pdf) fX and focus on the asymptotic rate-
distortion tradeoff in the limit as the permitted distortion tends
to zero. Specifically, we study the asymptotic excess rate with
respect to the rate-distortion function, defined as

Rr,d , lim
D↓0

{
Rr,d(D)−R(D)

}
(7)

where lim denotes the limit inferior. The considered setup is
sufficiently general to comprise various problems of interest
in high-resolution vector quantization. For example, it allows
us to analyze the performance of quantization schemes that
buffer d consecutive symbols of a one-dimensional memo-
ryless source and then quantize them using a d-dimensional
vector quantizer.

For one-dimensional sources (d = 1) and squared-error
distortion (r = 2 and ‖a‖ = |a|, a ∈ R), Gish and Pierce
demonstrated that the asymptotic excess rate is equal to [6]

R2,1 =
1

2
log

πe

6
(8)

where log(·) denotes the natural logarithm. In fact, (8) holds
for any arbitrary norm since all norms on R are proportional
to the absolute value. They further showed that this excess rate
can be achieved by a uniform quantizer, hence the well-known
result that “uniform quantizers are asymptotically optimal as
the allowed distortion tends to zero.”3 For multi-dimensional
sources, only bounds on Rr,d are available. In particular, a
lower bound on Rr,d for general r and d was presented by
Yamada et al. [8, eq. (55)]

Rr,d ≥
d

r
log

(
Γ(1 + d/r)r/de

1 + d/r

)
(9)

where
Γ(α) ,

∫ ∞
0

e−ttα−1 dt, α > 0 (10)

denotes the Gamma function. For one-dimensional sources and
quadratic distortion (r = 2), the lower bound (9) coincides
with the excess rate (8) obtained by Gish and Pierce.

3The fact that, in the high-resolution case, the expected quadratic distortion
of uniform scalar quantization exceeds the least distortion achievable by any
quantization scheme by a factor of only πe/6 was already discovered by
Koshelev in 1963. See [7] and references therein for more details.

To prove (8), Gish and Pierce [6] impose constraints on
the continuity and decay of the pdf of X. Furthermore, they
merely provide an intuitive explanation of their converse result
together with an outline of the proof—at the end of [6,
Appendix II] they write “The complete proof is surprisingly
long and will not be given here.” Similarly, the derivation
of (9) by Yamada et al. is based on heuristic high-resolution
approximations commonly found in the quantization literature.

The result (8) is equivalent to a result by Zador [9], which
concerns the asymptotic excess distortion with respect to the
distortion-rate function as the rate tends to infinity. Indeed,
let Dr,d(R) denote the minimum distortion achievable with a
vector quantizer whose output has an entropy not exceeding
R, i.e.,

Dr,d(R) , inf
q(·)

E
[∥∥X− q(X)

∥∥r] (11)

where the infimum is over the set of quantizers q(·) satisfying
H
(
q(X)

)
≤ R. Zador’s theorem states that

lim
R→∞

e
r
dRDr,d(R) = br,de

r
dh(X) (12)

where br,d is a constant that only depends on r and d but not
on the distribution of X. Zador did not evaluate the constant
br,d, but he showed that

1

(1 + r/d)V
r/d
d

≤ br,d ≤
Γ(1 + r/d)

V
r/d
d

(13)

where Vd denotes the volume of the d-dimensional unit
ball {x ∈ Rd : ‖x‖ ≤ 1}. For one-dimensional sources
and squared-error distortion, it can be further shown that
b2,1 = 1/12. Taking logarithms on both sides of (12), and
replacing R ↔ Rr,d(D) and Dr,d(R) ↔ D, we thus obtain
that

Rr,d(D) = h(X) +
d

r
log

1

D
+
d

r
log br,d + oR(1) (14)

where oR(1) denotes error terms that vanish as R tends to
infinity. Furthermore, the rate-distortion function R(D) can
be lower-bounded as [8, eq. (50)]

R(D) ≥ h(X) +
d

r
log

1

D

− d

r
log
( r
d

(
VdΓ(1 + d/r)

)r/d
e
)
. (15)

The right-hand side (RHS) of (15) is referred to as Shannon
lower bound. It has been demonstrated that its difference
to R(D) vanishes as D tends to zero, provided that the
source distribution satisfies certain conditions; see, e.g., [10]–
[12]. A finite-blocklength refinement of this bound can be
found in [13], [14]. Recently, it has been demonstrated that
the Shannon lower bound is asymptotically tight for sources
having finite differential entropy and whose integer part has
finite entropy [12]. Thus, we have for the class of sources
considered in this paper (which will be specified in detail in
Section II)

R(D) = h(X) +
d

r
log

1

D

− d

r
log
( r
d

(
VdΓ(1 + d/r)

)r/d
e
)

+ oD(1) (16)
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where oD(1) denotes error terms that vanish as D tends to
zero. Combining (14) with (16), we obtain

Rr,d =
d

r
log
(
br,d

r

d

(
VdΓ(1 + d/r)

)r/d
e
)
. (17)

For one-dimensional sources and squared-error distortion, the
equivalence of Zador’s theorem (12) and Gish and Pierce’s
result (8) thus follows by noting that b2,1 = 1/12, V1 = 2,
and Γ(3/2) =

√
π/2. Furthermore, lower-bounding br,d using

the left-most inequality in (13) recovers (9).
While Zador’s original proof of (12) was flawed, a rigorous

proof was given by Gray et al. [15] by using a Langrangian
formulation of variable-rate vector quantization. Their proof
follows Zador’s approach of 1) proving the result for sources
with a uniform pdf on the unit cube; 2) extending it to
piecewise constant pdfs on disjoint cubes of equal sides; 3)
proving the result for a general pdf on a cube; and 4) proving
the result for general pdfs. Gray et al. do not impose any
constraints on the continuity or decay of the pdf of X, so
their proof is more general than the proofs by Zador [9] and
by Gish and Pierce [6].

In this paper, we derive the lower bound (9) on Rr,d
without resorting to heuristic high-resolution approximations.
In contrast to [15], our proof follows essentially along the
lines outlined by Gish and Pierce [6]. We do not impose any
constraints on the continuity or decay of the pdf of X, so our
proof holds under the same conditions on the source as the
proof by Gray et al., and it is more general than the proof by
Gish and Pierce.

For one-dimensional sources, the derivation of the lower
bound reveals a necessary condition for a sequence of quantiz-
ers (parametrized by D) to achieve the asymptotic excess rate
Rr,1. We apply this condition to the family of almost-regular
quantizers, which was introduced by György and Linder
in [16] and includes the uniform quantizers. Almost-regular
quantizers are relevant because they achieve Dr,1(R) when
r ≥ 1 [16, Theorem 3]. Thus, for one-dimensional sources
and rth-power distorion with r ≥ 1, we can restrict ourselves
to almost-regular quantizers without loss of optimality. The
necessary condition implies that any sequence of almost-
regular quantizers achieving Rr,1 must converge to a uniform
quantizer as D → 0. This suggests that asymptotically-optimal
quantizers must essentially be uniform.

The rest of this paper is organized as follows. Section II
introduces the problem setup and presents the main result of
this paper, Theorem 1. Section III provides a back-of-the-
envelope derivation of Theorem 1 that serves as an outline
for the proof. Section IV contains the complete proof of
this theorem. Section V presents a necessary condition for a
sequence of quantizers to achieve the asymptotic excess rate.
Section VI assesses the tightness of the lower bound presented
in Theorem 1 for multi-dimensional sources by numerically
comparing it to several upper bounds achievable by lattice
quantizers. Section VII concludes the paper with a summary
and discussion of the results.

II. PROBLEM SETUP AND MAIN RESULT

We consider a d-dimensional, real-valued source X with
support X ⊆ Rd whose distribution is absolutely continuous

with respect to the Lebesgue measure, and we denote its pdf
by fX. We require the source to satisfy the following two
conditions:

C1 The differential entropy

h(X) , −
∫
X
fX(x) log fX(x) dx (18)

is well-defined and finite;
C2 the integer part of the source X has finite entropy, i.e.,

H(bXc) <∞. (19)

Here bac, a = (a1, . . . , ad) ∈ Rd denotes the element-
wise floor function, i.e., bac = (ba1c, . . . , badc) where
ba`c denotes the largest integer less than or equal to a`.

Condition C2 requires that quantizing the source with a
cubic lattice quantizer of unit-volume cells gives rise to a
discrete random variable of finite entropy. This is necessary for
the asymptotic excess rate Rr,d to be well-defined. Indeed, as
demonstrated in [12], if H(bXc) =∞ then the rate-distortion
function R(D) is infinite for any D. Since Rr,d(D) ≥ R(D),
this implies that in this case Rr,s(D)− R(D) is of the form
∞−∞. Fortunately, Condition C2 is very mild. For example,
by generalizing [17, Proposition 1] to the vector case, it can
be shown that it is satisfied if E[log(1 + ‖X‖)] <∞. This in
turn is true, for example, for sources for which E[‖X‖α] <∞
for some α > 0.

The quantity H(bXc) is intimately related with the Rényi
information dimension, defined as [18] (see also [17], [19])

d(X) , lim
m→∞

H(bmXc/m)

logm
(20)

if the limit exists. (If the limit does not exist, then one can
define the upper and lower Rényi information dimension by
replacing the limit by the limit superior and limit inferior,
respectively.) Indeed, it can be shown that a source vector
has finite Rényi information dimension if, and only if, (19) is
satisfied [18], [17, Proposition 1].

The quantizer is characterized by the (Borel measurable)
function q : X → X̂ for some countable reconstruction al-
phabet X̂ ⊆ Rd. Equivalently, we characterize q(·) by the
quantization regions {Si} and corresponding reconstruction
values {x̂i}, where the number of quantization regions may
be infinite. Specifically, {Si} are disjoint (Borel measurable)
subsets of Rd that together with the reconstruction values {x̂i}
satisfy ⋃

i

Si = X (21a)

q(x) =
∑
i

x̂i1{x ∈ Si} , for x ∈ X (21b)

where 1{·} denotes the indicator function. To simplify no-
tation, we denote the Lebesgue measure of the quantization
region Si by ∆i and the probability of X being in Si by pi.

The main result of this paper is a rigorous derivation of the
lower bound (9) on the excess rate Rr,d for general r and d. In
contrast to [8], our derivation does not resort to heuristic high-
resolution approximations. Furthermore, in contrast to [6], our
bound does not require any continuity or decay conditions on
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the behavior of the source pdf. It holds for all source vectors
having a pdf, having finite differential entropy, and having
finite Rényi information dimension.

Theorem 1 (Main Result): Let the source vector X have a
pdf, and assume that h(X) and H(bXc) are finite. Then, the
asymptotic excess rate Rr,d, as defined in (7), is lower-bounded
by

Rr,d ≥
d

r
log

(
Γ(1 + d/r)r/de

1 + d/r

)
. (22)

Proof: See Section IV.
In the one-dimensional case, (22) becomes

Rr,1 ≥
1

r
log

(
Γ(1 + 1/r)re

1 + 1/r

)
. (23)

As we shall see next, (23) can be achieved by a uniform
quantizer, so in the one-dimensional case the lower bound (22)
is tight. Furthermore, for quadratic distortion, (23) is equal to
1/2 log(πe/6), hence it recovers the excess rate obtained by
Gish and Pierce.

To demonstrate the tightness of (23), and to assess the
accuracy of (22) in higher-dimensional cases, we consider an
upper bound on the asymptotic excess rate that follows by
restricting ourselves to the class of tessellating quantizers. A
polytope P is tessellating if there exists a partition of Rd
consisting of translated and/or rotated copies of P; a tessellat-
ing quantizer, denoted by qP : X → X̂ , is a quantizer whose
quantization regions Si are translated and/or rotated copies
of a tessellating convex polytope P and the corresponding
reconstruction values x̂i are the centroids of Si. A special
case of a tessellating quantizer is a lattice quantizer, i.e., a
quantizer whose quantization regions are the Voronoi cells of
a d-dimensional lattice. Note that in the one-dimensional case
the only convex polytope is the interval, so in this case the
tessellating quantizer is the uniform quantizer. For the class
of tessellating quantizers, Linder and Zeger [20] derived an
asymptotic expression equivalent to (12).

Theorem 2 (Linder and Zeger [20, Theorem 1]): Let
the source vector X have a pdf, and assume that h(X)
and H(bXc) are finite. Then, a tessellating quantizer qP(·)
with rth-power distortion E[‖X− qP(X)‖r] = D and rate
RP(D) , H

(
qP(X)

)
satisfies

lim
D↓0

De
r
dRP(D) = `(P)e

r
dh(X) (24)

where `(P) denotes the normalized r-th moment of P , defined
as

`(P) ,

∫
P ‖x− x̄P‖r dx
V (P)1+r/d

(25)

with V (P) and x̄P denoting the volume and centroid of P ,
respectively.

Remark: To be precise, [20, Theorem 1] requires that
H
(
qPα(X)

)
<∞ for some α > 0 rather than H(bXc) <∞.

(Here, Pα = {x ∈ Rd : x/α ∈ P} denotes the polytope P
rescaled by α.) Nevertheless, its proof hinges on a lemma by
Csiszár (cf. [20, Lemma 2]), which also applies if the condition
H
(
qPα(X)

)
<∞ is replaced by H(bXc) <∞. Specifically,

by setting in [20, Lemma 2] the partition B0 = {B1, B2, . . .}
of Rd to be the set of d-dimensional cubes of unit-volume

with the lower-most cornerpoint located at coordinates i ∈ Zd,
this partition satisfies the lemma’s conditions provided that
H(bXc) is finite.

Taking logarithms on both sides of (24), we obtain

RP(D) = h(X) +
d

r
log

1

D
+
d

r
log `(P) + oD(1). (26)

Combining (26) with (16), we obtain

lim
D↓0

{
RP(D)−R(D)

}
=
d

r
log
( r
d

(
VdΓ(1 + d/r)

)r/d
e
)

+
d

r
log `(P). (27)

Since a tessellating quantizer with rth-power distortion D
satisfies (2), the rate RP(D) upper-bounds Rr,d(D). It follows
that

Rr,d ≤
d

r
log
( r
d

(
VdΓ(1 + d/r)

)r/d
e
)

+
d

r
log `(P) (28)

for any d-dimensional, tessellating, convex polytope P .
Using that in the one-dimensional case the only convex

polytope is the interval, and noting that the interval has the
normalized r-th moment

`(P) =
1

V rd (1 + r)
(29)

the upper bound (28) coincides in this case with the RHS of
(23). Thus, in the one-dimensional case a tessellating quantizer
(which in this case is the uniform quantizer) is asymptotically
optimal.

III. DERIVATION FOR ONE-DIMENSIONAL SOURCES
AND CERTAIN QUANTIZERS

Before proving Theorem 1, we provide a simplified deriva-
tion of the lower bound (22) for one-dimensional sources
(d = 1) and squared-error distortion (r = 2 and ‖a‖ = |a|,
a ∈ R) that will serve as an outline for the complete proof
of Theorem 1 given in Section IV. Specialized to this setting,
Theorem 1 becomes

R2,1 ≥
1

2
log

πe

6
. (30)

In our derivation we shall only consider quantizers that satisfy

sup
i

sup
x∈Si

(x− x̂i)2 ≤ αD, for some constant α. (31)

This simplifying assumption is, for example, satisfied by the
uniform quantizer when x̂i is the midpoint of Si and the cell
length ∆ vanishes proportionally to

√
D. However, it is prima

facie unclear whether (31) holds without loss of optimality for
general sources.

By (5), we have

R2,1(D) = h(X)− sup
q(·)

h(X|X̂). (32)

We upper-bound h(X|X̂) by using that, given X̂ = x̂i,
the support of X is Si, so a uniform distribution over Si
maximizes the differential entropy [2, Theorem 11.1.1]:

h(X|X̂ = x̂i) ≤ log ∆i. (33)
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Averaging over X̂ then yields

R2,1(D) ≥ h(X)− sup
q(·)

∑
i

pi log ∆i. (34)

By Jensen’s inequality, this can be further lower-bounded by

R2,1(D) ≥ h(X)− 1

2
log

(
sup
q(·)

∑
i

pi∆
2
i

)
. (35)

Together with (16) specialized to the case d = 1 and r = 2,
this yields

lim
D↓0

{
R2,1(D)−R(D)

}
≥ lim
D↓0

{
1

2
log(2πeD)− 1

2
log

(
sup
q(·)

∑
i

pi∆
2
i

)}
. (36)

In order to prove (30), it remains to show that, for any
sequence of quantizers (parametrized by D),

lim
D↓0

1

D

∑
i

pi∆
2
i ≤ 12 (37)

where lim denotes the limit superior. Then the RHS of (36)
is lower-bounded by 1/2 log(πe/6) and we obtain (30) upon
noting that the left-hand side (LHS) of (36) is equal to R2,1.
Hence, we recover Theorem 1 for one-dimensional sources
and squared-error distortion.

The upper bound (37) follows along the lines of the proof
of [20, Lemma 1]. We first express E

[
(X − X̂)2

]
as

E
[
(X − X̂)2

]
=
∑
i

∫
Si
fX(x)(x− x̂i)2 dx

=
∑
i

pi
∆i

∫
Si

(x− x̂i)2 dx

−
∑
i

∫
Si

[
pi
∆i
− fX(x)

]
(x− x̂i)2 dx. (38)

We next note that the region Si of measure ∆i that minimizes∫
Si(x− x̂i)

2 dx is the interval
[
x̂i − ∆i

2 , x̂i + ∆i

2

]
, so

1

∆i

∫
Si

(x− x̂)2 dx ≥ ∆2
i

12
. (39)

The first term on the RHS of (38) can therefore be lower-
bounded by∑

i

pi
∆i

∫
Si

(x− x̂i)2 dx ≥
∑
i

pi
∆2
i

12
. (40)

To evaluate the second term on the RHS of (38), we introduce
the piecewise-constant pdf

f
(∆)
X (x) ,

∑
i

pi
∆i

1{x ∈ Si} , x ∈ R. (41)

With this, we can upper-bound the second term on the RHS
of (38) as∑

i

∫
Si

[
pi
∆i
− fX(x)

]
(x− x̂i)2 dx

=
∑
i

∫
Si

[
f

(∆)
X (x)− fX(x)

]
(x− x̂i)2 dx

≤ αD
∫ ∣∣∣f (∆)

X (x)− fX(x)
∣∣∣ dx (42)

since, by the assumption (31), we have (x − x̂i)2 ≤ αD for
every x ∈ Si.

By Lebesgue’s differentiation theorem, f (∆)
X converges to

fX almost everywhere as supi ∆i → 0. It therefore follows
from Scheffe’s Lemma [21, Theorem 16.12] that

lim
D↓0

∫ ∣∣∣f (∆)
X (x)− fX(x)

∣∣∣ dx = 0. (43)

Combining (40) and (42) with (38), and applying the
distortion constraint E

[
(X − X̂)2

]
≤ D, we obtain∑

i

pi∆
2
i ≤ 12D

(
1 + α

∫ ∣∣∣f (∆)
X (x)− fX(x)

∣∣∣ dx). (44)

Together with (43) this gives (37).

IV. PROOF OF THEOREM 1

The above back-of-the-envelope derivation directly general-
izes to multi-dimensional sources and rth-power distortion.
In order to prove Theorem 1, it would remain to show
that (31) holds without loss of optimality. Unfortunately, for
general sources this appears to be a difficult task. Indeed,
the quantization regions of the optimal quantizer are difficult
to characterize since the optimal quantizer (and hence the
number of quantization regions together with their locations
and volumes) changes with D. To sidestep this problem, we
replace (33) by a slightly more sophisticated upper bound on
h(X|X̂ = x̂i).

A. Entropy Bounds

Recall that (33) follows from the fact that the distribution of
support Si that maximizes differential entropy is the uniform
distribution on Si. This result, in turn, is a direct consequence
of the nonnegativity of relative entropy. Indeed, let D(P‖Q)
denote the relative entropy between two probability distribu-
tions P and Q, i.e.,

D(P‖Q) ,


∫

log
dP (x)

dQ(x)
dP (x), if P � Q

∞, otherwise
(45)

where we use the notation P � Q to indicate that P is
absolutely continuous with respect to Q. Relative entropy
satisfies D(P‖Q) ≥ 0 with equality if, and only if, P and
Q coincide. For general probability distributions P and Q,
this follows from the classic work of Dobrushin, Gelfand,
Yaglom, and Perez; see [22, Chapter 2] and references therein.
For the case where P and Q are absolutely continuous with
respect to each other, i.e., P � Q and Q � P , this was
demonstrated by Kullback and Leibler [23, Lemma 3.1]. For
the case where both P and Q are (discrete) probability mass
functions, the nonnegativity of relative entropy is sometimes
attributed to the mathematical physicist Josiah Willard Gibbs
(1839–1903). Using the nonnegativity of relative entropy, we
can recover the fact that the distribution of support Si that
maximizes differential entropy is the uniform distribution on
Si as follows:

Let Q be the uniform distribution on Si, so its pdf is equal
to u(x) = 1/∆i1{x ∈ Si}, x ∈ R. Further let P be absolutely
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continuous with respect to the Lebesgue measure, and denote
its pdf by f . Assume that P has support Si. Evaluating the
relative entropy for these distributions, we obtain

D(P‖Q) =

∫
Si
f(x) log

f(x)

u(x)
dx = −h(X) + log ∆i (46)

where X is a random variable with pdf f . By the nonnegativity
of relative entropy, we thus have that h(X) ≤ log ∆i. The
entropy-maximizing property of uniform distributions follows
because log ∆i is the differential entropy of a random variable
that is uniformly distributed on Si.

In general, by choosing P and Q to be absolutely contin-
uous with respect to the Lebesgue measure, and by denoting
their pdfs by f and g, respectively, we can upper-bound the
differential entropy of a random vector X with pdf f by

h(X) ≤ −
∫
f(x) log g(x) dx. (47)

This inequality holds for any arbitrary pdf g, and it is tight
if f(x) = g(x) almost everywhere. It is therefore a useful
tool to upper-bound differential entropies that are difficult to
evaluate in closed form. For future reference, we summarize
the entropy inequality in the following lemma.

Lemma 3: Let f and g be arbitrary pdfs. If
−
∫
f(x) log f(x) dx is finite, then −

∫
f(x) log g(x) dx

exists and

−
∫
f(x) log f(x) dx ≤ −

∫
f(x) log g(x) dx (48)

with equality if, and only if, f(x) = g(x) almost everywhere.
Proof: The lemma appears in this form in [24,

Lemma 8.3.1]. Its proof is based on the nonnegativity of
relative entropy.

The approach of upper-bounding differential entropy by
replacing the true pdf f by an auxiliary pdf g is reminiscent
of a technique proposed in [25] to derive upper bounds on
channel capacity. Specifically, the mutual information between
a channel input X and a channel output Y is upper-bounded
by [25, Theorem 5.1]

I(X;Y) ≤
∫
D
(
W (·|x)

∥∥ R(·)
)

dQ(x) (49)

where W (·|·) denotes the conditional distribution of the chan-
nel output Y given its input X, Q denotes the distribution
of X, and R denotes an arbitrary distribution on the output
alphabet (not necessarily the one induced by Q and W ). For
channels with finite input and output alphabets, this inequality
follows by Topsøe’s identity [26]; see also [27, Problem 8.1].
When the conditional distribution of Y given X is absolutely
continuous with respect to the Lebesgue measure, the inequal-
ity (49) is equivalent to (48). Any output distribution R applied
to (49) yields an upper bound on the mutual information. Inter
alia, this approach has been followed to derive upper bounds
on the capacity of noncoherent fading channels [25], [28]–
[30], phase-noise channels [31]–[33], the Poisson channel
[34]–[36], optical intensity channels [37], [38], the additive
inverse Gaussian noise channel [39], channels that heat up
[40], or channels whose inputs have bounded support [41].

x̂i

Si

Bi,εB̄i,ε B̄i,ε

x

gX|X̂(x|x̂i)

Figure 1. Example of the conditional pdf gX|X̂, as defined in (50), for a
one-dimensional source and squared-error distortion. While in this specific
example the quantization region Si is an interval and x̂i ∈ Si, recall that in
general x̂i and Si can be arbitrary.

B. Auxiliary Probability Density Function

In order to upper-bound the conditional differential entropy
h(X|X̂ = x̂i), we apply Lemma 3 with the conditional pdf

gX|X̂(x|x̂i) =

{
1

Ki,ε
, x ∈ Bi,ε

1
Ki,ε

r
δd/r

e−
‖x−x̂i‖

r

Dδ , x ∈ B̄i,ε
(50)

where δ and ε are parameters to be specified later, and

Bi,ε , {x ∈ Si : ‖x− x̂i‖ ≤ ε} (51a)
B̄i,ε , {x ∈ Si : ‖x− x̂i‖ > ε} (51b)

Ki,ε , Λi,ε +
r

δd/r

∫
B̄i,ε

e−
‖x−x̂i‖

r

Dδ dx. (51c)

In (51c), Λi,ε denotes the Lebesgue measure of Bi,ε. To
simplify notation, we denote the probability of X being in
Bi,ε by pi,ε, and the probability of X being in B̄i,ε by p̄i,ε.

The conditional pdf of X given X̂, as defined in (50), is
uniform on a set of measure Λi,ε around x̂i and then decays
exponentially. An example of gX|X̂ is illustrated in Figure 1.
Intuitively, if εd decays more slowly than ∆i as D tends to
zero, then with high probability X lies in Bi,ε and the upper
bound obtained from Lemma 3 is essentially equivalent to (33)
but with ∆i replaced by Λi,ε. Our choice of gX|X̂ for x ∈ B̄i,ε
allows us to control the contribution of x’s lying outside of
Bi,ε. We then need to show that

lim
D↓0

1

D

∑
i

pi,εΛ
r
i,ε ≤ V r/dd

(
1 +

r

d

)
(52)

which corresponds to (37) generalized to arbitrary d and r,
but with ∆i replaced by Λi,ε and with pi replaced by pi,ε. By
construction of Bi,ε, we have that ‖x − x̂i‖r ≤ εr, so Bi,ε
satisfies (31) upon choosing εr = D/κ (for some constant
κ). The claim (52) follows therefore from the steps (38)–(44).
Thus, by using Lemma 3 together with (50), we can replace
∆i (whose behavior as a function of D is unknown) by Λi,ε
(whose behavior can be controlled by cleverly choosing ε).

We next provide a number of auxiliary results that we shall
need throughout the proof. The proof of Theorem 1 is then
given in Section IV-C.
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Lemma 4: The normalizing constant Ki,ε satisfies

Ki,ε ≤ Λi,ε + dVdD
d/rΓ

(
d

r
,
εr

Dδ

)
(53a)

≤ εdVd + dVdD
d/rΓ

(
d

r

)
(53b)

where

Γ(α, x) ,
∫ ∞
x

e−ttα−1 dt, (α > 0, x ≥ 0) (54)

denotes the upper incomplete Gamma function.
Proof: The first inequality (53a) follows from the defini-

tion of Ki,ε, (51c), and by upper-bounding the integral on the
RHS of (51c). Indeed, since B̄i,ε ⊆ {x ∈ Rd : ‖x− x̂i‖ > ε},
we have

r

δd/r

∫
B̄i,ε

e−
‖x−x̂i‖

r

Dδ dx ≤ r

δd/r

∫
‖x−x̂i‖>ε

e−
‖x−x̂i‖

r

Dδ dx

= dVd
r

δd/r

∫
ρ>ε

ρd−1e−
ρr

Dδ dρ

= dVdD
d/r

∫
ξ> εr

Dδ

ξd/r−1e−ξ dξ

= dVdD
d/rΓ

(
d

r
,
εr

Dδ

)
(55)

where the second step follows by writing x − x̂i in polar
coordinates and by using that the surface area of the d-
dimensional ball of radius ρ = ‖x − x̂i‖ is dVdρd−1 (see,
e.g., [8, eq. (10)]), and the third step follows by the change
of variable ξ = ρr/(Dδ).

The second inequality (53b) follows by upper-bounding

Λi,ε ≤
∫
‖x−x̂‖≤ε

dx = εdVd (56)

and because Γ(d/r, x) ≤ Γ(d/r), x ≥ 0.
Lemma 5: The set B̄i,ε satisfies ∑

i

p̄i,ε ≤
D

εr
(57a)∑

i

E
[
‖X− x̂i‖r1

{
X ∈ B̄i,ε

}]
≤ D. (57b)

Proof: We first prove (57a). By the distortion constraint
(2), and since B̄i,ε ⊆ Si and ‖x − x̂i‖ > ε for x ∈ B̄i,ε, we
have

D ≥
∑
i

∫
Si
fX(x)‖x− x̂i‖r dx

≥
∑
i

∫
B̄i,ε

fX(x)‖x− x̂i‖r dx

≥
∑
i

∫
B̄i,ε

fX(x)εr dx. (58)

Using that ε neither depends on i nor on x, (57a) follows by
dividing both sides of (58) by εr.

To prove (57b) we use again that B̄i,ε ⊆ Si to obtain∑
i

E
[
‖X− x̂i‖r1

{
X ∈ B̄i,ε

}]
=
∑
i

∫
B̄i,ε

fX(x)‖x− x̂i‖r dx

≤ E
[
‖X− X̂‖r

]
. (59)

By the distortion constraint (2), this yields (57b).

C. Proof of Theorem 1

Expanding I(X; X̂) as h(X)−h(X|X̂), we obtain from (5)
and (16) that the asymptotic excess rate can be expressed as

Rr,d =
d

r
log
( r
d

(
VdΓ(1 + d/r)

)r/d
e
)

− lim
D↓0

{
sup
q(·)

h(X|X̂)− d

r
logD

}
. (60)

To derive the lower bound (22) given in Theorem 1, it remains
to show that

lim
D↓0

{
sup
q(·)

h(X|X̂)−d
r

logD

}
≤ d

r
log
(
V
r/d
d (1+r/d)

)
. (61)

To this end, we upper-bound the conditional differential en-
tropy h(X|X̂) using Lemma 3 together with (50). This yields
for every X̂ = x̂i

h(X|X̂ = x̂i)

≤ logKi,ε

− E
[

log
( r

δd/r
e−
‖X−x̂i‖

r

Dδ

)
1
{
X ∈ B̄i,ε

} ∣∣∣ X ∈ Si]
≤ log

(
Λi,ε + dVdD

d/rΓ

(
d

r
,
εr

Dδ

))
+
∣∣∣log

(
r

δd/r

)∣∣∣Pr
(
X ∈ B̄i,ε

∣∣ X ∈ Si)
+

1

Dδ
E
[
‖X− x̂i‖r1

{
X ∈ B̄i,ε

} ∣∣ X ∈ Si] (62)

where the second inequality follows from inequality (53a)
in Lemma 4 and because − log(r/δd/r) ≤

∣∣log(r/δd/r)
∣∣.

Averaging over X̂ then yields

h(X|X̂) ≤
∑
i

pi log

(
Λi,ε + dVdD

d/rΓ

(
d

r
,
εr

Dδ

))
+
∣∣∣log

( r

δd/r

)∣∣∣∑
i

p̄i,ε

+
1

Dδ

∑
i

E
[
‖X− x̂i‖r1

{
X ∈ B̄i,ε

}]
. (63)

By Lemma 5, this can be further upper-bounded by

h(X|X̂) ≤
∑
i

pi log

(
Λi,ε + dVdD

d/rΓ

(
d

r
,
εr

Dδ

))
+
∣∣∣log

r

δd/r

∣∣∣D
εr

+
1

δ
. (64)

We next choose
εr =

D

κ
(65)
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for some κ > 0 that we will let tend to zero at the end of
the proof. For ease of exposition, we do not always make this
choice explicit in the notation but write εr or D/κ depending
on which is more convenient.

With this choice, the second term on the RHS of (64)
becomes κ| log(r/δd/r)|. To evaluate the first term on the RHS
of (64), we express pi as

pi = pi,ε + p̄i,ε (66)

and define

℘ε ,
∑
i

p̄i,ε. (67)

By Lemma 5, we have

℘ε ≤ κ (68)

which vanishes as we let κ tend to zero. With the above
definition, and applying inequality (53b) in Lemma 4, we
obtain for the first term on the RHS of (64) that

∑
i

pi log

(
Λi,ε + dVdD

d/rΓ

(
d

r
,
εr

Dδ

))
=
∑
i

pi,ε log

(
Λi,ε + dVdD

d/rΓ

(
d

r
,

1

κδ

))
+
∑
i

p̄i,ε log

(
Λi,ε + dVdD

d/rΓ

(
d

r
,

1

κδ

))
≤
∑
i

pi,ε log

(
Λi,ε + dVdD

d/rΓ

(
d

r
,

1

κδ

))
+ ℘ε log

(
Vd
Dd/r

κd/r
+ dVdD

d/rΓ(d/r)

)
. (69)

Using (68) and that
∑
i pi,ε + ℘ε = 1, (69) becomes

∑
i

pi log

(
Λi,ε + dVdD

d/rΓ

(
d

r
,

1

κδ

))
≤
∑
i

pi,ε log

(
Λi,ε
Dd/r

+ dVdΓ

(
d

r
,

1

κδ

))
+ ℘ε log

(
Vd
κd/r

+ dVdΓ(d/r)

)
+
d

r
logD

≤ d

r

∑
i

pi,ε log

(
Λi,ε
Dd/r

+ dVdΓ

(
d

r
,

1

κδ

))r/d
+ κ log

(
Vd
κd/r

+ dVdΓ(d/r)

)
+
d

r
logD. (70)

By Jensen’s inequality,

∑
i

pi,ε
1− ℘ε

log

(
Λi,ε
Dd/r

+ dVdΓ

(
d

r
,

1

κδ

))r/d
≤ log

(∑
i

pi,ε
1− ℘ε

[
Λi,ε
Dd/r

+ dVdΓ

(
d

r
,

1

κδ

)]r/d)
. (71)

For r/d < 1, we have (x + α)r/d ≤ xr/d + αr/d for every
x, α ≥ 0, so in this case

∑
i

pi,ε
1− ℘ε

[
Λi,ε
Dd/r

+ dVdΓ

(
d

r
,

1

κδ

)]r/d
≤
∑
i

pi,ε
1− ℘ε

Λ
r/d
i,ε

D
+ dr/dV

r/d
d Γ

(
d

r
,

1

κδ

)r/d
. (72a)

Similarly, for r/d ≥ 1, the function x 7→ (xd/r + α)r/d is
concave for every α ≥ 0, so by Jensen’s inequality

∑
i

pi,ε
1− ℘ε

[
Λi,ε
Dd/r

+ dVdΓ

(
d

r
,

1

κδ

)]r/d

≤
[(∑

i

pi,ε
1− ℘ε

Λ
r/d
i,ε

D

)d/r
+ dVdΓ

(
d

r
,

1

κδ

)]r/d
. (72b)

We next generalize (37), namely,

lim
D↓0

1

D

∑
i

pi∆
2
i ≤ 12 (73)

to the d-dimensional sets Bi,ε of Lebesgue measure Λi,ε. To
this end, we follow essentially the steps (38)–(44) in Sec-
tion III with Si replaced by Bi,ε and with ∆i replaced by Λi,ε.
However, (43) is based on Lebesgue’s differentiation theorem,
which requires that the families of sets Bi,ε (parametrized by
D) have bounded eccentricity.4 Since Bi,ε is the intersection
of Si with the d-dimensional ball of radius ε centered at x̂i,
cf. (51a), and since Si is arbitrary, the sets Bi,ε may not
satisfy this condition. In the one-dimensional case, a sufficient
condition for Bi,ε having bounded eccentricity would be that,
for every distortion D, the quantization regions Si are convex.
This in turn can be assumed without loss of optimality, e.g.,
for squared-error distortion and sources with well-behaved
pdfs [16]. However, for one-dimensional sources with general
pdfs, or for higher-dimensional sources, assuming convex
quantization regions may be too restrictive. Fortunately, the
families of sets Bi,ε that have not bounded eccentricity can be
disregarded without affecting the final result. The inequality
(37) can therefore be generalized to the case at hand without
imposing any additional constraints on the quantization regions
{Si} or the source pdf fX. The result is stated in the following
lemma.

Lemma 6: Let the sets {Bi,ε} be defined in (51a), and let
{Λi,ε} denote the Lebesgue measures of these sets. Assume
that εr = D/κ. Then, for every κ > 0,

lim
D↓0

sup
q(·)

∑
i

pi,ε
Λ
r/d
i,ε

D
≤ V r/dd

(
1 +

r

d

)
. (74)

Proof: See Appendix A.

4A family F of sets is said to have bounded eccentricity if there exists a
constant c > 0 such that for every S ∈ F the Lebesgue measure of S is not
smaller than c times the volume of the smallest ball containing S.
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Combining Lemma 6 with (64)–(72), and using 0 ≤ ℘ε ≤ κ,
we obtain that

lim
D↓0

{
sup
q(·)

h(X|X̂)− d

r
logD

}

≤ d

r
log

(
V
r/d
d (1 + r/d)

1− κ + dr/dV
r/d
d Γ

(
d

r
,

1

κδ

)r/d)

+ κ log

(
Vd
κd/r

+ dVdΓ(d/r)

)
+ κ

∣∣∣∣log
r

δd/r

∣∣∣∣+
1

δ
(75a)

for r/d < 1, and

lim
D↓0

{
sup
q(·)

h(X|X̂)− d

r
logD

}

≤ log

(
Vd(1 + r/d)d/r

(1− κ)d/r
+ dVdΓ

(
d

r
,

1

κδ

))
+ κ log

(
Vd
κd/r

+ dVdΓ(d/r)

)
+ κ

∣∣∣∣log
r

δd/r

∣∣∣∣+
1

δ
(75b)

for r/d ≥ 1. Using that limξ→∞ Γ(d/r, ξ) = 0 and
limξ→0 ξ log(α/ξd/r + β) = 0 (for any α, β > 0), letting
κ→ 0 yields

lim
D↓0

{
sup
q(·)

h(X|X̂)− d

r
logD

}
≤ d

r
log
(
V
r/d
d (1 + r/d)

)
+

1

δ
. (76)

This in turn proves (61) upon letting δ → ∞ and concludes
the proof of Theorem 1.

V. ASYMPTOTICALLY OPTIMAL QUANTIZERS

As mentioned at the end of Section II, in the one-
dimensional case uniform quantizers achieve the asymptotic
excess rate Rr,1. Hence, uniform quantizers are asymptotically
optimal as the allowed distortion tends to zero. One may won-
der whether every sequence of quantizers achieving Rr,1 must
converge to a uniform quantizer as D → 0, or whether uniform
quantizers are merely a convenient choice and other quantizers
with vanishing cells are also asymptotically optimal. In this
section, we partially address this question by presenting in
Theorem 7 a necessary condition for the asymptotic optimality
of a sequence of quantizers (parametrized by D). We then
apply this condition to the family of almost-regular quantizers.

Theorem 7: Let the one-dimensional source X have a pdf,
and assume that h(X) and H(bXc) are finite. Suppose the
sequence of quantizers q(·) (parametrized by D) satisfying
the distortion constraint E[|X − q(X)|r] ≤ D achieves the
asymptotic excess rate

lim
D↓0

{
H
(
q(X)

)
−R(D)

}
=

1

r
log

(
Γ(1 + 1/r)re

1 + 1/r

)
. (77)

Then,

lim
ρ→∞

lim
D↓0

∑
i

pi1

{∣∣∣∣∣Λ
r
i,ρD1/r

D
− V r1 (1 + r)

∣∣∣∣∣ ≤ ϑ
}

= 1 (78)

for every ϑ > 0. Here, Λi,ρD1/r denotes the Lebesgue measure
of Bi,ε, defined in (51a), for ε = ρD1/r.

Proof: This result is a direct consequence of Jensen’s
inequality applied in (71) in the proof of Theorem 1. See
Appendix B for a detailed proof.

Defining the function

ΛρD1/r (x) ,
∑
i

Λi,ρD1/r1{x ∈ Si} , x ∈ R (79)

the necessary condition (78) can be written as

lim
ρ→∞

lim
D↓0

Pr

(∣∣∣∣∣Λ
r
ρD1/r (X)

D
− V r1 (1 + r)

∣∣∣∣∣ ≤ ϑ
)

= 1 (80)

for every ϑ > 0. Theorem 7 can thus be paraphrased as
follows: “A sequence of quantizers achieves the asymptotic
excess rate (77) only if Λr

ρD1/r (X)/D converges in probability
to V r1 (1 + r) as D ↓ 0 and ρ→∞.”

A quantizer q(·) is said to be almost regular if there exists
a set S̄ ⊂ X of Lebesgue measure zero such that on X \S̄ the
quantization regions are intervals containing the reconstruction
value [16]. (For all x ∈ S̄ , we can define q(x) in an arbitrary
manner without changing the entropy and distortion of q(·).)
In other words, an almost-regular quantizer q(·) can be written
as

q(x) =
∑
i

ci1{ai ≤ x < bi} , for x ∈ X \ S̄ (81a)

q(x) =
∑
i

x̄i1
{
x ∈ S̄i

}
, for x ∈ S̄ (81b)

where ai ≤ ci < bi, and where x̄i and S̄i are arbitrary.
For almost-regular quantizers, condition (78) in Theorem 7

can be simplified as follows. Firstly, since the source has a
pdf and S̄ has measure zero,∑

i

Pr(X ∈ Si ∩ S̄) = 0. (82)

Secondly, for any quantization region [ai, bi) ⊆ X \ S̄ and
reconstruction value ci ∈ [ai, bi), we have

min{∆r
i , ρ

rD} ≤ Λri,ρD1/r ≤ ∆r
i (83)

where ∆i = bi−ai. Thus, if ρ is large, then either ∆i is large,
too, or Λi,ρD1/r = ∆i. Indeed, suppose ρr ≥ V r1 (1 + r) + ϑ.
If

Λr
i,ρD1/r

D
≤ V r1 (1 + r) + ϑ (84)

then it must hold that min{∆r
i , ρ

rD} = ∆r
i , since otherwise

(83) would be violated. It then follows by (83) that Λi,ρD1/r

is equal to ∆i. In contrast, if
Λr
i,ρD1/r

D
> V r1 (1 + r) + ϑ (85)

then by the right-most inequality in (83),
∆r
i

D
> V r1 (1 + r) + ϑ. (86)

Consequently, for any quantization region [ai, bi) ⊆ X \S̄ and
reconstruction value ci ∈ [a1, bi), we obtain that

1

{∣∣∣∣Λri,ρD1/r

D
− V r1 (1 + r)

∣∣∣∣ ≤ ϑ}
= 1

{∣∣∣∣∆r
i

D
− V r1 (1 + r)

∣∣∣∣ ≤ ϑ} (87)
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for ρ ≥ (V r1 (1+r)+ϑ)1/r. We thus have the following result:
Corollary 8: Let the one-dimensional source X have a pdf,

and assume that h(X) and H(bXc) are finite. Suppose the
sequence of almost-regular quantizers q(·) (parametrized by
D) satisfying the distortion constraint E[|X − q(X)|r] ≤ D
achieves the asymptotic excess rate

lim
D↓0

{
H
(
q(X)

)
−R(D)

}
=

1

r
log

(
Γ(1 + 1/r)re

1 + 1/r

)
. (88)

Then,

lim
D↓0

∑
i

pi1

{∣∣∣∣∆r
i

D
− V r1 (1 + r)

∣∣∣∣ ≤ ϑ} = 1 (89)

for every ϑ > 0.
Defining the function

∆(x) ,
∑
i

∆i1{x ∈ Si} , x ∈ R (90)

the necessary condition (89) can be written as

lim
D↓0

Pr
(∣∣∣∣∆r(X)

D
− V r1 (1 + r)

∣∣∣∣ ≤ ϑ) = 1 (91)

for every ϑ > 0. Similar to Theorem 7, Corollary 8 can thus
be paraphrased as “any sequence of almost-regular quantizers
achieves the asymptotic excess rate (88) only if ∆r(X)/D
converges in probability to V r1 (1 + r) as D ↓ 0.” In other
words, any sequence of almost-regular quantizers achieving
Rr,1 must converge in probability to a uniform quantizer as D
tends to zero.

VI. BALLS VERSUS TESSELLATING POLYTOPES

The lower bound (22) on the asymptotic excess rate pre-
sented in Theorem 1 hinges on the fact that the distortion
over the quantization region Si, i.e.,

∫
Si ‖x−x̂‖

r dx, is lower-
bounded by the distortion over a ball around x̂i with the
same volume (cf. (101) in the proof of Lemma 6 with Bi,ε
replaced by Si and with Λi,ε replaced by ∆i). Since the one-
dimensional ball is an interval and, hence, tessellates R, it
follows that for one-dimensional sources the lower bound (22)
is achieved by a tessellating quantizer, so in this case it is tight.
However, it is expected that this is no longer true for multi-
dimensional sources, since in general balls do not tessellate the
space. In fact, it is unclear whether there exists any (possibly
non-tessellating) vector quantizer that achieves (22) for multi-
dimensional sources.

To assess the tightness of the obtained lower bound, we
compare it numerically with the asymptotic excess rates
achievable by several lattice quantizers. To this end, we use
Linder and Zeger’s upper bound for tessellating quantizers (28)
together with the normalized second moments `(P) of various
lattice quantizers tabulated in [42, Table I]. In order to better
compare our results with previous works, in this section we
consider the asymptotic excess rate per dimension, defined as
R̄r,d , Rr,d/d. The asymptotic excess rate per dimension is
relevant, for example, in the analysis of quantization schemes
that buffer d consecutive symbols of a one-dimensional source
and then quantize them using a d-dimensional vector quantizer.

For the sake of simplicity, in this section we limit ourselves
to the squared-error distortion E

[
‖X− X̂‖22

]
≤ D, where

‖a‖2 ,
√
a2

1 + . . .+ a2
d, a = (a1, . . . , ad) ∈ Rd (92)

denotes the Euclidean norm. In this case, the lower bound (22)
becomes

R̄2,d ≥
1

2
log

(
2πe

Γ(1 + d/2)2/d

π(2 + d)

)
. (93)

Furthermore, the upper bound corresponding to tessellating
quantizers (28) becomes

R̄2,d ≤
1

2
log

(
2πe

1

d
`(P)

)
. (94)

It can be shown that the RHS of (94), when minimized over
all d-dimensional, tessellating, convex polytopes P , vanishes
as d tends to infinity. Indeed, [43, Lemma 1] (attributed to
Poltyrev) demonstrates that 1

d infP `(P)→ 1/(2πe) as d tends
to infinity. This is perhaps not very surprising, since the rate-
distortion function R(D) is essentially achieved by a vector
quantizer whose dimension tends to infinity. By applying
Zador’s upper bound (13) on br,d to (17), we further obtain

R̄2,d ≤
1

2
log

(
2πe

Γ(1 + 2/d)Γ(1 + d/2)2/d

πd

)
. (95)

Observe that the RHS of (95) also vanishes as d tends to
infinity. While this upper bound is in general looser than (94),
it does not depend on the normalized second moment `(P) of
a tessellating quantizer and is therefore easier to evaluate.

In Figure 2, we depict the bounds (93) and (95) as a function
of the dimension d. We further show several achievability
results based on lattice quantizers (94). The normalized sec-
ond moments `(P) corresponding to these lattice quantizers
were tabulated by Conway and Sloane in [42, Table I]. In
fact, Figure 2 is equivalent to [42, Figure 1] with the only
difference that here we plot the asymptotic excess rate per
dimension whereas Conway and Sloane plot the normalized
second moment. Specifically, we include the excess rates
per dimension attained by a (one-dimensional) uniform quan-
tizer, by a (two-dimensional) hexagonal quantizer, and by
the three-dimensional tessellating quantizer whose regions
are cuboctahedrons. These quantizers correspond to the so-
called Voronoi lattices of the first type A∗1 (the integers), A∗2
(the two-dimensional hexagonal lattice), and A∗3 (the body-
centered cubic lattice). For d ≥ 3, we further include the
excess rates per dimension attained by the D∗d lattices. Labeled
with cross markers, we show the excess rates per dimension
corresponding to the lattices E∗6 , E∗7 , the Gosset lattice E8,
the Coxeter-Todd lattice K12, the Barnes-Wall lattice Λ16, and
the Leech lattice Λ24. We refer to [42] and references therein
for further details.

Finally, we compare the obtained bounds with a conjectured
lower bound by Conway and Sloane [42, eq. (4)] that follows
by computing the distortion attained by a set of reconstruction
points located at the vertices of a d-dimensional tetrahedron.
Note that this bound was computed for fixed-rate quantizers,
i.e., for quantizers that have a fixed number M of quantiza-
tion regions and whose rate is defined as logM . While the
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Figure 2. Bounds on the asymptotic excess rate per dimension R̄2,d (in bits per source dimension) of a d-dimensional vector quantizer. The excess rates per
dimension attained by lattice quantizers were obtained by applying to (94) the normalized second moments tabulated in [42, Table I].

asymptotic excess rate achievable by a fixed-rate quantizer
can also be achieved by an entropy-constrained quantizer, the
converse is not necessarily true. It is thus prima facie unclear
whether Conway and Sloane’s conjectured lower bound would
also apply to entropy-constrained quantizers. Nevertheless, we
decided to include it here since it is remarkably close to the
excess rates per dimension attained by the lattices E8 and Λ24.

As observed above, the asymptotic excess rate per dimen-
sion vanishes as d tends to infinity. However, as illustrated by
Figure 2, it decays slowly: for example, for a 10-dimensional
vector quantizer we still have

R̄2,10 ≥
1

2
log2

(
eΓ(6)1/5

6

)
≈ 0.1196 bits per source dimension (96)

which is, arguably, not much smaller than the asymptotic
excess rate per dimension of the (one-dimensional) uniform
quantizer

R̄2,1 =
1

2
log2

(
πe/6

)
≈ 0.2546 bits per source dimension.

(Here log2(·) denotes the binary logarithm.) In general, the
bounds on R̄2,d given in (93) and (95) are of the order
Θ(log d/d).

Observe that for multi-dimensional sources the gap between
the lower bound (93) and the asymptotic excess rate per
dimension achievable with lattice quantizers is substantial.
This gap is (at least partly) due to the fact that, in order to
derive the lower bound (22), we lower-bounded the distortion
over the quantization region Si by that over a ball with the
same volume. To obtain a tighter lower bound, one may need
a more accurate approximation of this distortion that, like the
conjectured bound by Conway and Sloane, takes the geometry
of the optimal quantization regions into account.

VII. CONCLUSIONS

The nonnegativity of relative entropy implies that the dif-
ferential entropy of a random vector X with pdf f is upper-
bounded by −E[log g(X)] for any arbitrary pdf g. Using this
inequality with a cleverly chosen g, we derived a lower bound
on the asymptotic excess rate of entropy-constrained vector
quantization. Specialized to the one-dimensional case and
quadratic distortion, this bound coincides with the excess rate
obtained by Gish and Pierce [6] and by Gray et al. [15]. The
proposed derivation thus recovers the well-known result that
uniform quantizers are asymptotically optimal as the allowed
distortion vanishes. While the obtained lower bound itself is
not novel, to the best of our knowledge, we presented the
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first rigorous derivation that follows the direct approach of
Gish and Pierce without resorting to heuristic high-resolution
approximations commonly found in the quantization literature.

Our result holds for any d-dimensional source X that
satisfies |h(X)| <∞ and H(bXc) <∞. The presented proof
thus holds under the same conditions on the source as the
proof by Gray et al., and it is more general than the proof by
Gish and Pierce. In fact, it has recently been shown that these
conditions are necessary and sufficient for the Shannon lower
bound to be asymptotically tight for vanishing distortion, and
that H(bXc) <∞ is a necessary and sufficient condition for
the rate-distortion function to be finite [12]. Our result thus
holds for the most general conditions that can be imposed in
the analysis of high-resolution quantizers.

The derivation of the lower bound reveals a necessary
condition for a sequence of quantizers (parametrized by D)
to achieve the asymptotic excess rate. Specifically, we demon-
strated for one-dimensional sources that the intersection of
the quantization region Si with the interval [x̂i− ρD1/r, x̂i +
ρD1/r] must have a Lebesgue measure that converges in
probability to V1(1 + r)1/rD1/r as D → 0 and ρ→∞. This
implies that any sequence of almost-regular quantizers achiev-
ing the asymptotic excess rate must converge in probability to
a uniform quantizer as D → 0. Since almost-regular quantizers
achieve Dr,1(R) when r ≥ 1, this in turn suggests that
asymptotically-optimal quantizers must essentially be uniform.

While the presented bound is tight for one-dimensional
sources, it is unclear whether the same is true for multi-
dimensional sources. Indeed, its derivation hinges on the fact
that the distortion over the quantization region Si is lower-
bounded by the distortion over a ball around x̂i with the
same volume. Since the one-dimensional ball is an interval
and, hence, tessellates R, it follows that for one-dimensional
sources the converse bound (22) is achieved by a tessellat-
ing quantizer (which in this case is the uniform quantizer).
However, it is expected that this is no longer true for multi-
dimensional sources, since in general balls do not tessellate
the space. It is yet unclear whether there exists any (possibly
non-tessellating) vector quantizer that achieves our converse
bound for multi-dimensional sources.

APPENDIX A
PROOF OF LEMMA 6

To prove Lemma 6, we first fix an arbitrary constant η > 0
and divide the indices i according to whether Λi,ε ≥ ηVdεd or
not. Specifically, let

I ,
{
i ∈ Z : Λi,ε ≥ ηVdεd

}
(97)

and divide the sum on the LHS of (74) into∑
i

pi,ε
Λ
r/d
i,ε

D
=
∑
i∈I

pi,ε
Λ
r/d
i,ε

D
+
∑
i∈Ic

pi,ε
Λ
r/d
i,ε

D
(98)

where Ic denotes the complement of I. For every i ∈ Ic we
have Λi,ε < ηVdε

d, so the second sum on the RHS of (98)
can be upper-bounded as∑

i∈Ic

pi,ε
Λ
r/d
i,ε

D
≤ ηr/dV r/dd

εr

D

∑
i∈Ic

pi,ε ≤ ηr/d
V
r/d
d

κ
(99)

where the second step follows because εr = D/κ and because,
by definition, the sets Bi,ε are disjoint, so the sum of the
probabilities pi,ε is equal to the probability of ∪i∈IcBi,ε, which
is upper-bounded by 1.

To upper-bound the first sum on the RHS of (98), we begin
by lower-bounding E

[
‖X− X̂‖r

]
as

E
[
‖X− X̂‖r

]
=
∑
i

∫
Si
fX(x)‖x− x̂i‖r dx

≥
∑
i∈I

∫
Bi,ε

fX(x)‖x− x̂i‖r dx

=
∑
i∈I

pi,ε
Λi,ε

∫
Bi,ε
‖x− x̂i‖r dx

−
∑
i∈I

∫
Bi,ε

[
pi,ε
Λi,ε
− fX(x)

]
‖x− x̂i‖r dx. (100)

The region Bi,ε of volume Λi,ε that minimizes the integral∫
Bi,ε ‖x − x̂‖r dx is a ball around x̂. We thus have [8,

Section III]

1

Λi,ε

∫
Bi,ε

∥∥x− x̂i
∥∥r dx ≥ d

d+ r

Λ
r/d
i,ε

V
r/d
d

(101)

which yields for the first term on the RHS of (100)

∑
i∈I

pi,ε
Λi,ε

∫
Bi,ε
‖x− x̂i‖r dx ≥

∑
i∈I

pi,ε
Λ
r/d
i,ε

V
r/d
d (1 + r/d)

. (102)

Multiplying both sides of (100) by V r/dd (1+r/d)/D, applying
(102) to (100), and using that E

[
‖X− X̂‖r

]
≤ D, we obtain

∑
i∈I

pi,ε
Λ
r/d
i,ε

D
≤ V r/dd

(
1 +

r

d

)
+
V
r/d
d

(
1 + r

d

)
D

∑
i∈I

∫
Bi,ε

[
pi,ε
Λi,ε
− fX(x)

]
‖x− x̂i‖r dx.

(103)

We next introduce the pdf

f
(Λ)
X (x; {Bi,ε}) ,

∑
i∈I

pi,ε
Λi,ε

1{x ∈ Bi,ε}

+ fX(x)

[∑
i∈I

1
{
x ∈ B̄i,ε

}
+
∑
i∈Ic

1{x ∈ Si}
]

(104)

for x ∈ Rd, which allows us to write

∑
i∈I

∫
Bi,ε

[
pi,ε
Λi,ε
− fX(x)

]
‖x− x̂i‖r dx

=
∑
i

∫
Si

[
f

(Λ)
X (x; {Bi,ε})− fX(x)

]
‖x− x̂i‖r dx. (105)
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Since ‖x − x̂i‖r ≤ εr = D/κ for x ∈ Bi,ε, i ∈ I and
f

(Λ)
X (x; {Bi,ε})− fX(x) = 0 otherwise, we have∣∣∣∣∣∑

i

∫
Si

[
f

(Λ)
X (x; {Bi,ε})− fX(x)

]
‖x− x̂i‖r dx

∣∣∣∣∣
≤ D

κ

∫ ∣∣∣f (Λ)
X (x; {Bi,ε})− fX(x)

∣∣∣ dx. (106)

Combining this upper bound with (98), (99), and (103), we
obtain

∑
i

pi,ε
Λ
r/d
i,ε

D
≤ ηr/dV

r/d
d

κ
+ V

r/d
d

(
1 +

r

d

)
+
V
r/d
d

(
1 + r

d

)
κ

∫ ∣∣∣f (Λ)
X (x; {Bi,ε})− fX(x)

∣∣∣ dx. (107)

We next show that, for every η > 0,

lim
D↓0

sup
q(·)

∫ ∣∣∣f (Λ)
X (x; {Bi,ε})− fX(x)

∣∣∣ dx = 0. (108)

(Recall that f (Λ)
X depends on q(·) and D via {Bi,ε} and on η

via I.) It then follows that

lim
D↓0

sup
q(·)

∑
i

pi,ε
Λ
r/d
i,ε

D
≤ V r/dd

(
1 +

r

d

)
+ ηr/d

V
r/d
d

κ
(109)

which proves Lemma 6 upon letting η tend to zero from above.
It thus remains to prove (108). By definition, f (Λ)

X differs
from fX only when x ∈ Bi,ε, i ∈ I. Since the families
of sets Bi,ε, i ∈ I (parametrized by D) have bounded
eccentricity, it follows from Lebesgue’s differentiation theorem
that f (Λ)

X converges to fX almost everywhere as D (and hence
also ε) tends to zero. By Scheffe’s lemma, this then implies
(108). However, compared to the standard setting under which
Lebesgue’s differentiation theorem is proven, our setting is
slightly more complicated, since as D tends to zero not only
the diameters of the sets Bi,ε decay, but also their locations in
Rd may change. For completeness, we therefore provide all
the steps, even though they follow closely the standard proof
of the Lebesgue differentiation theorem.

We first note that the integral in (108) is nonnegative and
bounded, so its supremum is finite and for every ν > 0 there
exists a sequence of quantizers (parametrized by D) such that

lim
D↓0

∫ ∣∣∣f (Λ)
X (x; {Bi,ε})− fX(x)

∣∣∣ dx
≥ lim
D↓0

sup
q(·)

∫ ∣∣∣f (Λ)
X (x; {Bi,ε})− fX(x)

∣∣∣ dx− ν. (110)

Since ν > 0 is arbitrary, in order to prove (108) it suffices to
show that for any sequence of quantizers (parametrized by D)

lim
D↓0

∫ ∣∣∣f (Λ)
X (x; {Bi,ε})− fX(x)

∣∣∣ dx = 0. (111)

Specifically, we shall show that for any sequence of quantizers
(parametrized by D)

λ

({
x ∈ Rd : lim

D↓0

∣∣∣f (Λ)
X (x; {Bi,ε})− fX(x)

∣∣∣ > 2ξ

})
= 0

(112)

for every ξ > 0, where λ(·) denotes the Lebesgue measure
on Rd. It then follows that f (Λ)

X converges to fX almost
everywhere as D → 0 since{

x ∈ Rd : lim
D↓0

∣∣∣f (Λ)
X (x; {Bi,ε})− fX(x)

∣∣∣ > 0

}
=
∞⋃
`=1

{
x ∈ Rd : lim

D↓0

∣∣∣f (Λ)
X (x; {Bi,ε})− fX(x)

∣∣∣ > 1

`

}
(113)

and the countable union of sets of measure zero has measure
zero. By Scheffe’s lemma, almost everywhere convergence of
f

(Λ)
X to fX implies (111), which together with (110) proves

the desired result (108) upon letting ν tend to zero from above.
We thus set out to prove (112). By the definition of f (Λ)

X

and the triangle inequality,∣∣∣f (Λ)
X (x; {Bi,ε})− fX(x)

∣∣∣
≤
∑
i∈I

∣∣∣∣ pi,εΛi,ε
− fX(x)

∣∣∣∣1{x ∈ Bi,ε} . (114)

We next approximate pi,ε by replacing fX by a continuous
function g. Indeed, since fX is integrable, for every ε > 0 there
exists a continuous function g such that [44, Theorem 2.4.14,
p. 92] ∫

|fX(x)− g(x)| dx ≤ ε. (115)

It then follows that, for every x ∈ Bi,ε,∣∣∣∣ pi,εΛi,ε
− fX(x)

∣∣∣∣ ≤ ∣∣∣∣ 1

Λi,ε

∫
Bi,ε

g(y) dy − g(x)

∣∣∣∣
+

1

Λi,ε

∫
Bi,ε

∣∣fX(y)− g(y)
∣∣ dy + |fX(x)− g(x)|. (116)

Let B(c, ρ) , {x ∈ Rd : ‖x − c‖ ≤ ρ} denote the
d-dimensional ball of radius ρ centered at c. Note that
λ
(
B(x̂i, ε)

)
= Vdε

d. For every x ∈ Bi,ε and i ∈ I, the second
term on the RHS of (116) can be upper-bounded by

1

Λi,ε

∫
Bi,ε

∣∣fX(y)− g(y)
∣∣ dy

≤ 1

ηλ
(
B(x̂i, ε)

) ∫
B(x̂i,ε)

∣∣fX(y)− g(y)
∣∣ dy

≤ 2d

η

1

λ
(
B(x, 2ε)

) ∫
B(x,2ε)

∣∣fX(y)− g(y)
∣∣ dy

≤ 2d

η
(fX − g)?(x) (117)

where (fX − g)? denotes the Hardy-Littlewood maximal
function for fX − g, i.e.,

(fX − g)?(x) , sup
ρ>0

1

λ
(
B(x, ρ)

) ∫
B(x,ρ)

∣∣fX(y)− g(y)
∣∣ dy
(118)

for x ∈ Rd. In (117) we have used that, for every x ∈ Bi,ε
and i ∈ I, we have Bi,ε ⊆ B(x̂i, ε) ⊆ B(x, 2ε) and, by the
definition of I,

Λi,ε ≥ ηλ
(
B(x̂i, ε)

)
= 2−dλ

(
B(x, 2ε)

)
.
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Combining (116) and (117) with (114), we obtain∣∣∣f (Λ)
X (x; {Bi,ε})− fX(x)

∣∣∣
≤
∑
i∈I

∣∣∣∣ 1

Λi,ε

∫
Bi,ε

g(y) dy − g(x)

∣∣∣∣1{x ∈ Bi,ε}
+
∑
i∈I

2d

η
(fX − g)?(x)1{x ∈ Bi,ε}

+
∑
i∈I

∣∣fX(x)− g(x)
∣∣1{x ∈ Bi,ε}

≤
∑
i∈I

∣∣∣∣ 1

Λi,ε

∫
Bi,ε

g(y) dy − g(x)

∣∣∣∣1{x ∈ Bi,ε}
+

2d

η
(fX − g)?(x) + |fX(x)− g(x)|, x ∈ Rd (119)

where the second inequality follows because the sets {Bi,ε}
are disjoint. The second and third term on the RHS of (119) are
independent of D and q(·). The first term on the RHS of (119)
vanishes as D tends to zero for any sequence of quantizers.
Indeed, the continuity of g implies that for every x ∈ Rd and
ϑ > 0 there exists an ε0 > 0 such that

|g(y)− g(x)| ≤ ϑ, for ‖x− y‖ ≤ 2ε0. (120)

Since x,y ∈ Bi,ε satisfy ‖x − y‖ ≤ 2ε, it follows that for
every x ∈ Rd and ϑ > 0 there exists an ε0 > 0 such that∣∣∣∣ 1

Λi,ε

∫
Bi,ε

g(y) dy − g(x)

∣∣∣∣1{x ∈ Bi,ε} ≤ ϑ1{x ∈ Bi,ε}
(121)

for ε ≤ ε0. Using that the sets Bi,ε, i ∈ I are disjoint, we
conclude that for every x ∈ Rd and ϑ > 0 there exists an
ε0 > 0 such that

∑
i∈I

∣∣∣∣ 1

Λi,ε

∫
Bi,ε

g(y) dy − g(x)

∣∣∣∣1{x ∈ Bi,ε} ≤ ϑ (122)

for ε ≤ ε0. Since ϑ > 0 is arbitrary and ε vanishes as D →
0, this implies that for every x ∈ Rd and any sequence of
quantizers

lim
D↓0

∑
i∈I

∣∣∣∣ 1

Λi,ε

∫
Bi,ε

g(y) dy − g(x)

∣∣∣∣1{x ∈ Bi,ε} = 0. (123)

We conclude the proof of Lemma 6 by applying (119) and
(123) to upper-bound the Lebesgue measure on the LHS of
(112). Indeed, we have

λ

({
x ∈ Rd : lim

D↓0

∣∣∣f (Λ)
X (x; {Bi,ε})− fX(x)

∣∣∣ > 2ξ

})
≤ λ

({
x ∈ Rd :

2d

η
(fX − g)?(x) + |fX(x)− g(x)| > 2ξ

})
≤ λ

({
x ∈ Rd :

2d

η
(fX − g)?(x) > ξ

})
+ λ
({

x ∈ Rd : |fX(x)− g(x)| > ξ
})
. (124)

The first term on the RHS of (124) can be upper-bounded
by using the Hardy-Littlewood maximal inequality [45, The-
orem 3.4, p. 55]

λ

({
x ∈ Rd :

2d

η
(fX − g)?(x) > ξ

})
≤ 2dαd

ηξ

∫
|fX(x)− g(x)| dx (125)

for some constant αd that only depends on d. Likewise, the
second term on the RHS of (124) can be upper-bounded using
Chebyshev’s inequality [44, Theorem 4.10.7, p. 192]

λ
({

x ∈ Rd : |fX(x)− g(x)| > ξ
})

≤ 1

ξ

∫
|fX(x)− g(x)| dx. (126)

Combining (125) and (126) with (115) and (124), it follows
that

λ

({
x ∈ Rd : lim

D↓0

∣∣∣f (Λ)
X (x; {Bi,ε})− fX(x)

∣∣∣ > 2ξ

})
≤ 1 + 2dαd/η

ξ
ε. (127)

This proves (112) upon letting ε tend to zero from above,
which was the last step required to prove Lemma 6.

APPENDIX B
PROOF OF THEOREM 7

Following the steps (60)–(70) in the proof of Theorem 1
specialized to the case d = 1, we obtain that

H
(
q(X)

)
−R(D)

≥ 1

r
log
(
rV r1 Γ(1 + 1/r)re

)
− 1

r

∑
i

pi,ε log

(
Λi,ε
D1/r

+ V1Γ

(
1

r
,

1

κδ

))r
− κ log

(
V1

κ1/r
+ V1Γ(1/r)

)
− κ
∣∣∣log

r

δ1/r

∣∣∣− 1

δ
. (128)

Recall that εr = D/κ. The last three terms on the RHS of
(128) are independent of D and vanish as we first let κ→ 0
and then δ →∞. To achieve

Rr,1 =
1

r
log

(
Γ(1 + 1/r)re

1 + 1/r

)
a sequence of quantizers (parametrized by D) must therefore
satisfy

lim
κ↓0

lim
D↓0

1

r

∑
i

pi,ε log

(
Λi,ε
D1/r

+ V1Γ

(
1

r
,

1

κδ

))r
≥ 1

r
log
(
V r1 (1 + r)

)
. (129)

(As κ→ 0, the term on the LHS of (129) becomes independent
of δ.) For the sake of compactness, we shall use in the rest of
the proof the following notation:5

5While some of the introduced quantities depend on κ and D, to keep the
notation compact we only make the dependence on D explicit.
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Let V , V r1 (1 + r). Further let υ , V1Γ
(

1
r ,

1
κδ

)
, and recall

that limκ→0 υ = 0 for every δ > 0. Define

ID ,

{
i ∈ Z :

Λri,ε
D
≤ V − ϑ

}
(130a)

ID ,

{
i ∈ Z :

Λri,ε
D
≥ V + ϑ

}
(130b)

for some ϑ > 0, and let

q
D

,
1

1− ℘ε
∑
i∈ID

pi,ε (131a)

qD ,
1

1− ℘ε
∑
i∈ID

pi,ε (131b)

q
D

,
1

1− ℘ε
∑

i∈Z\(ID∪ID)

pi,ε (131c)

and

µ
D

,
1

(1− ℘ε)qD

∑
i∈ID

pi,ε
Λri,ε
D

(132a)

µD ,
1

(1− ℘ε)qD
∑
i∈ID

pi,ε
Λri,ε
D

(132b)

µ
D

,
1

(1− ℘ε)qD

∑
i∈Z\(ID∪ID)

pi,ε
Λri,ε
D

(132c)

where ℘ε was defined in (67). Finally, define

µD , q
D
µ
D

+ qD µD + q
D
µ
D
. (133)

By definition of I and I, we have

µ
D
≤ V − ϑ and µD ≥ V + ϑ. (134)

Furthermore, by Lemma 6 and (68),

lim
κ↓0

lim
D↓0

µD ≤ V. (135)

Consequently, for any arbitrary ε > 0, there exist κ0 and D0

such that

µD ≤ V + ε, (κ ≤ κ0, D ≤ D0). (136)

Without loss of generality, we implicitly assume that κ and D
are sufficiently small, so that (136) holds.

We next apply steps similar to (71) and (72) to upper-bound

∑
i

pi,ε
1− ℘ε

log

(
Λi,ε
D1/r

+ υ

)r
≤ q

D
log
(
µ
D

+ υr
)

+ qD log
(
µD + υr

)
+ q

D
log
(
µ
D

+ υr
)

(137a)

for r < 1, and

∑
i

pi,ε
1− ℘ε

log

(
Λi,ε
D1/r

+ υ

)r
≤ r
[
q
D

log
(
µ1/r
D

+ υ
)

+ qD log
(
µ

1/r
D + υ

)
+ q

D
log
(
µ1/r
D

+ υ
)]

(137b)

for r ≥ 1. It follows that, for r < 1, any sequence of quantizers
satisfying (129) must also satisfy

lim
κ↓0

lim
D↓0

{
q
D

log
(
µ
D

+ υr
)

+ qD log
(
µD + υr

)
+ q

D
log
(
µ
D

+ υr
)
− log

(
V + υr

)}
≥ 0. (138a)

Likewise, for r ≥ 1, any sequence of quantizers satisfying
(129) must also satisfy

lim
κ↓0

lim
D↓0

{
q
D

log
(
µ1/r
D

+ υ
)

+ qD log
(
µ

1/r
D + υ

)
+ q

D
log
(
µ1/r
D

+ υ
)
− log

(
V 1/r + υ

)}
≥ 0. (138b)

We conclude the proof of Theorem 7 for the case r ≥ 1
by demonstrating that any sequence of quantizers satisfying
(138b) must satisfy

lim
κ↓0

lim
D↓0

q
D

= 1, for every ϑ > 0. (139)

Substituting ρ = 1/κ, this can be written as

lim
ρ→∞

lim
D↓0

∑
i

pi,ρD1/r

1− ℘ε
1

{∣∣∣∣Λri,ρD1/r

D
− V r1 (1 + r)

∣∣∣∣ ≤ ϑ} = 1

(140)
for every ϑ > 0, which by (66)–(68) is equivalent to (78). The
proof for r < 1 is almost identical and is therefore omitted.

To prove (139) we first note that, by the strict concavity of
x 7→ log x, there exists a linear function x 7→ `x0

(x) such that

log(x+ υ) ≤ `x0
(x), x ≥ 0 (141)

with equality if, and only if, x = x0. (Specifically, we have
`x0

(x) = x+υ
x0+υ + log(x0 + υ)− 1, x ≥ 0.) Moreover,

log
(
µ

1/r
D + υ

)
− q

D
`
µ
1/r
D

(
µ1/r
D

)
− qD`µ1/r

D

(
µ

1/r
D

)
− q

D
`
µ
1/r
D

(
µ1/r
D

)
≥ 0 (142)

since x0 7→ log(x0 +υ)−E[`x0(X)] (for any discrete random
variable X) is monotonically increasing and nonnegative for
x0 ≥ E[X], and since

q
D
µ1/r
D

+ qDµ
1/r
D + q

D
µ1/r
D
≤ µ1/r

D .

The LHS of (138b) can thus be upper-bounded by

q
D

[
log
(
µ1/r
D

+ υ
)
− `

µ
1/r
D

(
µ1/r
D

)
− log

(
V 1/r + υ

µ
1/r
D + υ

)]
+ qD

[
log
(
µ

1/r
D + υ

)
− `

µ
1/r
D

(
µ

1/r
D

)
− log

(
V 1/r + υ

µ
1/r
D + υ

)]
+ q

D

[
log
(
µ1/r
D

+ υ
)
− `

µ
1/r
D

(
µ1/r
D

)
− log

(
V 1/r + υ

µ
1/r
D + υ

)]
.

(143)

By (135) and (141), the third term in (143) satisfies

lim
κ↓0

lim
D↓0

q
D

[
log
(
µ1/r
D

+ υ
)
− `

µ
1/r
D

(
µ1/r
D

)
− log

(
V 1/r + υ

µ
1/r
D + υ

)]
≤ 0. (144)
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We further have

log
(
µ1/r
D

+ υ
)
− `

µ
1/r
D

(
µ1/r
D

)
− log

(
V 1/r + υ

µ
1/r
D + υ

)
≤ log

(
(V − ϑ)1/r + υ

)
− `(V+ε)1/r

(
(V − ϑ)1/r

)
+ log

(
(V + ε)1/r + υ

V 1/r + υ

)
, K (145)

and

log
(
µ

1/r
D + υ

)
− `

µ
1/r
D

(
µ

1/r
D

)
− log

(
V 1/r + υ

µ
1/r
D + υ

)
≤ log

(
(V + ϑ)1/r + υ

)
− `(V+ε)1/r

(
(V + ϑ)1/r

)
+ log

(
(V + ε)1/r + υ

V 1/r + υ

)
, K. (146)

Here, we used (134) and (136) together with the facts that
x0 7→ log(x0 + υ) − `x0

(x) is monotonically increasing, and
that x 7→ log(x+ υ)− `x0

(x) is monotonically increasing for
x ≤ x0 and monotonically decreasing for x ≥ x0.

Combining (143)–(146), it follows that (138b) can only be
satisfied if

lim
κ↓0

lim
D↓0

max
{
K,K

}(
q
D

+ qD
)
≥ 0. (147)

Since max
{
K,K

}
does not depend on D and, by (141),

lim
κ↓0

max
{
K,K

}
< 0 (148)

for ε > 0 sufficiently small, the condition (147), in turn, can
only be satisfied if

lim
κ↓0

lim
D↓0

(
q
D

+ qD
)

= 0. (149)

Using that q
D

= 1− q
D
− qD, the claim (139) follows. This

concludes the proof of Theorem 7.
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