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On the Information Dimension
of Stochastic Processes
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Abstract—In 1959, Rényi proposed the information dimension
and the d-dimensional entropy to measure the information
content of general random variables. This paper proposes a
generalization of information dimension to stochastic processes
by defining the information dimension rate as the entropy rate
of the uniformly-quantized stochastic process divided by minus
the logarithm of the quantizer step size 1/m in the limit as
m→∞. It is demonstrated that the information dimension rate
coincides with the rate-distortion dimension, defined as twice the
rate-distortion function R(D) of the stochastic process divided by
− log(D) in the limit as D ↓ 0. It is further shown that, among
all multivariate stationary processes with a given (matrix-valued)
spectral distribution function (SDF), the Gaussian process has
the largest information dimension rate, and that the information
dimension rate of multivariate stationary Gaussian processes is
given by the average rank of the derivative of the SDF. The
presented results reveal that the fundamental limits of almost
zero-distortion recovery via compressible signal pursuit and
almost lossless analog compression are different in general.

Index Terms—Entropy, Gaussian process, information dimen-
sion, rate-distortion dimension

I. INTRODUCTION

IN 1959, Rényi [1] proposed the information dimension
and the d-dimensional entropy to measure the information

content of general random variables (RVs). His idea was to
quantize the RV X by a uniform quantizer of step size 1/m,
and to then analyze the entropy of the quantized RV [X]m
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in the limit as m tends to infinity. Assuming that the entropy
H([X]m) exists and the asymptotic expansion

H([X]m) = d(X) logm+Hd(X) + o(1) (1)

holds for m→∞ (where o(1) refers to remainder terms that
vanish as m→∞), Rényi referred to d(X) as the information
dimension and to Hd(X) as the d-dimensional entropy.

In recent years, it was shown that the information dimension
is of relevance in various areas of information theory, including
rate-distortion theory, almost lossless analog compression, or
the analysis of interference channels. For example, Kawabata
and Dembo [2] showed that the information dimension of a RV
is equal to its rate-distortion dimension, defined as twice the
rate-distortion function R(D) divided by − log(D) in the limit
as D ↓ 0. Koch [3] demonstrated that the rate-distortion func-
tion of a source with infinite information dimension is infinite,
and that for any source with finite information dimension and
finite differential entropy the Shannon lower bound on the rate-
distortion function is asymptotically tight. Wu and Verdú [4]
analyzed linear encoding and Lipschitz decoding of discrete-
time, independent and identically distributed (i.i.d.), stochastic
processes and showed that the information dimension plays
a fundamental role in achievability and converse results. Wu
et al. [5] showed that the degrees of freedom of the K-user
Gaussian interference channel can be characterized through
the sum of information dimensions. Stotz and Bölcskei [6]
generalized this result to vector interference channels.

Jalali and Poor [7] proposed a generalization of information
dimension to stationary, discrete-time, stochastic processes by
defining the information dimension d′({Xt}) of the stochastic
process {Xt} as the information dimension of (X1, . . . , Xk)
divided by k in the limit as k → ∞.1 They showed that,
for ψ∗-mixing processes, the information dimension is an
achievable rate for universal compressed sensing with linear
encoding and decoding via Lagrangian minimum entropy
pursuit [7, Th. 8]. Rezagah et al. [8] showed that d′({Xt})
coincides, under certain conditions, with the rate-distortion
dimension dimR({Xt}), thus generalizing the result by Kawa-
bata and Dembo [2] to stochastic processes. Other notions of
information dimensions for stochastic processes are discussed
in [9].

In this paper, we propose a different definition for the
information dimension of stationary, discrete-time, stochas-
tic processes. Specifically, let {[Xt]m} denote the stochastic

1More precisely, Jalali and Poor define the information dimension of
a stochastic process via a conditional entropy of the uniformly-quantized
process. For stationary processes, their definition coincides with the above-
mentioned definition [7, Lemma 3].
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process {Xt} uniformly quantized with step size 1/m. We
define the information dimension rate d({Xt}) of {Xt} as
the entropy rate of {[Xt]m} divided by logm in the limit as
m → ∞. For i.i.d. processes, our definition coincides with
that of Jalali and Poor (and, in fact, evaluates to Rényi’s in-
formation dimension of the marginal RV Xt). More generally,
we show that these definitions are equivalent for ψ∗-mixing
processes. Nevertheless, there are stochastic processes for
which the two definitions disagree. In particular, we derive
a closed-form expression for the information dimension rate
of stationary, multivariate, Gaussian processes with power
spectral density (PSD) SX , which specialized to the univariate
case yields that d({Xt}) is equal to the Lebesgue measure of
the set of harmonics on [−1/2, 1/2] where SX is positive.
For Gaussian processes with a bandlimited PSD, this implies
that the information dimension rate d({Xt}) is equal to twice
the PSD’s bandwidth. This is consistent with the intuition
that for such processes not all samples contain information.
For example, if the bandwidth of the PSD is 1/4, then we
expect that half of the samples in {Xt} can be expressed as
linear combinations of the other samples and, hence, do not
contain information. In contrast, we show that the information
dimension d′({Xt}) is 1 if SX is positive on any set with
positive Lebesgue measure. In other words, d′({Xt}) does not
capture the dependence of the information dimension on the
support size of SX .

By emulating the proof of [2, Lemma 3.2], we further
show that, for any stochastic process {Xt}, the information
dimension rate d({Xt}) coincides with the rate-distortion
dimension dimR({Xt}). This implies that d′({Xt}) coincides
with dimR({Xt}) only for those stochastic processes for
which d′({Xt}) = d({Xt}).

The rest of this paper is organized as follows. In Section II,
we introduce the notation used in this paper. In Section III, we
present preliminary results on the Rényi information dimen-
sion of RVs and random vectors. In Section IV, we present
our definition of the information dimension rate of a stochastic
process, discuss its connection to the rate-distortion dimension,
and compute the information dimension rate of stationary
Gaussian processes. In Section V, we review the information
dimension proposed by Jalali and Poor and discuss its relation
to d({Xt}). In Section VI, we briefly discuss the operational
meanings of information dimension in compressed sensing and
zero-distortion recovery. Section VII concludes the paper with
a discussion of the obtained results. Some of the proofs are
deferred to the appendices.

II. NOTATION AND PRELIMINARIES

We denote by R, C, and Z the set of real numbers, the
set of complex numbers, and the set of integers, respectively.
We further denote by R+ and N the set of nonnegative real
numbers and the set of positive integers, respectively. We use
a calligraphic font, such as F , to denote other sets, and we
denote complements as F c. The set difference between two
sets F and G is written as F \ G.

The real and imaginary parts of a complex number z are
denoted as Re(z) and Im(z), respectively, i.e., z = Re(z) +

ıIm(z) where ı ,
√
−1. The complex conjugate of z is

denoted as z∗.
We use uppercase letters to denote deterministic matrices

and boldface lowercase letters to denote deterministic vectors.
The transpose of a vector or matrix is denoted by (·)T, the
Hermitian transpose by (·)H. The determinant and rank of a
matrix A are detA and rank(A), respectively. We denote by
IL the L× L identity matrix.

We denote RVs by uppercase letters, e.g., X . For a fi-
nite or countably infinite collection of RVs we abbreviate
Xk
` , (X`, . . . , Xk−1, Xk), X∞` , (X`, X`+1, . . . ), and

Xk
−∞ , (. . . , Xk−1, Xk).2 Random vectors are denoted

by boldface uppercase letters, e.g., X , (X1, . . . , XL)T.
Univariate discrete-time stochastic processes are denoted as
{Xt, t ∈ Z} or, in short, as {Xt}. For L-variate stochastic
processes we use the same notation but with Xt replaced by
Xt , (X1,t, . . . , XL,t)

T. We call {Xi,t, t ∈ Z} a component
process.

We denote the probability measure of the RV X by PX .
If PX is absolutely continuous with respect to (w.r.t.) the
Lebesgue measure, then we denote its probability density
function (PDF) as fX . We denote by XG a Gaussian RV
with the same mean and variance as X , and we denote the
corresponding Gaussian density as gX .

We define the quantization of a real-valued RV X with
precision m as

[X]m ,
bmXc
m

(2)

where bac is the largest integer less than or equal to a.
Likewise, dae denotes the smallest integer greater than or
equal to a. We denote by [Xk

` ]m = ([X`]m, . . . , [Xk]m) the
component-wise quantization of Xk

` (and similarly for other
finite or countably infinite collections of RVs and random
vectors). For complex RVs Z with real part R and imaginary
part I , the quantization [Z]m is equal to [R]m + ı[I]m. We
define C(zk1 , a) , [z1, z1 + a) × · · · × [zk, zk + a) as the
k-dimensional hypercube in Rk, with its bottom-left corner
at zk1 and with sidelength a. For example, we have that
[Xk

1 ]m = zk1 if Xk
1 ∈ C(zk1 , 1/m).

Let H(·), h(·), and D(·‖·) denote entropy, differential
entropy, and relative entropy, respectively, and let I(·; ·) de-
note mutual information [10]. We take logarithms to base
e ≈ 2.718, so mutual informations and entropies have dimen-
sion nats. The entropy rate of a discrete-valued, stationary,
L-variate process {Xt} is [10, Sec. 4.2]

H ′({Xt}) , lim
k→∞

H(Xk
1)

k
. (3)

Note that the stationarity of {Xt} guarantees that the limit in
(3) exists and is equal to [10, Th. 4.2.1]

lim
k→∞

H(Xk
1)

k
= lim
k→∞

H(X1|X0
−k). (4)

We say that a stationary process {Xt} is ψ∗-mixing if

lim
k→∞

sup
A,B

PX0
−∞,X

∞
k

(A ∩B)

PX0
−∞

(A)PX∞k
(B)

= 1 (5)

2If k < `, then Xk
` is the empty set.
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where the supremum is over all A ∈ F0
−∞ and B ∈ F∞k

satisfying PX0
−∞

(A)PX∞k
(B) > 0, and where F0

−∞ and F∞k
are the σ-fields generated by X0

−∞ and X∞k , respectively. The
ψ∗-mixing property implies that {Xt} is information regular,
i.e., [11, pp. 111-112]

lim
k→∞

I(X∞k ;X0
−∞) = 0. (6)

III. RÉNYI INFORMATION DIMENSION

The Rényi information dimension of a collection of RVs Xk
1

is defined as [1]

d(Xk
1 ) , lim

m→∞

H([Xk
1 ]m)

logm
, if the limit exists. (7)

When the limit does not exist, we say that the information
dimension does not exist. In this case, one may replace the
limit either by the limit superior or by the limit inferior
(denoted as lim and lim, respectively)

d̄(Xk
1 ) , lim

m→∞

H([Xk
1 ]m)

logm
(8a)

d(Xk
1 ) , lim

m→∞

H([Xk
1 ]m)

logm
(8b)

and call d̄(Xk
1 ) and d(Xk

1 ) the upper and lower information
dimension of Xk

1 , respectively. Clearly,

d̄(Xk
1 ) = d(Xk

1 ) = d(Xk
1 ) (9)

if the limit in (7) exists.
We shall follow this notation throughout the document.

Specifically, when reporting results in connection with limits,
an overline (·) indicates that the quantity in the brackets
has been computed using the limit superior, an underline (·)
indicates that it has been computed using the limit inferior,
both an overline and an underline (·) indicates that a result
holds irrespective of whether the limit superior or limit inferior
is taken. We write no lines if the limit exists.

Definition 1: For two RVs X and W with joint probabil-
ity measure PX,W , the conditional information dimension is
defined as

d(X|W ) , lim
m→∞

H([X]m|W )

logm
(10)

provided the limit exists. If the limit does not exist, then we
define the upper and lower conditional information dimension
d̄(X|W ) and d(X|W ) by replacing the limit with the limit
superior and the limit inferior, respectively.

A. Properties of Information Dimension

The information dimension of a collection Xk
1 is bounded

by the number of RVs in the collection, given the integer part
of this collection has finite entropy.

Lemma 1 ([1, eq. (7)], [4, Prop. 1]): Let Xk
1 be a collection

of real-valued RVs. If H([Xk
1 ]1) <∞, then

0 ≤ d(Xk
1 ) ≤ d̄(Xk

1 ) ≤ k. (11)

If H([Xk
1 ]1) =∞, then d(Xk

1 ) =∞.
Trivially, if Xk

1 is a collection of discrete RVs satisfying
H([Xk

1 ]1) < ∞, then d(Xk
1 ) = 0. Moreover, if the joint

distribution of Xk
1 is absolutely continuous w.r.t. the Lebesgue

measure on Rk and if H([Xk
1 ]1) < ∞, then d(Xk

1 ) = k [1,
Th. 4]. More generally, Rényi claims that the information
dimension of Xk

1 equals n < k if the joint distribution
of Xk

1 is absolutely continuous on some sufficiently smooth
n-dimensional manifold in Rk [1, p. 209]. Furthermore, if
X is a real-valued RV satisfying H([X]1) < ∞ and with
probability measure

PX = (1− ρ)Pd + ρPc (12)

where Pd is a discrete measure, Pc is an absolutely-continuous
measure, and 0 ≤ ρ ≤ 1, then [1, Th. 3]

d(X) = ρ. (13)

Two well-known properties of entropy are that it is reduced
by conditioning [10, Th. 2.6.5] and that it obeys a chain
rule. Furthermore, the conditional entropy of X given Y can
be computed by first calculating the entropy conditioned on
the event that Y = y, and by then averaging over Y . The
corresponding results for information dimension are presented
in the following three lemmas.

Lemma 2: Suppose that H([X]1) <∞. Then, we have for
any two RVs X and Y∫

d(X|Y = y)dPY (y) ≤ d(X|Y )

≤ d̄(X|Y ) ≤
∫
d̄(X|Y = y)dPY (y). (14)

Consequently, if d(X|Y = y) exists PY -almost surely, then
the limit in (10) exists and

d(X|Y ) =

∫
d(X|Y = y)dPY (y). (15)

Proof: See Appendix A-A.
Lemma 3: For any two RVs X and Y , we have

d(X|Y ) ≤ d(X) (16)

with equality if X and Y are independent.
Proof: Since conditioning reduces entropy, we have

H([X]m|Y ) ≤ H([X]m), with equality if X and Y are
independent. The lemma follows by dividing both sides of
the inequality by logm and taking limits as m→∞.

Lemma 4: For the collection of RVs Xk
1 , we have

k∑
t=1

d̄(Xt) ≥ d̄(Xk
1 ) ≥ d(Xk

1 ) ≥
k∑
t=1

d(Xt|Xt−1
1 ). (17)

Proof: See Appendix A-B.
The left-most inequality in (17) holds with equality if all

information dimensions exist and the RVs Xk
1 are independent.

There are examples where the right-most inequality is strict.
Example 1: Let (X1, X2) be uniformly distributed on

[0, 1]2 and let Y = g(X1, X2), where g: [0, 1]2 → [0, 1] is
bijective. Such a function can be constructed (see also the
discussion in [4, Section IV.B]). Since g is bijective, we have
d(Y |X1, X2) = d(X1, X2|Y ) = 0. Moreover, since (X1, X2)
is uniformly distributed on [0, 1]2, we have d(X1, X2) = 2.
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Finally, we have d(Y ) ≤ 1 by Lemma 1. From Lemma 4, we
get

d(X1, X2, Y ) ≥ d(X1, X2) + d(Y |X1, X2) = 2. (18)

However, we also have

d(Y ) + d(X1, X2|Y ) ≤ 1. (19)

It follows that

d(X1, X2, Y ) > d(Y ) + d(X1, X2|Y ) (20)

so the chain rule d(X1, X2, Y ) ≥ d(Y ) + d(X1, X2|Y ) holds
with strict inequality.

The above example not only demonstrates that the chain rule
for information dimension may hold with strict inequality, it
also shows that the order in which the chain rule is expanded
can be crucial.

B. Information Dimension of Finite-Variance RVs

For RVs Xk
1 that have a finite variance, the upper bound on

d̄(Xk
1 ) presented in Lemma 1 can be tightened. To this end, we

introduce further notation. We denote the covariance matrix
of the vector X = (X1, . . . , Xk)T by CXk1 . Furthermore,
the cross-covariance matrix between X = (X1, . . . , Xk)T and
Y = (Y1, . . . , Yk)T is denoted by CXk1 Y k1 , and the covariance
matrix of the vector (X1, . . . , Xk, Y1, . . . , Yk)T is denoted by
CXk1 ,Y k1 . Clearly,

CXk1 ,Y k1 =

[
CXk1 CXk1 Y k1
CT
Xk1 Y

k
1

CY k1

]
. (21)

One can show that the information dimension of a collection
of real-valued RVs Xk

1 cannot exceed the rank of its covariance
matrix, i.e.,

d(Xk
1 ) ≤ rank(CXk1 ). (22)

This agrees with the intuition that linearly-dependent compo-
nents of Xk

1 do not contribute to the information dimension.
One can further show that collections of Gaussian RVs achieve
this upper bound with equality. Thus, among all RVs with
a given covariance structure, the Gaussian RV maximizes
information dimension. These results follow directly from the
more general results for stochastic processes (Theorem 10) in
Section IV.

The next theorem evaluates the conditional information
dimension of Xk

1 given Y `1 for jointly Gaussian RVs (Xk
1 , Y

`
1 ).

Theorem 5: Let (Xk
1 , Y

`
1 ) be a collection of real-valued,

jointly Gaussian RVs. The conditional information dimension
of Xk

1 given Y `1 is equal to

d(Xk
1 |Y `1 ) = rank(CXk1 |Y `1 ) (23)

where CXk1 |Y `1 is the generalized Schur complement of CY `1
in CXk1 ,Y `1 .

Proof: See Appendix A-C.
Theorem 5 implies that the chain rule in Lemma 4 holds
with equality for Gaussian RVs. Indeed, if Xk

1 is a col-
lection of real-valued, jointly Gaussian RVs, then we have
d(Xk

1 ) = rank(CXk1 ) and d(X`
1) = rank(CX`1). Moreover, by

Theorem 5, d(Xk
`+1|X`

1) equals the rank of the generalized

Schur complement of CX`1 in CXk1 , denoted by CXk`+1|X
`
1
.

Since the rank of CXk1 can be written as the sum of the ranks
of CX`1 and CXk`+1|X

`
1

[12, 7.1.P28], the claim follows.

IV. THE INFORMATION DIMENSION RATE

We next propose the information dimension rate as a gen-
eralization of information dimension to stochastic processes.
We define the information dimension rate for general (possibly
non-stationary) processes. However, for the sake of simplicity,
most of our results will then be presented for stationary
processes.

Definition 2: The information dimension rate of the
L-variate stochastic process {Xt} is defined as

d({Xt}) , lim
m→∞

lim
k→∞

H([Xk
1 ]m)

k logm
(24)

provided the limits exist. If the limits do not exist, then
we define the upper and lower information dimension rate
d̄({Xt}) and d({Xt}) by replacing the limits with the limits
superior and limits inferior, respectively.

A. Properties of the Information Dimension Rate

The information dimension rate satisfies properties similar
to those presented in Lemma 1 for the information dimension.
We summarize them in the following lemma.

Lemma 6: Let {Xt} be a stationary, L-variate, real-valued
process. If H([X1]1) <∞, then

0 ≤ d({Xt}) ≤ d(X1) ≤ L. (25)

If H([X1]1) =∞, then d({Xt}) =∞.
Proof: Suppose first that H([X1]1) < ∞. Then, the

rightmost inequality in (25) follows from (11). The left-most
inequality follows from the nonnegativity of entropy. Finally,
the center inequality follows since conditioning reduces en-
tropy, hence H ′({[Xt]m}) ≤ H([X1]m).

Now suppose that H([X1]1) =∞. Since [X1]1 is a function
of [Xk

1 ]m for every m, k ∈ N, we have

H([X1]1) ≤ H([Xk
1 ]m). (26)

This implies that H ′({[Xt]m}) = ∞, and the claim that
d({Xt}) =∞ follows from Definition 2.

The next result discusses how Lipschitz transformations
affect the information dimension rate.

Lemma 7: Let {Xt} be a stationary, L-variate, real-valued
process, and let {ft, t ∈ Z} be a sequence of Lipschitz func-
tions from RL to RM with Lipschitz constants Kt satisfying

sup
t∈Z

Kt <∞. (27)

Then,

d({ft(Xt)}) ≤ d({Xt}) = d({Xt, ft(Xt)}). (28)

Proof: See Appendix B.
If {ft} is a sequence of bi-Lipschitz functions with

uniformly-bounded Lipschitz constants, then Lemma 7 im-
plies that d({ft(Xt)}) = d({Xt}). As a corollary, we thus
obtain that the information dimension rate is invariant under
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scaling and translation. More generally, it follows that, if {ct}
and {Wt} are sequences of L-variate vectors and (L × L)-
dimensional matrices, the latter satisfying supt∈Z ‖Wt‖ <∞
and supt∈Z ‖W−1

t ‖ <∞ for some induced matrix norm ‖ · ‖,
then

d({WtXt + ct}) = d({Xt}). (29)

Since the information dimension rate of an i.i.d. process
equals the information dimension of its marginal RVs, we
further recover the well-known result that the information
dimension of collections of RVs is invariant under scaling and
translation [13, Lemma 3].

The next lemma shows that the information dimension rate
of a collection of stochastic processes is unaffected by those
that have zero information dimension rate.

Lemma 8: Let {Xt} and {Zt} be two jointly stationary, L-
variate, real-valued processes, and assume that d({Zt}) = 0.
Then,

d({Xt}, {Zt}) = d({Xt}) (30)
d({Xt + Zt}) = d({Xt}). (31)

Moreover, if Z is discrete with H(Z) < ∞, then we further
have

d({Xt}|Z) , lim
m→∞

lim
k→∞

H([Xk
1 ]m|Z)

k logm
= d({Xt}). (32)

Proof: See Appendix C.
Inter alia, Lemma 8 can be used to compute the information

dimension rate of a countable mixture of stochastic processes.
For example, specialized to i.i.d. processes, (32) together with
Lemma 2 recovers (13) by choosing X1 ∼ Pd, X2 ∼ Pc, and
PZ(1) = 1− PZ(2) = 1− ρ.

B. Information Dimension Rate vs. Rate-Distortion Dimension

Let R(Xk
1 , D) denote the rate-distortion function of the

source Xk
1 , i.e.,

R(Xk
1 , D) , inf

P
X̂k1 |X

k
1

:

E[‖X̂k
1−X

k
1‖

2
2]≤D

I(Xk
1 ; X̂k

1) (33)

where the infimum is over all conditional distributions of X̂k
1

given Xk
1 such that

E[‖X̂k
1 −Xk

1‖22] ≤ D (34)

and where ‖ · ‖2 denotes the Euclidean norm. We have the
following definition.

Definition 3: The rate-distortion dimension of the L-variate
stochastic process {Xt} is defined as

dimR({Xt}) , 2 lim
D↓0

lim
k→∞

R(Xk
1 , kD)

−k logD
(35)

provided the limits over D and k exist. (When the pro-
cess {Xt} is stationary, the limit over k always exists [14,
Th. 9.8.1].) If the limits do not exist, then we define the
upper and lower rate-distortion dimension dimR({Xt}) and
dimR({Xt}) by replacing the limits with the limits superior
and limits inferior, respectively.

Intuitively, the rate-distortion function

R(D) , lim
k→∞

R(Xk
1 , kD)

k
(36)

corresponds to the minimum number of nats per source symbol
required to compress a stationary and ergodic source {Xt}
with a vector quantizer of average per-symbol distortion not
exceeding D [14, Sec. 9.8]. The rate-distortion dimension
characterizes the growth of R(D) as D vanishes. For example,
for an i.i.d. Gaussian source with variance σ2, we have [10,
Th. 13.3.2]

R(D) =
1

2
log

(
σ2

D

)
1
{

0 ≤ D ≤ σ2
}

(37)

where 1{·} denotes the indicator function. Observe that in
this case R(D) grows like 1/2 log(1/D) as D → 0. The rate-
distortion dimension corresponds to twice the pre-log factor
of the rate-distortion function R(D), which in this case is 1.

In contrast, the information dimension rate characterizes
the growth of the entropy rate H ′({[Xt]m}) as m increases.
This entropy rate, in turn, corresponds essentially to the
number of nats per source symbol required to compress each
symbol Xt of a stationary and ergodic source {Xt} with a
uniform quantizer of step size 1/m. Since a symbol-wise,
uniform quantizer cannot outperform the best vector quantizer,
it follows that the information dimension rate is lower-bounded
by the rate-distortion dimension.

For RVs, Kawabata and Dembo showed that the rate-
distortion dimension is actually equal to its information dimen-
sion [2, Prop. 3.3]. Thus, a symbol-wise, uniform quantizer
achieves the same information dimension as the best vector
quantizer. The following theorem generalizes this result to
stochastic processes.

Theorem 9: For any L-variate, real-valued process {Xt},

dimR({Xt}) = d({Xt}). (38)

Proof: See Appendix D.
Note that Theorem 9 also holds for non-stationary processes.

C. Information Dimension Rate of Finite-Variance Processes

Let {Xt} be a stationary, L-variate, real-valued process
with mean vector µ and (matrix-valued) spectral distribution
function (SDF) θ 7→ FX(θ). Thus, FX is a bounded, non-
decreasing, and right-continuous function on [−1/2, 1/2] such
that the autocovariance function

KX(τ) , E
[
(Xt+τ − µ)(Xt − µ)T

]
, τ ∈ Z (39)

is given by the Lebesgue-Stieltjes integral [15, (7.3), p. 141]

KX(τ) =

∫ 1/2

−1/2

e−ı2πτθdFX(θ), τ ∈ Z. (40)

It follows that the (i, j)-th element of FX is the cross SDF
θ 7→ FXiXj (θ) of the component processes {Xi,t} and {Xj,t},
i.e.,

KXiXj (τ) =

∫ 1/2

−1/2

e−ı2πτθdFXiXj (θ), τ ∈ Z (41)
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where

KXiXj (τ) , E [(Xi,t+τ − µi)(Xj,t − µj)] , τ ∈ Z (42)

denotes the cross-covariance function. It further follows that
the diagonal elements of FX are real and non-decreasing, and
they satisfy FXi(1/2) − FXi(−1/2) = σ2

i , where σi denotes
the standard deviation of Xi,t. It can be shown that θ 7→ FX(θ)
has a derivative almost everywhere, which has positive semi-
definite, Hermitian values [15, (7.4), p. 141]. We shall denote
the derivative of FX by F′X. When FX is absolutely continuous
w.r.t. the Lebesgue measure, its derivative F′X coincides with
the PSD SX of {Xt}.

The following theorem shows that, among all processes of
a given SDF, the Gaussian process maximizes the informa-
tion dimension rate. It further characterizes the information
dimension rate of such processes in terms of the SDF.

Theorem 10: Let {Xt} be a stationary, L-variate, real-valued
process with SDF FX. Then,

d({Xt}) ≤
∫ 1/2

−1/2

rank(F′X(θ))dθ (43)

with equality if {Xt} is Gaussian.
Proof: See Appendix E.

In order to prove Theorem 10, we invoke Bussgang’s
theorem to obtain an expression for the SDF of a quantized
Gaussian process {[Xt]m} as a function of the SDF of the
original process {Xt}. Since we believe that this result is
interesting on its own, we present it below.

Lemma 11: Let {Xt} be a stationary, L-variate, real-valued,
Gaussian process with mean vector µ and SDF FX. Then, the
(i, j)-th entry of the SDF θ 7→ F[X]m(θ) of {[Xt]m} satisfies

F[Xi]m[Xj ]m(θ) = (ai + aj − 1)FXiXj (θ) + FNiNj (θ) (44)

where Ni,t , Xi,t − [Xi,t]m and

ai ,
1

σ2
i

E [(Xi,t − µi)([Xi,t]m − E [[Xi,t]m])] . (45)

(In (45), µi and σi denote the mean and standard deviation of
Xi,t.) For every i = 1, . . . , L, we have

|1− ai| ≤
1

m

√
2

πσ2
i

(46)

and ∫ 1/2

−1/2

dFNi(θ) ≤
1

m2
. (47)

Moreover, if all component processes have zero mean and unit
variance, then a1 = . . . = aL and

F[X]m(θ) = (2a1 − 1)FX(θ) + FN(θ). (48)

Proof: See Appendix F.
As a corrolary to Theorem 10, we obtain that for univariate,

stationary, Gaussian processes with PSD SX , the information
dimension rate is equal to the Lebesgue measure of the set of
harmonics on [−1/2, 1/2] where SX is positive, i.e.,

d({Xt}) = λ({θ: SX(θ) > 0}) (49)

where λ(·) denotes the Lebesgue measure. As pointed out by
one of the reviewers, (49) can also be obtained directly by
using the equivalence of information dimension rate and rate-
distortion dimension (Theorem 9) together with the parametric
representation of the rate-distortion function [14, eqs. (9.7.42)
& (9.7.43)]

R(Dβ) =
1

2

∫
Bβ

log

(
SX(θ)

β

)
dθ (50)

Dβ =

∫ 1/2

−1/2

min{SX(θ), β}dθ (51)

for β > 0, where Bβ , {θ ∈ [−1/2, 1/2] : SX(θ) > β}.
Indeed, when λ(B0) is zero, we have d({Xt}) = 0 since
in this case the process {Xt} has zero variance and, hence,
the entropy rate of the quantized process {[Xt]m} is zero,
too. When λ(B0) is strictly positive, the distortion Dβ can be
bounded as

βλ(Bβ) ≤ Dβ ≤ βλ(B0). (52)

It follows by the continuity of the Lebesgue measure that
Dβ/β → λ(B0) as β → 0. Consequently, Dβ → 0 if, and only
if, β → 0 and the rate-distortion dimension can be written as

dimR({Xt}) = lim
β↓0

∫
Bβ log

(
SX(θ)
β

)
dθ

− logDβ

= lim
β↓0

{
λ(Bβ) +

∫
Bβ log SX(θ)dθ

− log β

}

= λ(B0) + lim
β↓0

∫
Bβ log SX(θ)dθ

− log β
. (53)

By the continuity of the Lebesgue measure, for every ε > 0
there exists a β′ ∈ (0, 1) such that λ(Bβ′) ≥ λ(B0)− ε. Since
Bβ ⊆ B0, it follows that

λ(Bβ \ Bβ′) ≤ λ(B0)− λ(Bβ′) ≤ ε, β < β′. (54)

Thus, for every 0 < β < β′ < 1,∫
Bβ

log SX(θ)dθ =

∫
Bβ\Bβ′

log SX(θ)dθ +

∫
Bβ′

log SX(θ)dθ

≥ λ(Bβ \ Bβ′) log β + λ(Bβ′) log β′

≥ ε log β + λ(Bβ′) log β′. (55)

Dividing both sides of (55) by − log β, and letting first β and
then ε tend to zero, we obtain that the second term on the RHS
of (53) is nonnegative. However, by assumption the process
{Xt} has finite variance, so its PSD SX is integrable over
[−1/2, 1/2]. Consequently, using the inequality log x ≤ x− 1
and the nonnegativity of SX , we obtain that∫

Bβ
log SX(θ)dθ ≤

∫ 1/2

−1/2

SX(θ)dθ − 1. (56)

Dividing both sides of (56) by − log β, and letting β tend to
zero, we obtain that the second term on the RHS of (53) is
also nonpositive. We conclude that this term is zero, so (49)
follows from (53) and Theorem 9.

We observe from Theorem 10 that the information dimen-
sion rate of a Gaussian process {Xt} depends only on the
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derivative of its SDF FX, which coincides almost everywhere
with the derivative of the absolutely-continuous part of FX.
Indeed, any SDF FX can be decomposed as [15, (4.3), p. 124]

FX(θ) = FX,a(θ) + FX,d(θ) + FX,s(θ) (57)

where FX,a is absolutely continuous w.r.t. the Lebesgue mea-
sure, FX,d is discrete, and FX,s is singular. Furthermore,
F′X(θ) = F′X,a(θ) almost everywhere [15, Sec. 4]. Conse-
quently, the information dimension rate of a Gaussian process
depends only on the absolutely-continuous part of its SDF. By
combining (57) with Theorem 10 and Lemma 8, we can show
that the same is true for non-Gaussian processes.

Corollary 12: Let {Xt} be a stationary, L-variate, real-
valued process with SDF FX, and let {Xt,a} be a stationary,
L-variate, real-valued process with SDF FX,a, where FX,a is
the absolutely-continuous part of FX, cf. (57). Then

d({Xt}) = d({Xt,a}). (58)

Proof: Combining the decomposition (57) with the spec-
tral representation of stationary processes [16, Sec. 4.11], it
can be shown that every stationary process can be written as

Xt = Xt,a + Xt,d + Xt,s, t ∈ Z (59)

where {Xt,a}, {Xt,d}, and {Xt,s} are stationary, mutually
uncorrelated, stochastic processes with the respective SDFs
FX,a, FX,d, and FX,s; see [16, p. 758] and references therein.
Since F′X,d and F′X,s are zero almost everywhere [15, Sec. 4],
we obtain from Theorem 10 and the nonnegativity of the
information dimension rate (Lemma 6) that

d({Xt,d}) = d({Xt,s}) = 0. (60)

Corollary 12 follows by applying Lemma 8 first together with
(60) to show that

d({Xt,d + Xt,s}) = 0 (61)

and then together with (61) to show that

d({Xt,a + Xt,d + Xt,s}) = d({Xt,a}). (62)

D. Information Dimension Rate of Complex-Valued Processes

So far, we have considered real-valued stochastic processes.
However, every complex-valued RV can be written as a
two-dimensional, real-valued, random vector, so the previous
results directly generalize to the complex case. In particular,
one can define the information dimension rate of the L-variate,
complex-valued process {Zt} as the information dimension
rate of the (2L)-variate, real-valued process {X̂t} that follows
by stacking the real part of Zt on top of the imaginary part
of Zt.

Let {Zt} be a stationary, L-variate, complex-valued process
with mean vector µ and matrix-valued SDF FZ, i.e.,

KZ(τ) =

∫ 1/2

−1/2

e−ı2πτθdFZ(θ), τ ∈ Z (63)

where

KZ(τ) , E
[
(Zt+τ − µ)(Zt − µ)

H
]
, τ ∈ Z (64)

is the autocovariance function. We say that a stationary, L-
variate, complex-valued process {Zt} is proper if it has finite
variance, its mean vector is the zero vector, and its pseudo-
autocovariance function satisfies

KZ(τ) , E [Zt+τZ
T
t] = 0, τ ∈ Z. (65)

The following result generalizes Theorem 10 to complex-
valued stochastic processes.

Theorem 13: Let {Zt} be a stationary, L-variate, complex-
valued process with matrix-valued SDF FZ. Then,

d({Zt}) ≤ 2

∫ 1/2

−1/2

rank(F′Z(θ))dθ (66)

with equality if {Zt} is Gaussian and proper.
Proof: See Appendix G.

Note that neither Gaussianity nor properness is sufficient for
equality in Theorem 13. Conversely, Gaussianity and proper-
ness are not necessary for equality. For example, any univariate
stationary Gaussian process achieves (66) with equality if its
real and imaginary components are independent and if the
derivatives of their SDFs have matching support.

V. ANOTHER DEFINITION OF INFORMATION DIMENSION

Jalali and Poor [7] proposed a different definition for the
information dimension of a univariate stochastic process. We
shall refer to this information dimension as the block-average
information dimension and denote it by d′({Xt}). In this sec-
tion, we discuss scenarios in which the information dimension
rate (Definition 2) coincides with and differs from the block-
average information dimension. For ease of exposition, in this
section we follow [7] and restrict our attention to univariate
real-valued processes.

The following definition for the information dimension of
stochastic processes was proposed in [7].

Definition 4: The block-average information dimension of
the stochastic process {Xt} is defined as

d′({Xt}) , lim
k→∞

lim
m→∞

H([Xk]m|[Xk−1
1 ]m)

logm
(67)

provided the limits exist. If the limits do not exist, then one
can define the upper and lower block-average information
dimension d

′
({Xt}) and d′({Xt}) by replacing the limits by

limits superior and limits inferior, respectively.
In the following, we restrict ourselves to stationary pro-

cesses, in which case the limit over k in (67) is guaranteed to
exist. We refer to d′({Xt}) as the block-average information
dimension because it was shown in [7, Lemma 3] that, if {Xt}
is stationary and the information dimension d(Xk

1 ) exists for
every k, then

d′({Xt}) = lim
k→∞

d(Xk
1 )

k
. (68)

If d(Xk
1 ) does not exist, then the proof of [7, Lemma 3] reveals

that

d′({Xt}) ≤ lim
k→∞

d(Xk
1 )

k
≤ lim
k→∞

d̄(Xk
1 )

k
= d
′
({Xt}). (69)
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Since conditioning reduces entropy, it follows immediately
that

d
′
({Xt}) ≤ d(Xt). (70)

Thus, like the information dimension rate, the block-average
information dimension of the stochastic process {Xt} cannot
exceed the information dimension of the marginal RV Xt.

While the entropy rate H ′({Xt}) of a stationary process
{Xt} can alternatively be written as the conditional entropy
of X1 given X0

−∞, cf. (4), the block-average information
dimension d′({Xt}) does, in general, not permit a similar
expression. In fact, let

d(X1|X0
−∞) , lim

m→∞
lim
k→∞

H([X1]m|X0
−k)

logm
(71)

provided the limit over m exists. (Since conditioning reduces
entropy, the limit over k always exists.) The upper and lower
information dimensions d̄(X1|X0

−∞) and d(X1|X0
−∞) are

defined analogously by replacing the limit over m by the limit
superior and limit inferior, respectively. Then, we have that

d(X1|X0
−∞) ≤ d′({Xt}) (72)

where the inequality can be strict; see Theorem 14 and
Example 4 below.

A. Block-Average Information Dimension vs.
Information Dimension Rate

We next demonstrate that, for ψ∗-mixing processes, the
information dimension rate d({Xt}) coincides with the block-
average information dimension d′({Xt}). However, in general
the two definitions do not coincide, but there exists an ordering
between them.

Theorem 14: Let {Xt} be a stationary process. Then,

d(X1|X0
−∞) ≤ d({Xt}) ≤ d

′
({Xt}). (73)

Moreover,

lim
k→∞

lim
m→∞

I([Xk]m; [X0
−∞]m|[Xk−1

1 ]m)

logm

≤ d′({Xt})− d({Xt})

≤ lim
k→∞

lim
m→∞

I([Xk]m; [X0
−∞]m|[Xk−1

1 ]m)

logm
(74)

where the limits over k exist because, by the stationarity of
{Xt}, the mutual information I([Xk]m; [X0

−∞]m|[Xk−1
1 ]m) is

monotonically decreasing in k.
Proof: See Appendix H-A.

The inequalities in (74) imply that, if the limits over m
exist, then

lim
k→∞

lim
m→∞

I([Xk]m; [X0
−∞]m|[Xk−1

1 ]m)

logm
= 0 (75)

is a necessary and sufficient condition for the equality of
d({Xt}) and d

′
({Xt}). Note that, for every m = 2, 3, . . .,

we have [17, eq. (8.9)]

lim
k→∞

I([Xk]m; [X0
−∞]m|[Xk−1

1 ]m) = 0. (76)

Thus, (75) is satisfied for processes {Xt} that allow us to
change the order of taking limits as k and m tend to infinity.
However, in general (75) is difficult to check. We next present
a sufficient condition that is easier to verify.

Corollary 15: Let {Xt} be a stationary process. Assume
that there exists a nonnegative integer n such that

I(Xk
1 ;X−n−∞) <∞, k = 1, 2, . . . (77)

Then, d({Xt}) = d
′
({Xt}).

Proof: See Appendix H-B.
Condition (77) holds for ψ∗-mixing processes. Indeed, since

every ψ∗-mixing process satisfies (6), it follows that one can
find an n such that I(X∞1 ;X−n−∞) < ∞. The condition (77)
holds then by the data processing inequality.

If (77) holds for n = 0, then we even have that

d(X1|X0
−∞) = d({Xt}) = d

′
({Xt}) = d(Xt). (78)

Thus, in this case all presented generalizations of information
dimension to stochastic processes coincide with the informa-
tion dimension of the marginal RV. To prove (78), we note
that (77) with n = 0 gives

I(X1;X0
−∞) <∞. (79)

It then follows by the data processing inequality that

I([X1]m;X0
−∞) ≤ I(X1;X0

−∞) <∞. (80)

Consequently,

d(X1|X0
−∞) = lim

m→∞

H([X1]m)− I([X1]m;X0
−∞)

logm

= d(X1) (81)

if the limit exists. In general, we have d(X1|X0
−∞) = d(Xt).

The claim (78) follows then by (73) and because, by (70),
d
′
({Xt}) ≤ d(Xt).
Condition (77) with n = 0 is satisfied, for example, if

{Xt} is a sequence of i.i.d. RVs, if it is a discrete-valued
stochastic process with finite marginal entropy, or if it is
a continuous-valued stochastic process with finite marginal
differential entropy and finite differential entropy rate.

In the following, we present two examples of processes
{Xt} for which d(X1|X0

−∞) = d({Xt}) = d
′
({Xt}). As

we shall argue, neither of these examples satisfies (77), hence
(77) is sufficient but not necessary.

Example 2: Let {Bt} be a sequence of i.i.d. Bernoulli-ρ
RVs, i.e., PBt(0) = 1 − PBt(1) = ρ, and let {Yt} be a
sequence of i.i.d. RVs with PDF fY supported on [0, 1] and
finite differential entropy. By (13), we thus have that d(Yt) = 1
for every t. We define the stochastic process {Xt} as

Xt = BtXt−1 + (1−Bt)Yt, t ∈ Z (82)

and assume that Xt has the same marginal distribution as Yt.
Note that {Xt} is first-order Markov, so

d(X1|X0
−∞) = d(X1|X0) = ρd(Y ) = ρ. (83)

Furthermore, [7, Th. 3] demonstrates that d′({Xt}) = ρ. Thus,
together with (73), this yields that

d(X1|X0
−∞) = d({Xt}) = d′({Xt}) = ρ. (84)
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The stochastic process {Xt}, as defined by (82), satisfies (75)
but not (77). Indeed, for every nonnegative integer n, we have
I(X1;X−n) =∞, since X1 has finite differential entropy and
the event X1 = X−n has positive probability. It follows that
I(Xk

1 ;X−n−∞) = ∞ for every k and n, so (77) is violated. In
contrast, we have

lim
m→∞

I([Xk]m; [X0
−∞]m|[Xk−1

1 ]m)

logm

= lim
m→∞

I([Xk]m; [X0
−∞]m|[Xk−1

1 ]m, Bk)

logm
(85)

since conditioning on the binary random variable Bk changes
mutual information by at most one bit. If Bk = 1, then
[Xk]m = [Xk−1]m; if Bk = 0, then [Xk]m = [Yk]m, which is
independent of [Xk−1

−∞ ]m. In both cases, the conditional mutual
information between [Xk]m and [X0

−∞]m given [Xk−1
1 ]m is

zero, so (75) is satisfied.
Example 3: Let the process {X̃t} be periodic with period

P ∈ N and have finite marginal differential entropy. Further
let ∆ be uniformly distributed on {0, . . . , P − 1}. Then, the
shifted process {Xt}, defined by

Xt = X̃t+∆, t ∈ Z (86)

is stationary [18, Th. 10-5] and has finite marginal differential
entropy. For every k = P, P+1, . . . and m = 2, 3, . . ., we have
that H([X1]m|X0

−k+1) = 0 and H([Xk
1 ]m) = H([XP

1 ]m),
hence

d(X1|X0
−∞) = d({Xt}) = d′({Xt}) = 0. (87)

As in the previous example, the stochastic process {Xt}
satisfies (75) but not (77). Indeed, for every nonnegative
integer n, we have I(Xk

1 ;X−n−∞) = ∞ since X1 has finite
differential entropy and the process is periodic. In contrast,
[Xk]m = [Xk−P ]m, so the conditional mutual information
between [Xk]m and [X0

−∞]m given [Xk−1
1 ]m is zero when

k = P + 1, P + 2 . . .
In many cases, the inequalities in Theorem 14 can be strict.

The following example shows such a strict inequality for
the class of stationary Gaussian processes {Xt} with PSD
supported on a set of positive Lebesgue measure.3

Example 4: Let {Xt} be a stationary Gaussian process with
zero mean, variance σ2, and PSD SX having support B0. It
follows from Theorem 10 that

d({Xt}) = λ (B0) . (88)

We next argue that if 0 < λ(B0) < 1 then d′({Xt}) = 1 and
d(X1|X0

−∞) = 0. Consequently,

d(X1|X0
−∞) < d({Xt}) < d′({Xt}). (89)

To show that d′({Xt}) = 1, we note that

d′({Xt}) = lim
k→∞

lim
m→∞

H([Xk]m|[Xk−1
1 ]m)

k logm

≥ lim
k→∞

lim
m→∞

H([X0]m|X−1
−k)

logm
(90)

3The assumption that {Xt} has a PSD is made for notational convenience
and is not essential. All steps in Example 4 continue to hold if we replace
SX by the derivative of the SDF FX .

where the inequality follows by the stationarity of {Xt}; be-
cause conditioning reduces entropy; and because, conditioned
on X−1

−k , [X0]m is independent of [X−1
−k ]m. Since {Xt} is

Gaussian, it follows that, conditioned on X−1
−k , the RV X0

is Gaussian with mean E[X0|X−1
−k ] and variance σ2

k, which is
independent of X−1

−k . It can be further shown that if λ(B0) > 0,
then σ2

k > 0 for every finite k (see Lemma 16 below). It
follows that, conditioned on any X−1

−k = x−1
−k, the RV X0 has

a PDF, so by (13)

lim
m→∞

H([X0]m
∣∣ X−1
−k = x−1

−k)

logm
= 1, k = 1, 2, . . . (91)

Together with Fatou’s lemma, this shows that the RHS of (90)
is 1, hence d′({Xt}) = 1.

To demonstrate that d(X1|X0
−∞) = 0, we note that

λ(B0) < 1 implies that∫ 1/2

−1/2

log SX(θ)dθ = −∞. (92)

This is a necessary and sufficient condition for σ2
k → 0 as

k → ∞; see, e.g., [19, Sec. 10.6]. Intuitively, the fact that
σ2
k → 0 implies that the conditional distribution of X1 given
X0
−∞ is almost surely degenerate, hence d(X1|X0

−∞) = 0. To
prove this rigorously, we apply [13, Lemma 30] together with
the fact that conditioning reduces entropy to upper-bound

H([X1]m|X0
−k) ≤ H([X1 − E[X1|X0

−k]]m) + log 2. (93)

Expressing X1−E[X1|X0
−k] as σk+1Z, where Z is zero-mean,

unit-variance Gaussian, the RHS of (93) can be written as
H(bmσk+1Zc) + log 2. Since σ2

k → 0 as k → ∞, we obtain
from [3, Lemma 1] that

lim
k→∞

H([X1]m|X0
−k) ≤ log 2, m = 2, 3, . . . (94)

Consequently, the claim follows from the definition of
d(X1|X0

−∞).
Lemma 16: Let {Xt} be a stationary, univariate, real-valued,

Gaussian process with zero mean, variance σ2, and SDF FX .
Suppose that σ2

k = 0 for some finite k. Then,

λ({θ : F′X(θ) > 0}) = 0. (95)

Proof: See Appendix H-C.

B. Block-Average Information Dimension vs.
Rate-Distortion Dimension

The connection between the block-average information di-
mension and the rate-distortion dimension of a stochastic
process was studied in [8]. The equivalence between the
rate-distortion dimension and the information dimension [2,
Prop. 3.3] directly implies that

d
′
({Xt}) = 2 lim

k→∞
lim
D→0

R(Xk
1 , kD)

−k logD
(96)

Rezagah et al. [8] demonstrated that the order of the limits on
the RHS of (96) can be exchanged. More precisely, [8, Th. 2]
states that if limD→0

R(Xk1 ,kD)
−k logD exists for all k, then

dimR({Xt}) = d
′
({Xt}). (97)
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This may appear as a contradiction to our results, since we
demonstrate in Theorem 9 that dimR({Xt}) = d({Xt}), and
Example 4 demonstrates that there are stochastic processes for
which d({Xt}) < d

′
({Xt}). However, the proof of (97) relies

on the fact that [8, Sec. VI-E]∣∣∣∣1kR(Xk
1 , kD)− lim

κ→∞

1

κ
R(Xκ

1 , κD)

∣∣∣∣ ≤ 1

k
I(Xk

1 ;X0
−∞) (98)

and that the RHS of (98) vanishes as k → ∞. If (79)
holds, then this is indeed the case; see [17, eqs. (8.6)–
(8.10)]. As shown in Corollary 15, in this case we also
have that d

′
({Xt}) = d({Xt}). In fact, as discussed after

Corollary 15, in this case all presented generalizations of
information dimension to stochastic processes coincide with
the information dimension of the marginal RV. In contrast,
if (79) does not hold then, by the data processing inequality,
the RHS of (98) is infinite. This is, for example, the case
if {Xt} is a stationary process with positive variance and
a PSD that is zero on a set of positive Lebesgue measure,
since for such processes the differential entropy h(X1|X0

−∞)
is −∞. Our proof of Theorem 9 does not rely on (98). We thus
conclude that dimR({Xt}) = d({Xt}) for every stochastic
process {Xt}, but that dimR({Xt}) = d

′
({Xt}) only for those

processes for which d
′
({Xt}) = d({Xt}).

VI. OPERATIONAL CHARACTERIZATIONS

Information dimension was recently given an operational
characterization in almost lossless data compression [4].
Specifically, Wu and Verdú defined the minimum ε-achievable
rate R(ε) to be the minimum of R > 0 such that there
exists a sequence of encoders fk : Rk → RbRkc and decoders
gk : RbRkc → Rk satisfying [4, Def. 4]

P[gk(fk(Xk
1 )) 6= Xk

1 ] ≤ ε (99)

for all k sufficiently large. As argued in [4, Sec. IV-B], if
we impose no restrictions on fk and gk, then zero rate is
achievable even for ε = 0, since the cardinality of Rk is the
same for any k. However, if we restrict ourselves either to
encoders fk that are linear or to decoders gk that are Lipschitz
continuous, then the minimum ε-achievable rate for collections
of i.i.d. RVs Xk

1 with a discrete-continuous mixed distribution,
i.e., a distribution of the form (12), is given by

R(ε) = d(X). (100)

Thus, for such RVs, information dimension has an operational
characterization.

For stochastic processes {Xt}, Wu and Verdú further
demonstrated that the minimum ε-achievable rate, achievable
with Lipschitz-continuous decoders gk, can be lower-bounded
as [20, Remark 4]

R(ε) ≥ d′({Xt})− ε. (101)

To the best of our knowledge, for non-i.i.d. processes {Xt},
no matching achievability result exists for almost lossless data
compression.

In contrast, for universal compressed sensing with linear
encoding and decoding via Lagrangian minimum entropy

pursuit, it was shown by Jalali and Poor that d
′
({Xt}) is an

achievable rate when {Xt} is ψ∗-mixing:
Theorem 17 ([7, Th. 8]): Consider a ψ∗-mixing stationary

process {Xt} taking value in [0, 1] with upper block-average
information dimension d

′
({Xt}). For each k, let the entries of

the measurement matrix A ∈ R`×k be drawn i.i.d. according
to a zero-mean, unit-variance, Gaussian distribution. Given Xk

1

generated by {Xt} and (Y1, . . . , Y`)
T = A(X1, . . . , Xk)T, let

X̂ , arg min
u∈Xkm

{
Ĥj(u) +

γ

k2
‖Au− (Y1, . . . , Y`)

T‖22
}

(102)

where Xm , {[x]2m : x ∈ [0, 1]}, Ĥj(·) is the conditional
empirical entropy [7, Def. 1], m = dr log log ke (for r > 1),
j = o( log k

log log k ), and γ = (log k)2r. If the number of
measurements ` = `k satisfies

`k
k
≥ (1 + δ)d

′
({Xt}), for some arbitrary δ > 0 (103)

then
1√
k
‖X̂− (X1, . . . , Xk)T‖2 → 0 in probability (104)

as k →∞.
In words, Theorem 17 states that if the rate of random

linear measurements of Xk
1 is slightly larger than the block-

average information dimension, then the Lagrangian relax-
ation of minimum entropy pursuit provides an asymptotically
distortion-free estimate of Xk

1 in terms of the Euclidean norm.
Thus, for ψ∗-mixing processes, the block-average information
dimension is an achievable rate for almost zero-distortion
recovery.

We next discuss an operational characterization of the rate-
distortion dimension. By Theorem 9, this is also an operational
characterization of the information dimension rate. In [8],
Rezagah et al. considered the almost zero-distortion recovery
of stationary processes when the decoder employs compress-
ible signal pursuit (CSP) optimization:

Theorem 18 ([8, Cor. 2]): Consider a stationary, real-valued
process {Xt} and a system of random linear observations
(Y1, . . . , Y`)

T = A(X1, . . . , Xk)T with measurement matrix
A ∈ R`×k composed of i.i.d. zero-mean, unit-variance, Gaus-
sian RVs. If the number of measurements ` = `k satisfies

lim
k→∞

`k
k
> dimR({Xt}) (105)

then there exists a family of compression codes such that

1√
k
‖X̂− (X1, . . . , Xk)T‖2 → 0 in probability (106)

as k →∞, where X̂ is the solution of the CSP optimization

X̂ = arg min
u∈Ck

‖(Y1, . . . , Y`)
T −Au‖2 (107)

and Ck denotes the codebook of the compression code.
In words, if the rate of random linear measurements of

Xk
1 is slightly larger than the rate-distortion dimension, then

there exists a family of compression codes for which CSP
optimization yields an asymptotically distortion-free estimate
of Xk

1 in terms of the Euclidean norm. Thus, the rate-distortion

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIT.2019.2922186

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



11

dimension is an achievable rate for almost zero-distortion
recovery.

To summarize, (101) demonstrates that d
′
({Xt}) yields a

lower bound on the sampling rate required for almost loss-
less recovery with Lipschitz-continuous decoders. In contrast,
Theorem 18 demonstrates that dimR({Xt}) (and hence also
d̄({Xt})) is an achievable rate for almost zero-distortion
recovery. Furthermore, as illustrated by Example 4, there are
processes {Xt} for which

d({Xt}) = dimR({Xt}) < d′({Xt}). (108)

Our results thus demonstrate that there exist stationary pro-
cesses for which the sampling rate required for almost zero-
distortion recovery is strictly smaller than the sampling rate re-
quired for almost lossless recovery with Lipschitz-continuous
decoders. In other words, the fundamental limits of almost
zero-distortion recovery and almost lossless recovery are dif-
ferent in general.

Comparing the lower bound (101) for almost lossless re-
covery with Theorem 18 for almost zero-distortion recovery,
we observe that there are two main differences in the setup:

i) (101) is obtained for a Lipschitz-continuous decoder gk,
whereas Theorem 18 is based on CSP optimzation;

ii) for almost lossless recovery, X̂ = gk(fk(Xk
1 )) is required

to be exactly equal to Xk
1 with high probability (cf. (99)),

whereas for almost zero-distortion recovery it suffices that
1√
k
‖X̂− (X1, . . . , Xk)T‖2 be small.

The following example presents a class of stationary processes
for which almost zero-distortion recovery at rate d̄({Xt})
may also be achieved with linear encoders and decoders. This
suggests that the second difference has greater impact.

Example 5: Let {Xt} be a stationary, univariate, real-
valued, Gaussian process possessing a PSD SX with support
[−1/4, 1/4]. By Theorem 10, we have that d({Xt}) = 1/2.
We next invoke the sampling theorem to demonstrate that
there exist linear encoders fk : Rk → R`k and decoders
gk : R`k → Rk such that

lim
k→∞

`k
k

=
1

2
(109)

and
1√
k
‖X̂− (X1, . . . , Xk)T‖2 → 0 in probability (110)

as k →∞, where X̂ = gk(fk(Xk
1 )).

To describe fk and gk, we divide the indices t = 1, . . . , k
into three groups:

I1 , {1, . . . ,∆k} ∪ {k −∆k + 1, . . . , k} (111)
I2 , {2i : i ∈ Z} ∩ {∆k + 1, . . . , k −∆k} (112)
I3 , {2i+ 1: i ∈ Z} ∩ {∆k + 1, . . . , k −∆k} (113)

where {∆k} is an arbitrary sequence of even integers that
tends to infinity sublinearly in k. The encoder fk only re-
produces the values of Xt with indices t ∈ I1 ∪ I2, i.e.,
fk(Xk

1 ) = {Xt, t ∈ I1 ∪ I2}. Consequently,

`k = 2∆k +

⌊
k − 2∆k

2

⌋
(114)

and the rate `k/k converges to 1
2 as k →∞.

We next show that we can find a decoder gk for which
(110) holds. Clearly, the values {Xt, t ∈ I1∪I2} are directly
observed. It therefore remains to estimate the missing values
of Xk

1 , which is done via the interpolation formula

X̂t =

∆k/2∑
i=−∆k/2

X2i+t−1

sin
(
π
[

1
2 − i

])
π
(

1
2 − i

) , t ∈ I3. (115)

It follows that

E
[
‖(X̂1, . . . , X̂k)T − (X1, . . . , Xk)T‖22

]
=
∑
t∈I3

E
[
(X̂t −Xt)

2
]

=

⌈
k − 2∆k

2

⌉
E
[
(X̂∆k+1 −X∆k+1)2

]
(116)

where the last step is due to stationarity. By the sampling
theorem for stochastic processes, the expected value on the
RHS of (116) vanishes as ∆k →∞ [21, Th. 1]. Thus, dividing
both sides of (116) by k and letting k →∞ gives

lim
k→∞

1

k
E
[
‖(X̂1, . . . , X̂k)T − (X1, . . . , Xk)T‖22

]
= 0 (117)

which together with Chebyshev’s inequality [22, Th. 4.10.7]
yields (110).

VII. CONCLUSIONS

Rényi [1] proposed the information dimension and the d-
dimensional entropy to measure the information content of
general RVs. His idea was to quantize the real-valued RV X
by a uniform quantizer of step size 1/m, and to then analyze
the entropy of the quantized RV [X]m in the limit as m tends
to infinity. His results demonstrate that any RV with positive
information dimension has infinite information content. This
is, e.g., the case for RVs whose probability measure has
an absolutely-continuous part. The problem becomes even
more interesting for stochastic processes {Xt}, since their
information content is not only determined by the distribution
of the marginals Xt, but also by their temporal dependence.
For example, consider a stationary Gaussian process {Xt}
with bandlimited PSD. On the one hand, Gaussian processes
have absolutely-continuous marginals, so one would expect
that their information content is infinite. On the other hand,
for processes with a bandlimited PSD, the present sample X0

can be perfectly predicted from its infinite past X−1, X−2, . . .
(see Example 4), which suggests that the information content
of {Xt} is zero.

To shed some light on such questions, we proposed a gen-
eralization of information dimension to stochastic processes
by defining the information dimension rate d({Xt}) as the
entropy rate H ′({[Xt]m}) divided by logm in the limit as
m→∞. We demonstrated that the information dimension rate
coincides with the rate-distortion dimension, defined as twice
the pre-log factor of the rate-distortion function R(D). We
further showed that among all stationary process with PSD SX,
the Gaussian process has the largest information dimension
rate. This is consistent with the observation that Gaussian
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processes are the hardest to predict, hence they are expected to
have the largest information content. We then showed that the
information dimension rate of stationary Gaussian processes
is given by the average rank of SX, i.e.,

d({Xt}) =

∫ 1/2

−1/2

rank(SX(θ))dθ. (118)

Specialized to the univariate case, this yields that the informa-
tion dimension rate is given by the Lebesgue measure of the
support of SX , i.e.,

d({Xt}) = λ({θ : SX(θ) > 0}). (119)

This agrees with the intuition that if the PSD of {Xt} is zero
on a set of positive Lebesgue measure, then some samples
can be expressed in terms of the remaining samples and
have therefore no information content. It further answers the
above question whether stationary Gaussian processes with
a bandlimited PSD have infinite information content in the
positive, unless the PSD is zero almost everywhere.

An alternative definition for the information dimension of
a stochastic process was proposed by Jalali and Poor [7]
as the information dimension of Xk

1 divided by k in the
limit as k → ∞. We referred to this quantity as the block-
average information dimension d′({Xt}). While d({Xt}) and
d′({Xt}) coincide for ψ∗-mixing processes, in general we
have that d({Xt}) ≤ d′({Xt}), where the inequality can
be strict. In particular, as illustrated by Example 4, if the
support of SX of the Gaussian process {Xt} has positive
Lebesgue measure, then d′({Xt}) = 1. Thus, in contrast to
the information dimension rate, the block-average information
dimension does not capture the dependence of the information
dimension on the support size of SX .

The essential difference between the definitions of d({Xt})
and d′({Xt}) is the order in which the limits over the
quantization bin size 1/m and the block size k are taken.
Rezagah et al. [8] showed that these limits can be exchanged
if the process satisfies

I(X1;X0
−∞) <∞ (120)

in which case dimR({Xt}) = d′({Xt}). However, in this
case the information dimension of the stochastic process {Xt}
coincides with the information dimension of the marginal RV
Xt. In other words, for such processes a generalization of
information dimension to stochastic processes is redundant.
In contrast, we showed in Theorem 9 that, for any stochastic
process {Xt}, the information dimension rate d({Xt}) co-
incides with the rate-distortion dimension dimR({Xt}). This
implies that d′({Xt}) coincides with dimR({Xt}) only for
those stochastic processes for which d′({Xt}) = d({Xt}).

The equivalence between the information dimension rate
d({Xt}) and the rate-distortion dimension dimR({Xt}) im-
plies that d({Xt}) inherits the operational characterizations
of dimR({Xt}). For example, it was demonstrated in [8] that
dimR({Xt}) is an achievable rate for almost zero-distortion
recovery. In contrast, [20] shows that d′({Xt}) is a lower
bound on the minimum ε-achievable rate, achievable with

Lipschitz-continuous decoders. By demonstrating that there
are processes for which

d({Xt}) = dimR({Xt}) < d′({Xt}) (121)

our results show that the fundamental limits of almost zero-
distortion recovery and almost lossless recovery are different
in general. Jalali and Poor [7] further showed that d′({Xt})
is an achievable rate for universal lossless compressed sensing
with linear encoding and decoding via Lagrangian minimum
entropy pursuit when {Xt} is ψ∗-mixing. Since for ψ∗-mixing
processes we have d({Xt}) = d′({Xt}), our definition also
inherits this operational characterization.

APPENDIX A
APPENDIX TO SECTION III

A. Proof of Lemma 2

The first inequality in (14), namely,

∫
lim
m→∞

H([X]m|Y = y)

logm
dPY (y)

≤ lim
m→∞

∫
H([X]m|Y = y)

logm
dPY (y) (122)

follows directly from Fatou’s lemma [22, Th. 1.6.8, p. 50]. The
second inequality follows because the limit inferior is upper-
bounded by the limit superior. For the third inequality, note
that for every m = 2, 3, . . . and Y = y [1, eq. (11)]

H([X]m|Y = y)

logm
≤ H([X]1|Y = y)

log 2
+ 1. (123)

Furthermore, since conditioning reduces entropy, we have∫ (
H([X]1|Y = y)

log 2
+ 1

)
dPY (y) =

H([X]1|Y )

log 2
+ 1

≤ H([X]1)

log 2
+ 1

<∞ (124)

for every m = 2, 3, . . . Hence, the RHS of (123) is integrable,
and the third inequality in (14) follows again by Fatou’s
lemma.

B. Proof of Lemma 4

If H([Xk
1 ]1) =∞, then we have d(Xk

1 ) =∞ and the right-
most inequality in (17) holds trivially. Moreover, in this case
H([Xt]1) = ∞ for at least one t, so for this t we also have
d̄(Xt) =∞. Thus, also the left-most inequality holds.

If H([Xk
1 ]1) <∞, then we have

H([Xt]1|Xt−1
1 ) ≤ H([Xt]1) <∞, t = 1, . . . , k (125)
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hence the upper information dimensions are finite. It follows
by the chain rule of entropy and because conditioning reduces
entropy that

d̄(Xk
1 ) = lim

m→∞

k∑
t=1

H([Xt]m|[Xt−1
1 ]m)

logm

≤
k∑
t=1

lim
m→∞

H([Xt]m)

logm

=
k∑
i=t

d̄(Xt). (126)

Likewise, we have

d(Xk
1 ) = lim

m→∞

k∑
t=1

H([Xt]m|[Xt−1
1 ]m)

logm

≥
k∑
t=1

lim
m→∞

H([Xt]m|Xt−1
1 )

logm

=
k∑
t=1

d(Xt|Xt−1
1 ) (127)

where the inequality follows because conditioning reduces en-
tropy and because, conditioned on Xt−1

1 , [Xt]m is independent
of [Xt−1

1 ]m.

C. Proof of Theorem 5

To simplify notation, we shall write collections of RVs as
vectors, namely, X = (X1, . . . , Xk)T and Y = (Y1, . . . , Y`)

T.
The proof of Theorem 5 is based on the following lemma.

Lemma 19: Let X and Y be k- and `-dimensional, jointly
Gaussian vectors with mean vectors µX and µY and joint
covariance matrix CX,Y. Then, there exists a k × ` matrix
T and a length-k vector µ such that E [X|Y] = µ + TY.
Moreover, E , X− µ− TY has zero mean, is uncorrelated
with Y, and satisfies CE = CX − TCYT

T.
Proof: If X and Y are jointly Gaussian, then X can be

written as a linear transformation of Y and an uncorrelated
error. This follows from the fact that, for jointly Gaussian
X and Y, the linear minimum mean-square error (LMMSE)
estimator of X given Y always exists and is given by
E [X|Y] = µ + TY. The result that E has zero mean, is
uncorrelated with Y, and satisfies CE = CX−TCYT

T follows
by direct calculation.

Since information dimension is translation invariant, it fol-
lows that

d(X|Y = y) = d(µ + TY + E|Y = y)

= d(E|Y = y). (128)

Furthermore, since X and Y are jointly Gaussian, so are Y
and E, and from the fact that they are uncorrelated follows
that they are independent. Thus,

d(E|Y = y) = d(E) = rank(CE) (129)

where CE is the covariance matrix of E. The identities (128)
and (129) hold for every y, so it follows from Lemma 2 that

d(X|Y) = rank(CE). It remains to show that CE is the gen-
eralized Schur complement of CY in CX,Y. Indeed, by [12,
7.1.P28] there exists a matrix W such that CYX = CYW .
The generalized Schur complement of CY in CX,Y is then
given by

CX|Y = CX −WHCYW. (130)

Comparing (130) with the expression of CE given in
Lemma 19, we observe that CE = CX|Y if the matrix T
in Lemma 19 satisfies CYX = CYT

T. This is indeed the case:
since X = µ+TY+E, and since Y and E are uncorrelated,
we have that

CYX = E [YXT]− E [Y]E [XT]

= E [Y(µ + TY + E)T]− E [Y]E [(µ + TY + E)T]

= E [Y]µT + E [YYT]T T − E [Y]µT − E [Y]E [YT]T T

= CYT
T. (131)

This proves Theorem 5.

APPENDIX B
PROOF OF LEMMA 7

To prove Lemma 7, we shall need the following auxiliary
result.

Lemma 20: Let Xk
1 be a collection of real-valued RVs,

and let f : Rk → R` be Lipschitz continuous with Lipschitz
constant K. Then,

H([f(Xk
1 )]m|[Xk

1 ]m) ≤ ` logdK
√
k + 1e. (132)

Proof: Note that if [Xk
1 ]m = zk1/m for some zk1 ∈ Zk,

then Xk
1 ∈ C(zk1/m, 1/m), a cube with diameter

√
k/m. The

image of this cube under the Lipschitz function f has a diam-
eter not greater than K

√
k/m. Computing [f(Xk

1 )]m induces
a partition of R` into `-dimensional cubes. Of this partition,
at most dK

√
k + 1e` elements have a nonempty intersection

with the image of C(zk1/m, 1/m) under f . Therefore,

H([f(Xk
1 )]m|[Xk

1 ]m = zk1/m) ≤ ` logdK
√
k + 1e (133)

for every zk1 ∈ Zk, so Lemma 20 follows by averaging over
[Xk

1 ]m.
We next prove Lemma 7. Let Yt = ft(Xt). To prove the

right-most relation in (28), we use that for every k and m

H([Xk
1 ]m) ≤ H([Xk

1 ]m, [Y
k
1 ]m)

= H([Xk
1 ]m) +H([Yk

1 ]m|[Xk
1 ]m). (134)

The second summand can be further upper-bounded by

H([Yk
1 ]m|[Xk

1 ]m) ≤
k∑
t=1

H([ft(Xt)]m|[Xt]m). (135)

Since every function ft is Lipschitz with a Lipschitz constant
at most K , supt∈Z Kt, we can use Lemma 20 to bound
the RHS of (135) by kM logdK

√
L + 1e. Since this term is

independent of m, the contribution of the second summand
on the RHS of (134) vanishes as m → ∞. We thus obtain
d({Xt,Yt}) = d({Xt}) by dividing both sides of (134) by
k logm and letting k and m tend to infinity.
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To prove the left-most relation in (28), we use that for every
k and m

H([Yk
1 ]m) ≤ H([Yk

1 ]m, [X
k
1 ]m). (136)

The claim follows then by dividing both sides of (136) by
k logm and letting k and m tend to infinity.

APPENDIX C
PROOF OF LEMMA 8

For every m and k, we have

H([Xk
1 ]m) ≤ H([Xk

1 ]m, [Z
k
1 ]m)

≤ H([Xk
1 ]m) +H([Zk1 ]m). (137)

Dividing by k logm and letting first k and then m tend to
infinity yields (30).

To prove (31), we note that Lemma 7 and (30) yield
d({Xt + Zt}) ≤ d({Xt}). For the reverse inequality, we use
[13, Lemma 30] and the fact that conditioning reduces entropy
to obtain

H([Xk
1 + Zk1 ]m)

≥ H([Xk
1 + Zk1 ]m|[Zk1 ]m)

≥ H([Xk
1 ]m + [Zk1 ]m|[Zk1 ]m)− kL log(2)

≥ H([Xk
1 ]m)−H([Zk1 ]m)− kL log(2). (138)

Dividing both sides of (138) by k logm, and letting first k and
then m tend to infinity, yields d({Xt + Zt}) ≥ d({Xt}) and
proves (31).

Finally, if Z is discrete and H([X1]1) = ∞, then
H([Xk

1 ]m|Z) =∞, since

H([Xk
1 ]m|Z) ≥ H([Xk

1 ]m)−H(Z) (139)

where the second entropy is finite by assumption and the first
entropy satisfies H([X1]m) ≥ H([X1]1) =∞. Conversely, if
Z is discrete and H([X1]1) <∞, then

H([Xk
1 ]m|Z) ≤ H([Xk

1 ]m)

= H([Xk
1 ]m|Z) + I([Xk

1 ]m;Z). (140)

Dividing all terms by k and letting k tend to infinity thus
yields

lim
k→∞

H([Xk
1 ]m|Z)

k
≤ H ′({[Xt]m})

≤ lim
k→∞

H([Xk
1 ]m|Z)

k
+ lim
k→∞

1

k
I([Xk

1 ]m;Z). (141)

Since I([Xk
1 ]m;Z) ≤ H(Z) < ∞, the second term on the

RHS of (141) tends to zero as k tends to infinity. Thus,
dividing (141) by logm, and letting m tend to infinity, yields
(32).

APPENDIX D
PROOF OF THEOREM 9

The proof of Theorem 9 is essentially identical to the proof
of [2, Lemma 3.2]. For the sake of completeness, we reproduce
the full proof here. Indeed, choosing in (33)

X̂k
1 = [Xk

1 ]m, m =

√
L

D
(142)

yields

R(Xk
1 , kD) ≤ H([Xk

1 ]m) (143)

since for the choice (142) we have ‖Xk
1−X̂k

1‖22 ≤ kL
m2 = kD,

hence it satisfies (34). Consequently, dividing by −k logD,
and taking limits as k →∞ and D ↓ 0, we obtain

2 lim
D↓0

lim
k→∞

R(Xk
1 , kD)

−k logD
≤ 2 lim

D↓0
lim
k→∞

H([Xk
1 ]m)

−k logD

= lim
m→∞

lim
k→∞

H([Xk
1 ]m)

k logm
(144)

if the limits exist. If the limits do not exist, then we obtain the
same upper bound for the limits replaced by limits superior
and limits inferior.4

We next derive a lower bound on the rate-distortion dimen-
sion. To simplify notation, we treat the collection Xk

1 of k
L-variate random vectors as a collection of k′ = kL RVs. To
show that the upper bound (144) holds with equality, we use
the following lower bound on R(Xk

1 , D) given in [23], [2,
eq. (A.1)]:

R(Xk′

1 , D) ≥ sup
s≤0,λs

{
sD + E

[
log λs

(
Xk′

1

)]}
(145)

where λs : Rk′ → [0,∞) is an arbitrary nonnegative measur-
able function satisfying

sup
yk
′

1 ∈Rk
′
E
[
λs

(
Xk′

1

)
es‖y

k′
1 −X

k′
1 ‖

2
]
≤ 1. (146)

Following the proof of [2, Lemma 3.2], we apply (145) with

s = −m2 (147)

λs(x
k′

1 ) =
1

Nk′

∑
ik
′

1 ∈Zk
′

1

{
[xk
′

1 ]m =
ik
′

1

m

}
P([Xk′

1 ]m =
ik
′

1

m )
(148)

N = 1 + 2
∞∑
i=0

e−i
2

. (149)

4Since m2 = L/D, taking the limit as D ↓ 0 is tantamount to taking the
limit as m → ∞.
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We first show that this choice of λs satisfies (146). Indeed,

sup
yk
′

1 ∈Rk
′
E
[
λs

(
Xk′

1

)
es‖y

k′
1 −X

k′
1 ‖

2
]

≤ sup
yk
′

1 ∈Rk
′

1

Nk′

∑
ik
′

1 ∈Zk
′

sup

xk
′

1 :[xk
′

1 ]m=
ik
′

1
m

e−m
2‖yk

′
1 −x

k′
1 ‖

2

=
1

Nk′
sup

jk
′

1 ∈Zk
′

sup
ỹk
′

1 ∈[0,1)k′

∑
ik
′

1 ∈Zk
′

k′∏
`=1

sup
0≤x̃`<1

e−(ỹ`+j`−x̃`−i`)2

=
1

Nk′

k′∏
`=1

sup
j`∈Z

sup
0≤ỹ`<1

∑
i`∈Z

sup
0≤x̃`<1

e−(ỹ`+j`−x̃`−i`)2

(150)

where the second step follows by substituting x̃` = mx` − i`
and ỹ` = my`− j`. Since the sum over i` does not depend on
j`, it follows that

sup
j`∈Z

sup
0≤ỹ`<1

∑
i`∈Z

sup
0≤x̃`<1

e−(ỹ`+j`−x̃`−i`)2

= sup
0≤ỹ`<1

∑
i`∈Z

sup
0≤x̃`<1

e−(ỹ`−x̃`−i`)2

(151)

which can be upper-bounded as

sup
0≤ỹ`<1

∑
i`∈Z

sup
0≤x̃`<1

e−(ỹ`−x̃`−i`)2

≤ 1 + 2
∞∑
i=0

e−i
2

. (152)

Hence,

sup
yk
′

1 ∈Rk
′
E
[
λs

(
Xk′

1

)
es‖y

k′
1 −X

k′
1 ‖

2
]

≤ 1

Nk′

(
1 + 2

∞∑
i=0

e−i
2

)k′
(153)

which, by (149), is equal to 1. It follows that s and λs, as
chosen in (147) and (148), satisfy (146).

We next evaluate (145) for this choice of s and λs and for
distortion kD. This yields

R(Xk′

1 , kD) ≥ −km2D − k′ logN

+ E

log

 ∑
ik
′

1 ∈Zk
′

1

{
[Xk′

1 ]m =
ik
′

1

m

}
P
(

[Xk′
1 ]m =

ik
′

1

m

)



= H([Xk′

1 ]m)− k(m2D + L logN). (154)

For m2 = L/D, this becomes

R(Xk′

1 , kD) ≥ H([Xk′

1 ]m)− k′(1 + logN). (155)

We next replace again the collection Xk′

1 of RVs by the
equivalent collection Xk

1 of random vectors. Dividing both
sides of (155) by −k logD, and taking the limits as k → ∞
and D ↓ 0, yields

2 lim
D↓0

lim
k→∞

R(Xk
1 , kD)

−k logD

≥ 2 lim
D↓0

lim
k→∞

H([Xk
1 ]m)− kL(1 + logN)

−k logD

= lim
m→∞

lim
k→∞

H([Xk
1 ]m)

k logm
(156)

if the limits over k and D exist. If the limits do not exist,
then we obtain the same lower bound for the limits replaced
by limits superior and limits inferior. Combining (156) with
(144) proves Theorem 9.

APPENDIX E
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The proof consists of two parts. In the first part, we
show that of all processes {Xt} with a given SDF FX, the
Gaussian process has the largest information dimension rate
(Section E-A). In the second part, we demonstrate that the
information dimension rate of Gaussian processes is given by
the average rank of the derivative of the SDF (Section E-B).

A. Gaussian Processes Maximize the Information Dimension

By Theorem 9, the upper information dimension rate is
given by

d̄({Xt}) = 2 lim
D↓0

lim
k→∞

R(Xk
1 , kD)

−k logD
. (157)

The claim that the information dimension is maximized by a
Gaussian process then follows by the well-known fact that of
all random vectors Xk

1 with a given covariance matrix CXk
1
,

the Gaussian random vector has the largest rate-distortion
function R(Xk

1 , kD).
To prove this claim for multivariate sources, we shall

write the collection of L-variate vectors Xk
1 as a collection

of k′ RVs Xk′

1 , where k′ = kL. Since the information
dimension rate is translation invariant (Lemma 7), we can
assume without loss of optimality that the RVs Xk′

1 have
zero mean. Furthermore, by the eigenvalue decomposition,
there exists an orthogonal matrix W such that the random
variables Y k

′

1 given by (Y1, . . . , Yk′)
T = W T(X1, . . . , Xk′)

T

are uncorrelated and their variances are the eigenvalues of
CXk′1

, which we shall denote by λ1, . . . , λk′ . Since mutual
information is invariant under bijections, and the Euclidean
norm is invariant under multiplications by orthogonal matrices,
it follows that R(Y k

′

1 , kD) = R(Xk′

1 , kD).
For the case where Y k

′

1 are independent, zero-mean, Gaus-
sian random variables with variances λ1, . . . , λk′ , the rate-
distortion function is given by [10, Th. 13.3.3]

R(Y k
′

1 , kD) =
k′∑
t=1

1

2
log

λt
Dt

(158)

where

Dt =

{
ξ, if ξ < λt

λt, if ξ ≥ λt
(159)

and ξ is chosen so that D1 + . . .+Dk′ = kD.
The RHS of (158) can also be achieved for non-Gaussian

RVs by choosing the following (possibly suboptimal) distri-
bution of the reconstruction values Ŷ k

′

1 :

Ŷt =

{
(Yt + Zt)

λt−Dt
λt

, if ξ < λt

0, if ξ ≥ λt
(160)

where Zk
′

1 are independent, zero-mean, Gaussian RVs with
variances Dtλt

λt−Dt , and ξ is as in (159). Indeed, it is easy
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to check that (160) satisfies the distortion constraint (34).
Furthermore, by using that conditioning reduces entropy and
that Gaussian RVs maximize differential entropy, it can be
shown that

I(Ŷ k
′

1 ;Y k
′

1 ) ≤
k′∑
t=1

1

2
log

λt
Dt
. (161)

Comparing (161) with (158), we conclude that, for uncorre-
lated RVs Y k

′

1 ,

R(Y k
′

1 , kD) ≤ R
(
(Y k

′

1 )G, kD
)

(162)

where (Y k
′

1 )G are jointly Gaussian with the same covari-
ance matrix as Y k

′

1 . Since R(Y k
′

1 , kD) = R(Xk′

1 , kD) and
R
(
(Y k

′

1 )G, kD
)

= R
(
(Xk′

1 )G, kD
)
, the same is also true

for general RVs. Together with (157), this proves that of all
processes {Xt} with a given SDF FX, the Gaussian process
has the largest information dimension rate.

B. The Information Dimension of Gaussian Processes

We now assume that {Xt} is Gaussian. For every i, we
define

Ni,t , Xi,t − [Xi,t]m. (163)

Furthermore, let Ui,t be i.i.d. (over all i and t) and uniformly
distributed on [0, 1/m), and let Wi,t , [Xi,t]m + Ui,t. We
define {[Xt]m}, {Nt}, and {Ut} as the corresponding mul-
tivariate processes. Since {Ui,t} is independent of {[Xj,t]m}
for every i, j, the (matrix-valued) SDFs of {Wt}, {[Xt]m},
and {Ut} satisfy

FW(θ) = F[X]m(θ) + FU(θ). (164)

Moreover, the (matrix-valued) PSD of {Ut} exists and equals

SU(θ) =
1

12m2
IL. (165)

Since the information dimension rate is translation invariant
(Lemma 7), and since the SDF FX does not depend on the
mean vector µ, we can assume without loss of generality
that {Xt} has zero mean. We further show in Lemma 21 in
Appendix E-C that we can assume without loss of generality
that every component process of {Xt} has unit variance.
By (48) in Lemma 11, it thus follows that

F[X]m(θ) = (2a1 − 1)FX(θ) + FN(θ). (166)

We continue by writing the entropy of [Xk
1 ]m in terms of a

differential entropy, i.e.,

H([Xk
1 ]m) = h(Wk

1) + kL logm. (167)

Denoting by (Wk
1)G a Gaussian vector with the same mean

and covariance matrix as Wk
1 , and denoting by fWk

1
and

gWk
1

the PDFs of Wk
1 and (Wk

1)G, respectively, this can be
expressed as

H([Xk
1 ]m) = h((Wk

1)G)−D(fWk
1
‖gWk

1
)+kL logm. (168)

Dividing by k logm, and letting first k and then m tend
to infinity, yields the information dimension rate d({Xt}).
Lemma 22 in Appendix E-C shows that

D(fWk
1
‖gWk

1
) ≤ kΞ (169)

for some constant Ξ that is independent of (k,m). Moreover,
the differential entropy rate of the stationary, L-variate, Gaus-
sian process ({Wt})G is given by [15, Th. 7.10]

lim
k→∞

h((Wk
1)G)

k

=
L

2
log(2πe) +

1

2

∫ 1/2

−1/2

log detF′W(θ)dθ. (170)

It thus follows that the information dimension rate of {Xt}
equals

d({Xt}) = L+ lim
m→∞

1

2 logm

∫ 1/2

−1/2

log detF′W(θ)dθ. (171)

It remains to show that the RHS of (171) is equal to the RHS
of (43). To do so, we first show that the integral on the RHS
of (171) can be restricted to a subset F c

Υ ⊆ [−1/2, 1/2] on
which the entries of F′N(θ) are bounded from above by Υ/m2

for some Υ > 0. We then show that, on this set, detF′W(θ)
can be bounded from above and from below by products of
affine transforms of the eigenvalues of F′X(θ). These bounds
are asymptotically tight, i.e., they are equal in the limit as m
tends to infinity. We complete the proof by showing that the
order of limit and integration can be exchanged.

1) Restriction on F c
Υ ⊆ [−1/2, 1/2]: Choose Υ > 0 and

let

F (i)
Υ ,

{
θ : F′Ni(θ) > Υ/m2

}
(172)

FΥ , {θ : max
i=1,...,L

F′Ni(θ) > Υ/m2}. (173)

By (47) in Lemma 11, we have for every i

λ
(
F (i)

Υ

)
≤ 1

Υ
. (174)

Since the set FΥ is the union of F (i)
Υ , i = 1, . . . , L, it then

follows by the union bound that

λ(FΥ) ≤ L

Υ
. (175)

To prove (174), we note that, by the Lebesgue decomposition
theorem [22, Th. 2.2.6] and the fact that the Radon-Nikodym
derivative dFNi(θ)/dλ coincides with F′Ni(θ) almost every-
where [22, Sec. 2.3],∫ 1/2

−1/2

dFNi(θ) ≥
∫ 1/2

−1/2

F′Ni(θ)dθ

≥
∫
F(i)

Υ

F′Ni(θ)dθ

≥ Υ

m2
λ
(
F (i)

Υ

)
(176)

where the second inequality follows because θ 7→ F′Ni(θ) is
nonnegative, and the third inequality follows by definition of
F (i)

Υ . By (47) in Lemma 11, the integral on the left-hand
side (LHS) of (176) is upper-bounded by 1/m2, hence (174)
follows.

By (164) and (165), we have that

F′W(θ) = F′[X]m
(θ) +

1

12m2
IL. (177)
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Since derivatives of matrix-valued SDFs are positive semidef-
inite, it follows that

detF′W(θ) ≥ detSU(θ) = 1/(12m2)L. (178)

Hence,

lim
m→∞

∫
FΥ

log detF′W(θ)dθ

logm
≥ − lim

m→∞
λ(FΥ)

L log(12m2)

logm

≥ −2L2

Υ
(179)

where the last step follows from (175). Applying Hadamard’s
and Jensen’s inequality, we further get∫

FΥ

log detF′W(θ)dθ

≤
L∑
i=1

∫
FΥ

log F′Wi
(θ)dθ

≤
L∑
i=1

λ(FΥ) log

(∫
FΥ

F′Wi
(θ)dθ

λ(FΥ)

)

≤ Lλ(FΥ) log

(
(2a1 − 1) + 1

12m2 + 1
m2

λ(FΥ)

)
(180)

where the last step follows from (47), (164), (166), and the
assumption that every component process of {Xt} has zero
mean and unit variance. Since, by (46) in Lemma 11, a1 → 1
as m→∞, (180) yields

lim
m→∞

∫
FΥ

log detF′W(θ)dθ ≤ − lim
m→∞

Lλ(FΥ) log (λ(FΥ))

≤ L

e
. (181)

Consequently,

− 2L2

Υ
≤ lim
m→∞

∫
FΥ

log detF′W(θ)dθ

logm

≤ lim
m→∞

∫
FΥ

log detF′W(θ)dθ

logm
≤ 0 (182)

for every Υ. It follows that this integral does not contribute to
the information dimension rate if we let Υ tend to infinity. In
view of (171), we thus obtain the information dimension rate
d({Xt}) by evaluating

L+
1

2 logm

∫
Fc

Υ

log detF′W(θ)dθ (183)

in the limit as first m and then Υ tends to infinity.
2) Bounding detF′W(θ) by the Eigenvalues of F′X(θ):

Lemma 11 and (177) yield

F′W(θ) = (2a1 − 1)F′X(θ) + F′N(θ) +
1

12m2
IL. (184)

Let χi(θ), i = 1, . . . , L, denote the eigenvalues of F′X(θ).
Since F′N(θ) is positive semidefinite, we obtain

detF′W(θ) ≥ det

(
(2a1 − 1)F′X(θ) +

1

12m2
IL

)
=

L∏
i=1

(
(2a1 − 1)χi(θ) +

1

12m2

)
. (185)

We next derive an upper bound on detF′W(θ). Let
‖F′N(θ)‖1 ,

∑n
i,j=1 |F′NiNj (θ)| denote the `1-matrix norm

of F′N(θ). Since F′N(θ) is positive semidefinite, the element
with the maximum modulus is on the main diagonal; cf. [12,
Problem 7.1.P1]. Furthermore, by assumption, on F c

Υ the
diagonal elements of FN(θ) are bounded from above by Υ

m2 .
We hence obtain that

‖F′N(θ)‖1 ≤ L2 Υ

m2
. (186)

It is known that all matrix norms bound the largest eigenvalue
of the matrix from above [12, Th. 5.6.9].5 Thus, the upper
bound (186) is also an upper bound on the largest eigenvalue
of F′N(θ). Let ωi(θ), i = 1 . . . , L, denote the eigenvalues of
F′W(θ). Then, we have for m2 ≥ 8/π (such that 2a1−1 ≥ 0)
[12, Cor. 4.3.15]

detF′W(θ) =
L∏
i=1

ωi(θ)

≤
L∏
i=1

(
(2a1 − 1)χi(θ) +

L2Υ

m2
+

1

12m2

)
. (187)

Combining (185) and (187) with (183), we obtain

lim
m→∞

L∑
i=1

∫
Fc

Υ
log
(
(2a1 − 1)χi(θ) + 1

12m2

)
dθ

logm

≤ lim
m→∞

∫
Fc

Υ
log detF′W(θ)dθ

logm

≤ lim
m→∞

∫
Fc

Υ
log detF′W(θ)dθ

logm

≤ lim
m→∞

L∑
i=1

∫
Fc

Υ
log
(

(2a1 − 1)χi(θ) +
1
12 +L2Υ

m2

)
dθ

logm
. (188)

To compute the limit of (183) as m → ∞, we thus need to
evaluate

L−
L∑
i=1

lim
m→∞

∫
Fc

Υ

log
(
(2a1 − 1)χi(θ) + K

m2

)
log(1/m2)

dθ (189)

where K is either 1/12 (left-most inequality in (188)) or
1/12 + L2Υ (right-most inequality in (188)).

3) Exchanging Limit and Integration: To evaluate (189),
we continue along the lines of [24, Sec. VIII]. Specifically,
for each i, we split the integral on the RHS of (189) into
three parts:

FI , {θ ∈ Fc
Υ: χi(θ) = 0} (190)

FII , {θ ∈ Fc
Υ: χi(θ) ≥ K/(1− ε)} (191)

FIII , {θ ∈ Fc
Υ: 0 < χi(θ) < K/(1− ε)} (192)

where 0 < ε < 1 is arbitrary.

5This bound holds without a multiplicative constant, since the spectral
radius of a matrix is the infimum of all matrix norms [12, Lemma 5.6.10].
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For the first part, we obtain∫
FI

log
(
(2a1 − 1)χi(θ) + K

m2

)
log(1/m2)

dθ

=

∫
FI

logK + log(1/m2)

log(1/m2)
dθ

= λ(FI)
(

1 +
logK

log(1/m2)

)
(193)

which evaluates to λ(FI) in the limit as m→∞.
We next show that the integrals over FII and FIII do not

contribute to (189). To this end, it suffices to consider the
integral of the function

log
(

(2a1 − 1)χi(θ)K + 1
m2

)
log(1/m2)

,
log
(
Am(θ) + 1

m2

)
log(1/m2)

. (194)

In the remainder of the proof, we shall assume without loss
of generality that m2 > 8/π, in which case Am(θ) > 0 on
θ ∈ FII∪FIII . Clearly, whenever Am(θ) > 0, the function in
(194) converges to zero as m→∞. Moreover, for Am(θ) ≥ 1,
this function is nonpositive.

For all θ ∈ FII we have Am(θ) ≥ (2a1 − 1)/(1 − ε),
hence we can find a sufficiently large m0 such that, by (46)
in Lemma 11, we have Am(θ) ≥ 1, m ≥ m0. Since by the
same result we also have 2a1 − 1 ≤ 2, m2 > 8/π, it follows
that, for m > max{m0,

√
8/π},

log
(

2χi(θ)K + 1
m2

)
log(1/m2)

≤
log
(
Am(θ) + 1

m2

)
log(1/m2)

≤ 0. (195)

The LHS of (195) is nonpositive and monotonically increases
to zero as m → ∞. We can thus apply the monotone
convergence theorem [22, Th. 1.6.7, p. 49] to get

0 ≥ lim
m→∞

∫
FII

log
(
Am(θ) + 1

m2

)
log(1/m2)

dθ

≥ lim
m→∞

∫
FII

log
(
Am(θ) + 1

m2

)
log(1/m2)

dθ

≥ lim
m→∞

∫
FII

log
(

2χi(θ)K + 1
m2

)
log(1/m2)

dθ

=

∫
FII

lim
m→∞

log
(

2χi(θ)K + 1
m2

)
log(1/m2)

dθ

= 0. (196)

We next turn to the case θ ∈ FIII . It was shown in [24,
p. 443] that if Am(θ) < 1, then the function in (194) is
bounded from above by 1. Furthermore, if Am(θ) < 1 − 1

m2

then it is nonnegative, and if Am(θ) ≥ 1 − 1
m2 then it is

nonpositive and monotonically increasing in m. Restricting
ourselves to the case m2 > 8/π, we thus obtain for θ ∈ FIII

log
(
Am(θ) + 1

m2

)
log(1/m2)

≥

{
log( 2

1−ε+π
8 )

log(π/8) , Am(θ) ≥ 1− π
8

0, otherwise
(197)

where we made use of the fact that Am(θ) < (2a1−1)/(1−ε),
θ ∈ FIII and, by (46) in Lemma 11, 2a1−1 ≤ 2, m2 > 8/π.

Hence, on FIII the magnitude of the function in (194) is
bounded by∣∣∣∣∣ log

(
Am(θ) + 1

m2

)
log(1/m2)

∣∣∣∣∣ ≤ max

1,
log
(

2
1−ε + π

8

)
log(8/π)

 . (198)

We can thus apply the dominated convergence theorem [22,
Th. 1.6.9, p. 50] to get

lim
m→∞

∫
FIII

log
(
(2a1 − 1)χi(θ) + K

m2

)
log(1/m2)

dθ

=

∫
FIII

lim
m→∞

log
(

(2a1 − 1)χi(θ)K + 1
m2

)
log(1/m2)

dθ = 0. (199)

Combining (193), (196), and (199), we can evaluate (189) as

L−
L∑
i=1

lim
m→∞

∫
Fc

Υ

log
(
(2a1 − 1)χi(θ) + K

m2

)
log(1/m2)

dθ

=
L∑
i=1

(1− λ({θ ∈ Fc
Υ: χi(θ) = 0}))

=
L∑
i=1

λ({θ ∈ Fc
Υ: χi(θ) > 0}). (200)

4) Wrapping Up: To compute the limit of (183) as first m
and then Υ tends to infinity, it remains to let Υ→∞ on the
RHS of (200). By the continuity of the Lebesgue measure,
this yields

L∑
i=1

λ({θ: χi(θ) > 0}) =

∫ 1/2

−1/2

rank(F′X(θ))dθ. (201)

To summarize, combining (171), (182), and (200), we obtain
that

d({Xt}) = L+ lim
Υ→∞

lim
m→∞

1

2 logm

∫ 1/2

−1/2

log detF′W(θ)dθ

=

∫ 1/2

−1/2

rank(F′X(θ))dθ. (202)

This proves Theorem 10.

C. Auxiliary Results

Lemma 21: Suppose that {Xt} is a stationary, L-variate,
real-valued, Gaussian process with mean vector µ and SDF
FX. Suppose that the component processes are ordered by their
variances, i.e.,

σ2
1 ≥ σ2

2 ≥ · · ·σ2
L′ ≥ σ2

L′+1 = · · ·σ2
L = 0. (203)

Then,

d({Xt}) = d ({(X1,t/σ1, . . . , XL′,t/σL′)}) (204)

and, for almost every θ,

rank(F′X(θ)) = rank(F′(X1/σ1,...,XL′/σL′ )
(θ)). (205)

Proof: Normalizing component processes with positive
variance to unit variance does not affect the information
dimension rate, as follows from Lemma 7. If σ2

i = 0, then
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the component process {Xi,t} is almost surely constant. It
follows that H([Xk

i,1]m) = 0 for every m and every k, so

H([Xk
1 ]m) = H([Xk

1,1]m, . . . , [X
k
L′,1]m). (206)

Dividing by k logm, and letting m and k tend to infinity,
shows that d({Xt}) = d({ 1

σ1
X1,t, . . . ,

1
σL′

XL′,t}).
Let Π be an L′ ×L′ diagonal matrix with values σi on the

main diagonal. For component processes with zero variance,
the corresponding row and column of F′X(θ) is zero almost
everywhere. Hence, we have for almost every θ that

F′X(θ) =

[
ΠF′(X1/σ1,...,XL′/σL′ )

(θ)Π 0

0 0

]
(207)

where 0 denotes an all-zero matrix of appropriate size. We thus
have rank(F′X(θ)) = rank(F′(X1/σ1,...,XL′/σL′ )

(θ)) for almost
every θ.

Lemma 22: Let X be an `-variate, real-valued, Gaussian
vector with mean vector µX and covariance matrix CX. Let
W , [X]m + U, where U is an `-variate vector, indepen-
dent of X, with components independently and uniformly
distributed on [0, 1/m). Then,

D(fW‖gW)

`
≤ 1

2
log

(
2π

(
1 +

1

12

))
+

75

2
+

24

π
. (208)

Proof: By [25, Th. 23.6.14], X = (X1, . . . , X`)
T can be

written as
X = AX′ + µX (209)

where X′ is an `′-dimensional, zero-mean, Gaussian vector
(`′ ≤ `) with independent components whose variances are the
nonzero eigenvalues of CX and where A is an ` × `′ matrix
satisfying ATA = I`′ . We use the data processing inequality,
the chain rule for relative entropy, and the fact that X′ is
Gaussian, to obtain

D(fW‖gW)

≤ D(fW,X′‖gW,X′)

≤ D(fX′‖gX′) +

∫
D(fW|X′=x′‖gW|X′=x′)fX′(x

′)dx′

=

∫
D(fW|X′=x′‖gW|X′=x′)fX′(x

′)dx′ (210)

where gW,X′ denotes the PDF of a Gaussian vector with the
same mean vector and covariance matrix as (W,X′), and

fW|X′=x′(w) ,
fW,X′(w,x

′)

fX′(x′)
(211)

gW|X′=x′(w) ,
gW,X′(w,x

′)

gX′(x′)
. (212)

To evaluate the relative entropy on the RHS of (210), we
first note that, given X, the random vector W is uniformly
distributed on an `-dimensional cube of length 1

m . Since X
can be obtained from X′ via (209), the conditional PDF of
W given X′ = x′ is

fW|X′=x′(w) = m`1{[w]m = [Ax′ + µX]m}. (213)

Consequently, denoting z = [Ax′ + µX]m,

D(fW|X′=x′‖gW|X′=x′) = log
(
m`
√

(2π)` detCW|X′
)

+
m`

2

∫
C(z,1/m)

(w − µW|X′=x′)
TC−1

W|X′(w − µW|X′=x′)dw

(214)

where µW|X′=x′ and CW|X′ denote the conditional mean and
the conditional covariance matrix of W given X′ = x′. These
can be computed as [25, Th. 23.7.4]

µW|X′=x′ = E [W] + CWX′C
−1
X′ x

′ (215)

CW|X′ = CW − CWX′C
−1
X′ C

T
WX′ (216)

where CWX′ denotes the cross-covariance matrix of W and
X′, and CW and CX′ denote the covariance matrices of W
and X′, respectively.

Defining Z , [X]m, we have W = Z + U. Since U is
independent of X, the cross-covariance matrix of W and X
is equal to the cross-covariance matrix of Z and X. Bussgang’s
theorem [26, eq. (20)] yields KZjXi(τ) = ajKXjXi(τ), where
aj is defined in (45). Hence, if Λa is a diagonal matrix with
a = (a1, . . . , a`) on the main diagonal, then CZX = ΛaCX.
From (209) we get CX = ACX′A

T and CWX′ = CWXA,
hence

CWX′ = CWXA = CZXA = ΛaCXA = ΛaACX′ . (217)

Together with (215) and (216), this yields

µW|X′=x′ = E [W] + ΛaAx
′ (218)

CW|X′ = CW − ΛaCXΛa. (219)

Combining (218) with (209), and using the triangle inequal-
ity, we upper-bound each component of w − µW|X′=x′ as

|wj − E [Wj ]− aj(xj − µj)| ≤ |zj − xj |+ |uj − E [Uj ]|
+ |E [Zj ]− µj |+ |1− aj ||xj − µj |. (220)

The first and the third term on the RHS of (220) are both
upper-bounded by 1

m , and the second term is upper-bounded
by 1

2m . From (46) in Lemma 11, we get that the term |1−aj |
is upper-bounded by 1/m

√
2/πσ2

j , where σ2
j is the variance

of Xj . We thus obtain

‖w − µW|X′=x′‖22 ≤
1

m2

25`

2
+

4

π

∑̀
j=1

(xj − µj)2

σ2
j

 .

(221)
We next note that, since W = Z + U, and since U is

independent from Z and i.i.d. on [0, 1/m),

CW|X′ = CZ − ΛaCXΛa +
1

12m2
I`. (222)

It can be shown that CZ−ΛaCXΛa is the conditional covari-
ance matrix of Z given X′, hence it is positive semidefinite.6

6Indeed, we have CZX = CWX and, by (209), CZX′ = CZXA.
Replacing in (216) W by Z, and repeating the steps leading to (219), we
obtain the desired result.
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It follows that the smallest eigenvalue of CW|X′ is lower-
bounded by 1

12m2 . Together with (221), this yields for the
second term on the RHS of (214)

m`

2

∫
C(z,1/m)

(w − µW|X′=x′)
TC−1

W|X′(w − µW|X′=x′)dw

≤ 6m`+2 1

m`

1

m2

25`

2
+

4

π

∑̀
j=1

(xj − µj)2

σ2
j


=

75`

2
+

24

π

∑̀
j=1

(xj − µj)2

σ2
j

. (223)

To upper-bound the first term on the RHS of (214), we
use that (222) combined with Lemma 11 implies that every
diagonal element of CW|X′ is given by

E
[
(Zj − E [Zj ])

2
]
− a2

jσ
2
j +

1

12m2
= −(1− aj)2σ2

j

+ E
[
(Xj − µj − Zj + E [Zj ])

2
]

+
1

12m2
. (224)

The first term on the RHS of (224) is negative, and the
second term is upper-bounded by E

[
(Xj − Zj)2

]
≤ 1/m2.

Hence, every element on the main diagonal of CW|X′ is
upper-bounded by 1+1/12

m2 . It thus follows from Hadamard’s
inequality that

log
(
m`
√

(2π)` detCW|X′
)
≤ `

2
log

(
2π

(
1 +

1

12

))
.

(225)
Combining (223) and (225) with (214) and (210) yields

D(fW`
1
‖gW`

1
)

≤ `

2
log

(
2π

(
1 +

1

12

))
+

75`

2
+

24

π

∑̀
j=1

E
[
(Xj − µj)2

]
σ2
j

= `

(
1

2
log

(
2π

(
1 +

1

12

))
+

75

2
+

24

π

)
(226)

and completes the proof.

APPENDIX F
SPECTRAL DISTRIBUTION FUNCTION OF {[Xt]m}

Let {Xt} be a stationary, L-variate, Gaussian process with
mean vector µ = (µ1, . . . , µL)T and SDF FX. Let {Zt} and
{Nt} be defined as Zi,t , [Xi,t]m and Ni,t , Xi,t− [Xi,t]m,
respectively. For every pair i, j = 1, . . . , L, we have

KNiNj (τ) =KXiXj (τ) +KZiZj (τ)

−KXiZj (τ)−KZiXj (τ). (227)

Bussgang’s theorem [26, eq. (20)] further yields that
KXiZj (τ) = KZjXi(−τ) = ajKXiXj (τ), where aj is defined
in (45). Consequently,

KNiNj (τ) = KXiXj (τ) +KZiZj (τ)

− ajKXiXj (τ)− aiKXjXi(−τ)

= (1− aj − ai)KXiXj (τ) +KZiZj (τ). (228)

Since the SDF is fully determined by the covariance structure
of a process [27, Th. 1, p. 206], we obtain (44).

To prove (47), namely,∫ 1/2

−1/2

dFNi(θ) ≤
1

m2
(229)

we note that∫ 1/2

−1/2

dFNi(θ) = E
[
(Xi,t − Zi,t)2

]
− (µi−E [Zi,t])

2. (230)

Since |Xi,t−Zi,t| ≤ 1
m and (µi−E [Zi,t])

2 ≥ 0, the claim (47)
follows.

It remains to prove (46), namely,

|1− ai| ≤
1

m

√
2

πσ2
i

. (231)

Set f(α) , α
σi
e−α

2/2σ2
i , α ∈ R. We have

ai =
E [(Xi,t − µi)(Zi,t − E [Zi,t])]

σ2
i

=
E [(Xi,t − µi)Zi,t]

σ2
i

=
1√

2πσ2
i

∑
i

i

m

∫ i+1
m

i
m

f(α)dα. (232)

Furthermore,
1√

2πσ2
i

∫ ∞
−∞

αf(α)dα = 1. (233)

It follows that

1− ai =
1√

2πσ2
i

∑
i

∫ i+1
m

i
m

(
α− i

m

)
f(α)dα. (234)

Since |α− i/m| ≤ 1/m for α ∈ [i/m, (i+ 1)/m], this yields

|1− ai| ≤
1√

2πσ2
i

∑
i

∫ i+1
m

i
m

∣∣∣∣α− i

m

∣∣∣∣ |f(α)|dα

≤ 1

m

1√
2πσ2

i

∫ ∞
−∞
|f(α)|dα

=
1

m

√
2

πσ2
i

. (235)

This proves (46) and concludes the proof of Lemma 11.

APPENDIX G
PROOF OF THEOREM 13

Let {Zt} be a stationary, L-variate, complex-valued process
with matrix-valued SDF FZ. Let the real composite process
{X̂t} be defined as X̂t , [Re(ZT

t), Im(ZT
t)]

T. That is, X̂t is
obtained by stacking the real part of Zt on top of the imaginary
part of Zt. Further let the augmented process {Ẑt} be defined
as Ẑt , [ZT

t,Z
H
t ]T. Clearly, X̂t and Ẑt satisfy Ẑt = T X̂t,

where
T ,

[
IL ıIL
IL −ıIL

]
(236)

is unitary up to a factor of 2, i.e., TTH = THT = 2IL. The
matrix-valued autocovariance function of {Ẑt} reads

KẐ(τ) =

[
KZ(τ) KZ(τ)

K
∗
Z(τ) K∗Z(τ)

]
(237)
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where KZ denotes the pseudo-autocovariance function of
{Zt}. The corresponding matrix-valued SDF is given by

FẐ(θ) =

[
FZ(θ) FZ(θ)

−F∗Z(−θ) −F∗Z(−θ)

]
(238)

where FZ satisfies

KZ(τ) =

∫ 1/2

−1/2

e−ı2πτθdFZ(θ), τ ∈ Z. (239)

The autocovariance functions and SDFs of {X̂t} and {Ẑt} are
related via

KẐ(τ) = TKX̂(τ)TH (240)

FẐ(θ) = TFX̂(θ)TH. (241)

By definition, d({Zt}) = d({X̂t}). It thus follows from
Theorem 10 that

d({Zt}) = d({X̂t}) ≤
∫ 1/2

−1/2

rank(F′
X̂

(θ))dθ. (242)

Since left or right multiplication by a nonsingular matrix leaves
the rank unchanged, we obtain from (241) that the rank of
F′
X̂

(θ) is equal to the rank of F′
Ẑ

(θ). Furthermore, by (238),
the rank of F′

Ẑ
(θ) is upper-bounded by the rank of F′Z(θ) plus

the rank of (F′Z)∗(−θ) [28, Th. 1]. Consequently,

d({Zt}) ≤
∫ 1/2

−1/2

rank(F′Z(θ)) + rank((F′Z)∗(−θ))dθ

= 2

∫ 1/2

−1/2

rank(F′Z(θ))dθ (243)

where the second step follows because complex conjugation
does not affect the rank.

If {Zt} is Gaussian, then (242) holds with equality by
Theorem 10. If {Zt} is, in addition, proper then KZ(τ) = 0,
so the derivative of FZ is zero almost everywhere. Hence, the
derivative of FẐ becomes block diagonal almost everywhere
and its rank equals the sum of the ranks of its diagonal
elements. We conclude that, if {Zt} is proper Gaussian, then
(243) holds with equality. This proves Theorem 13.

APPENDIX H
APPENDIX TO SECTION V

A. Proof of Theorem 14

For every m = 2, 3, . . . and k = 1, 2, . . . we have

H([X1]m|X0
−∞) ≤ H([Xk]m|[Xk−1

−∞ ]m)

≤ H([Xk]m|[Xk−1
1 ]m) (244)

by stationarity; and because conditioning reduces entropy and,
conditioned on X0

−∞, [X1]m is independent of [X0
−∞]m. Note

that, by (4) and stationarity,

H([Xk]m|[Xk−1
−∞ ]m) = H ′({[Xt]m}). (245)

Thus, dividing (244) by logm and taking first the limit over
m and then the limit over k yields

d(X1|X0
−∞) ≤ d({Xt}) ≤ d

′
({Xt}). (246)

This proves (73).
We next bound the difference d

′
({Xt}) − d({Xt}). By

(245), we have

H([Xk]m|[Xk−1
1 ]m)−H ′({[Xt]m})

= I([Xk]m; [X0
−∞]m|[Xk−1

1 ]m). (247)

Dividing (247) by logm and taking first the limit over m and
then the limit over k yields

lim
k→∞

lim
m→∞

I([Xk]m; [X0
−∞]m|[Xk−1

1 ]m)

logm

≤ d′({Xt})− d({Xt})

≤ lim
k→∞

lim
m→∞

I([Xk]m; [X0
−∞]m|[Xk−1

1 ]m)

logm
. (248)

This concludes the proof of Theorem 14.

B. Proof of Corollary 15

Suppose there exists a nonnegative n such that

I(Xk
1 ;X−n−∞) <∞, k = 1, 2, . . . (249)

We first show that

I([Xk]m; [X0
−∞]m|[Xk−1

1 ]m) ≤
I([Xk

1 ]m; [X0
−∞]m)

k
. (250)

In a second step, we then show that (249) implies that

lim
k→∞

lim
m→∞

I([Xk
1 ]m; [X0

−∞]m)

k logm
= 0 (251)

which together with (250) and (74) demonstrates that
d({Xt}) = d

′
({Xt}), thus proving Corollary 15.

To prove (250), we use the chain rule, stationarity, and the
fact that conditioning reduces entropy, to obtain

I([Xk
1 ]m; [X0

−∞]m)

=
k∑
`=1

[
H([X`]m|[X`−1

1 ]m)−H([X`]m|[X`−1
−∞]m)

]
≥

k∑
`=1

[
H([Xk]m|[Xk−1

1 ]m)−H([Xk]m|[Xk−1
−∞ ]m)

]
= kI([Xk]m; [X0

−∞]m|[Xk−1
1 ]m). (252)

Having obtained (250), we next show that (249) implies (251).
Indeed,

lim
k→∞

lim
m→∞

I([Xk
1 ]m; [X0

−∞]m)

k logm

≤ lim
k→∞

lim
m→∞

I([Xk
1 ]m; [X−n−∞]m)

k logm

+ lim
k→∞

lim
m→∞

I([Xk
1 ]m; [X0

−n+1]m|[X−n−∞]m)

k logm

≤ lim
k→∞

lim
m→∞

I(Xk
1 ;X−n−∞)

k logm

+ lim
k→∞

lim
m→∞

H([X0
−n+1]m)

k logm
(253)
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where n is a nonnegative integer satisfying (249). Here, the
first inequality follows from the chain rule; the second inequal-
ity follows from the data processing inequality and by upper-
bounding the second mutual information by H([X0

−n+1]m).
The first limit on the RHS of (253) is zero because, by

assumption, I(Xk
1 ;X−n−∞) <∞. The second limit on the RHS

of (253) can be written as limk→∞ d̄(X0
−n+1)/k, which is zero

because, by Lemma 1, d̄(X0
−n+1) is bounded in k. This proves

(251) and concludes the proof of Corollary 15.

C. Proof of Lemma 16

Since {Xt} is Gaussian, the conditional mean of Xk given
X0, . . . , Xk−1 can be written as

E [Xk|X0, . . . , Xk−1] =
k∑
`=1

α`Xk−` (254)

for some coefficients α1, . . . , αk.7 The conditional variance
σ2
k is thus given by (see, e.g., [19, Sec. 10.6])

σ2
k = E

(Xk −
k∑
`=1

α`Xk−`

)2


=

∫ 1
2

− 1
2

∣∣∣∣∣1−
k∑
`=1

α`e
−ı2π`θ

∣∣∣∣∣
2

dFX(θ). (255)

The function

g(θ) = 1−
k∑
`=1

α`e
−ı2π`θ, −1/2 ≤ θ ≤ 1/2 (256)

is analytic on the closed interval [−1/2, 1/2], hence it is
either constant or it has at most finitely many zeros in
[−1/2, 1/2]. Moreover, g cannot be the all-zero function, as
can be argued by contradiction. Indeed, suppose there exist
α1, . . . , αk such that g(θ) = 0 for all θ. Then, by (255),
we have σ2

k = 0 irrespective of FX . In other words, we
can find a linear estimator that perfectly predicts Xk from
X0, . . . , Xk−1 irrespective of the SDF of {Xt}. This is clearly
a contradiction, since even the best predictor yields σ2

k = σ2

for an i.i.d., zero-mean, variance-σ2, Gaussian process, i.e.,
when F′X(θ) = σ2. Thus, the set Z , {θ : g(θ) = 0} is finite
and has therefore Lebesgue measure zero.

Since |g(θ)|2 = 0 for θ ∈ Z , we have

σ2
k =

∫
Zc

|g(θ)|2dFX(θ). (257)

Since furthermore |g(θ)|2 > 0 for θ ∈ Zc, we have σ2
k = 0

only if ∫
Zc

dFX(θ) = 0. (258)

This implies that F′X(θ) = 0 for all θ ∈ Zc. Hence, the set
of harmonics θ for which F′X(θ) > 0 is contained in Z . The
proof is completed by the monotonicity of measures and the
fact that Z has Lebesgue measure zero.

7More precisely, the coefficients correspond to the LMMSE estimator for
estimating Xk from X0, . . . , Xk−1. The LMMSE estimator always exists,
even though it is not necessarily unique.
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