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Abstract — New non-asymptotic upper bounds
on the capacity of non-coherent multiple-input
multiple-output (MIMO) Gaussian fading chan-
nels with memory are proposed. These bounds
are used to derive upper bounds on the fad-
ing number of regular Gaussian fading channels
and on the pre-log of non-regular ones. The
resulting bounds are tight in the multiple-input
single-output (MISO) spatially IID Gaussian case
whence they yield the exact fading number and
pre-log.

A new approach is proposed for the derivation
of lower bounds on the fading number of MIMO
channels. This approach is applied to derive a
lower bound on the fading number of spatially ITD
zero-mean (Gaussian fading channels with mem-
ory.

The new upper and lower bounds on the fad-
ing number demonstrate that when the number
of receive antennas does not exceed the num-
ber of transmit antennas, the fading number of
zero-mean spatially IID slowly varying Gaussian
MIMO channels is proportional to the number of
degrees of freedom, i.e., to the minimum of the
number of transmit and receive antennas. We
conjecture that the same is true also when the
number of receive antennas exceeds the number
of transmit antennas. The single-input multiple-
output case that was recently solved by Lapidoth
& Moser supports this conjecture.

I. INTRODUCTION

The subject of this paper is the capacity of multiple-
input multiple-output (MIMO) discrete-time flat fading
channels with memory. We present firm (non-asymptotic)
upper bounds on channel capacity and also study its high
signal-to-noise ratio (SNR) asymptotic behavior via new
lower bounds on the fading number. We shall see that the
notions of the fading number and the number of degrees
of freedom are closely tied.

We begin with a description of the channel and with
some definitions. We envision a channel with nt transmit
antennas and ng receive antennas. Its time-k (k € Z)
output Y € C"® corresponding to the time-k channel
input x; € C"T is an ngr-dimensional complex random
vector that is given by

Y = Hpxy + Zy (1)

where the random ng X nT complex matrix Hj; € C"r*"T
denotes the time-k fading matrix and the random vector
Z;. € C"® denotes the additive noise. Here Z denotes the
set of integers and C denotes the set of complex num-
bers. We assume throughout that the vectors {Z;} are
independent and identically distributed (IID) according
to a circularly symmetric complex multi-variate Gaussian
law of zero mean and of covariance matrix o2 - l,,,; with
o > 0. Here, |, denotes the nr X nr identity matrix.

The matrix valued fading process {Hj} is assumed to
be stationary & ergodic and to satisfy the finite expected
squared Frobenius norm condition

E [JIHk ][] < oc. (2)
The fading process {H} and the additive noise process
{Z} are independent of each other and of a joint law
that does not depend on the channel inputs {xj}.

The above conditions will be assumed throughout.
Some theorems will require additional assumptions.
These are defined next. We shall say that the fading pro-
cess {Hg} is regular if it has a finite differential entropy
rate, i.e., if

1
lim —h(Hy, . ..

n—oo N

h({H;}) £ JH,) > —oc.

(3)
Otherwise, we shall say that it is non-reqular. We say that
the fading process is Gaussian if {Hy} is a matrix-valued
Gaussian process, i.e., if for any finite number of deter-
ministic coefficients ;¢ the sum > oy Hi(r,t) is a
(complex) Gaussian random variable. Here and through-
out Hy(r,t) denotes the row-r column-t entry of the ma-
trix Hj, and it is implicitly assumed that 1 < r < ny
and 1 < t < np. We say that the fading is spatially
independent if the ng - nr processes {Hy(r,t)}32 _ . are
independent. We say that the fading is spatially IID if
they are additionally of the same law.

The capacity of this channel under an average power
&, constraint is

1
Cavg(SNR) = lim —supl (XT;YT)

n—oo N

(4)

where A}* stands for Ag,..., A, and where the maxi-
mization is over all joint distributions on X7 that satisfy

=Y ElI?) < e

k=1

L (5)



(Here || - || denotes the Euclidean norm.) For the peak
power A constrained capacity the maximization is over
all joint distributions under which with probability one

Xkl <A, 1<k<n (6)

The SNR is defined depending on whether an average or
peak power constraint is imposed: SNR £ &/0? for an
average constraint and SNR £ A? /o? for a peak con-
straint.

For regular fading the fading number is defined by

\({H}) 2 T {C(SNR) — loglogSNR}  (7)

where, unless it is clear from the context or if the distinc-
tion is immaterial, we add a subscript “Avg” to indicate
that an average power constraint is imposed and add the
subscript “PP” for peak power. Notice that for regu-
lar fading the fading numbers corresponding to both a
peak power constraint and an average power constraint
are finite [1]. Also, for any fading law, ypp({Hy}) <
Xave({Hi}).

The exact calculation of the fading number for general
(regular) fading channels with memory is a difficult task.
An exact expression for the fading number for the single-
input single-output (SISO) case (ng = nt = 1) is given
in [1]:

X({Hr}) =logm + E[log |H1|*] — h({H}).  (8)

The single-input multiple-output (SIMO) (nT = 1) case
was recently solved in [2]. Here we shall present results for
the multiple-input single-output (MISO) (nr = 1) case
when the fading is spatially independent and Gaussian.
Specifically, Corollary 8 treats the case where the fading
is spatially independent Gaussian with a zero mean vec-
tor, and Corollary 9 treats the case where {Hy —E[H]} is
Gaussian and spatially IID. For MIMO channels we shall
present lower bounds on the fading number, see Theo-
rem 4 (general) and Theorem 5 (Gaussian), and an upper
bound for Gaussian fading, see Theorem 6 & Corollary 7.

For non-regular fading capacity can grow with the SNR
in various ways [3], [4]. When it grows logarithmically in
the SNR the pre-log under a peak power constraint is
defined by

Cpp(SNR)

H =
PP = NRe oo log SNR

(9)
with an analogous definition for the pre-log Il5ye under
an average power constraint.

The pre-log for general MIMO fading channels is un-
known. It was computed under a peak-power constraint
for the SISO Gaussian case in [3], [4] where it was shown
that IIpp is given by the Lebesgue measure of the set of
harmonics in the interval [—1/2,1/2] where the derivative
of the spectral distribution function is zero:

Ipp = p({X: F'(A) = 0})

where i denotes the Lebesgue measure and F’ is the
derivative of the spectral distribution function of the fad-
ing process.

(10)

Here we shall present an upper bound on Ilpp for
MIMO Gaussian fading in Corollaries 11 & 12 and an
exact expression for IIpp for spatially independent MISO
Gaussian fading in Corollary 13.

The rest of this document is organized as follows. In
Section II we present firm upper and lower bounds on
the capacity. In Section IIT we address the fading number.
We present the new lower bounds, the new upper bounds,
and the MISO cases where these bounds yield the exact
fading number. Section IV deals with non-regular fading
and the pre-log. It includes upper bounds on the pre-log
for non-regular MIMO fading and the expression for the
MISO case whence the bounds are tight. In Section V
we specialize our results to slowly varying Gauss-Markov
MIMO fading so as to be able to relate our results to
those of [5], [6]. We conclude with a discussion of the
relationship between the fading number and degrees of
freedom.

II. NoN-AsyMPTOTIC BOUNDS

A. SISO Fading Channels
The asymptotic capacity of SISO fading channels with

memory is well understood. For instance, the fading num-
ber of a (regular) SISO mean-d unit-variance Gaussian
fading channel with spectral distribution function F()),
—1/2 < X\ < 1/2, is given by [1]

X({HL}) = log|df? ~ Fi(—\dP) 1 +log 5 (1)

where Ei(-) denotes the exponential integral function, and

with
1/2
€ = exp / log F'(\) dA
~1/2

denoting the (noiseless) prediction error in predicting the
present fading from its infinite past. Thus, €2 is the mean
squared error in predicting Hy from H_1, H_o,.... If we
view the fading number as an indication of the maximal
rate at which power-efficient communication is achievable
(see [1]), then it follows from (11) that this maximal rate
only depends on the memory of the channel through the
noiseless prediction error.

Non-asymptotic upper and lower bounds on the capac-
ity of SISO Gaussian fading channels with memory under
a peak power constraint on the inputs were given in [4]
and [3]. It was shown that the capacity is upper bounded
by

(12)

Cpp(SNR) < Cpp1ip + log —

1
VSN

where Cpp 110 (SNR) denotes the capacity in the memory-
less fading case, and €2(6%) denotes the error in predicting
the present fading from a variance-62 noisy observation
of its past, i.e.,

1/2
€2(6%) :exp{/1/2 log (F’()\)+62d)\)} -6 (14)



Thus, €2(62) is the mean squared error in predicting Ho
from H_y + W_1,H_2 + W_s,... where {W}} is a se-
quence of IID zero-mean variance-62 circularly symmet-
ric complex Gaussian random variables independent of
the fading process {Hy}.

Likewise, it was shown that the capacity can be lower
bounded by

1
Cpp(SNR) > 1
pr(SNR) 2 18 o s Ry & .

. |d|? 5e
—FEi (—m) — log e (15)

In the following we improve these bounds for the case
where the Gaussian fading process is zero-mean. The
upper bound (13) can be tightened as follows

+ log |d|?

1+ 1/SNR
(1/SNR) + 1/SNR’
(16

Cpp (SNR) < OPPJID (SNR) + log 2

It was shown by Lapidoth and Moser [1] that the capac-
ity of the memoryless SISO Rayleigh-fading channel (i.e.,
zero-mean Gaussian fading) can be upper bounded by

Cpp,1ip(SNR)
5/
< . . o / R
- a,lle>o E/I;fo{ 14+ alog B +logT (a, 5’)
1+ SNR o ’ .
T + E + (1 - a) (1Og5/ - 66 ' El(*(s/)) }
(17)

The lower bound (15) can be improved by considering
inputs that are IID and uniformly distributed over the
set {z € C: ad <|z| < A} with 0 < a < 1 (whereas in
[4] and [3] the inputs were uniformly distributed over the
set {z€ C: A/2 <|z| < A}), and by maximizing over a:

( ) SNR(14+o
> — €
CPP(S R) - iuag { Xp { — 62(52)

62 52 + 2
. (_ (%) + sz

1 —€2(6?2) ) )
0= r5rm
e(1+a?)
—log ———= ». 18
Og%1—a%} (18)
Note that a better lower bound can be2 found numer-
ically as follows. Let Cripjsiarx Ig‘;“, I?;",g) be de-

fined as

2 2
C Lhin  Ymax 2
11D ‘ SI@RX 2 2
g g

=sup I(X;(D+H)X +Z|D)  (19)

where the maximization is over all input distributions on
X (independent of D) under which with probability one

Tmin S |X| S Tmax; (20)
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Figure 1: Bounds on the capacity of a SISO zero-mean Gaus-
sian fading channel with memory. Depicted are capacity up-
per and lower bounds for two different fading processes with
spectral densities of the form (22); the asymptotic expansion
log(1 4 log(1 4+ SNR)) + x; and the fading number x.

and D, H, and Z are zero-mean circularly symmetric
complex Gaussian random variables, independent of each
other and of X and with the respective variances 1 — &2,
€2, and o2. The capacity of a (regular) SISO zero-mean
unit-variance Gaussian fading channel is lower bounded
by

2
Cpp (SNR) > sup Chp|siarx <:C;n—2m, SNR, € (5/2)>

27, <A?

1)
with §"? = ¢2/22, . This lower bound (21) can be com-
puted numerically [7].

In the following we consider two spectral densities F} (+)

and Fj(-) of the form

Al <73
y3<|Al<E

71,

1=1,2,
72,

R = { (22)

where the parameters 1, v2, and 3 are chosen such that

1/2
/ FOVdA =1, Vi (23)
~1/2
and
1/2 1
€ = exp / log F/(A\)d\ p = 100° vi. (24)
~1/2

Thus, we consider two unit-variance Gaussian fading pro-
cesses with the same noiseless prediction error (of 1/100),
but with different spectral densities. By controlling 4
while maintaining (23) and (24) we can control the sen-
sitivity of the noisy prediction error with respect to the
variance of the noise corrupting the observations.

Figure 1 depicts upper and lower bounds on the ca-
pacity of SISO zero-mean Gaussian fading channels with



memory for the two different spectral densities Fy(:)

and Fj(-) (22). Additionally, the asymptotic expansion

log(1 4 log(1 + SNR)) 4+ x({Hx}) and the fading number

1

X({Hi}) = ~1— 7+ log (25)

(where y ~ 0.577 denotes Euler’s constant) are shown in
order to illustrate at which SNRs the approximation

C(SNR) = log(1 +log(1 + SNR)) + x({ Hx}) + o(1) (26)

is reasonable. Note that at high SNR the o(1)-term is
small and (26) yields a good approximation of channel
capacity.

The high-SNR, asymptotic capacities corresponding to
the two fading laws are identical, because these asymp-
totics are determined by the noiseless prediction error,
which is identical for the two. At lower SNRs, the be-
haviors are, however, very different. The capacity upper
bound corresponding to F}(-) enters the power-inefficient
regime at about 90 dB whereas the capacity upper bound
corresponding to Fj(-) achieves this regime at far lower
SNRs, namely at about 30 dB. Thus, while the high-
SNR expansion of channel capacity depends on the fad-
ing memory only via its noiseless prediction error, the
moderate-SNR, behavior depends on the memory more
finely, namely, via the functional dependence of the noisy
prediction error on the variance of the noise corrupting
the observations.

This clearly demonstrates that while the noiseless pre-
diction error can sometimes indicate the rates above
which communication becomes power-inefficient, it can-
not indicate the corresponding SNRs. For the latter one
needs the functional dependence of the noisy prediction
error on the variance of the corrupting noise.

B. MIMO Fading Channels

In this section we extend the bounds of [4] and [3]
to firm upper bounds on the capacity of MIMO fading
channels.

Theorem 1. Consider a mean-D spatially independent
Gaussian MIMO fading {Hy} such that the random pro-
cess {Hy(r,t) —d(r,t)} is a zero-mean unit-variance cir-
cularly symmetric compler Gaussian process with spectral

distribution function F,(-). Then
Cpp(SNR)
1+ 42
<C SNR) + log ——
PP,IID( max Z og ST RO, 07) 1 62

(27)

where 62 = 1/SNR and where Cpp 11p(SNR) denotes the
capacity in the memoryless fading case. Here, €2 ,(56%)
denotes the error in predicting the (r,t)-th component of
the fading matriz from a moisy observation of its past,
ie.,

1/2
efﬁt(52) = exp {/ log (F;t()\) + (52) d)\} — 6% (28)

—1/2

When the fading process {Hy} is spatially IID, then
we obtain from Theorem 1 the following corollary.

Corollary 2. Let the mean-D Gaussian MIMO fading

{Hy} be such that the process {H) — D} is spatially 11D

with each component being a zero-mean unit-variance

circularly symmetric compler Gaussian process of spec-

tml distribution function F(-). Then, defining €2(6%) =
€2.1(6%), (27) becomes

Cpp(SNR)
1+ 1/SNR
(1/SNR) + 1/SNR’

< Cpp1p(SNR) + ng log 2 (29)

An upper bound on the capacity of spatially indepen-
dent MISO fading channels can be found by using The-
orem 1 with ng = 1. The following theorem provides
an upper bound that generalizes this bound to channels
where the fading is not spatially independent.

For convenience we shall write the MISO fading process

as a column vector and not as a row vector. Thus, the
time-k channel output Y} is given by
Y. = H;Xk + Zk (30)

where Hj, denotes the transpose of Hy.

Theorem 3. Consider a mean-d Gaussian MISO fading
channel where {Hy, — d} is a zero-mean circularly sym-
metric stationary and ergodic compler Gaussian process
with matriz-valued spectral distribution function F(+), i.e.,

1/2
E[(Hytrm —d)(H — d)f] = / e2™mAqF(\)  (31)
—1/2

where (-)'  denotes Hermitian conjugation. As-
sume further that the covariance matriz K =
E[(H, —d)(Hy —d)'] is non-singular. Then, the
capacity is upper bounded by

Cpp (SNR) < Cpp HD(SNR) + log w (32)

- ’ Amin(1/SNR)

where )\min((SQ) denotes the smallest eigenvalue of the er-
ror covariance matriz $(62) in predicting the present fad-
ing from a noisy observation of its past; and || - || denotes
the Fuclidean operator norm of matrices, i.e., the largest
singular value.

Note that these results hold for both regular and non-
regular processes. For a detailed proof of these bounds
see [8].

III. THE FADING NUMBER

In this section we present lower and upper bounds on the
fading number (7) of MIMO fading channels. We will as-
sume throughout this section that all channels considered
here satisfy the finite differential entropy rate condition

(3).



A. Lower Bounds

Theorem 4. Consider a general (not necessarily Gaus-
sian) stationary and ergodic fading process {Hy} satisfy-
ing the conditions (2) and (3). Let {Hy} be independent
of the IID random vectors {Xy} taking value in C™™ and
satisfying

E[IXk|?] <oo and E[log|Xg|*] > —co.  (33)

Then the fading number xave({Hg}) is lower bounded by

Yavs({HLY)
> (X)) + Tim (X Hy: (X, )(34)

where x({HxXy}) is the fading number of a SIMO chan-
nel with fading process {HpX}. (For SIMO fading, peak-
power and average power constraints yield the same fad-
ing number [2].)

Moreover, if the random variables {Xy} are bounded,
then the lower bound (34) holds also for the fading number
xpp({Hg}) of the fading process {Hy } under a peak-power
constraint.

Note that this theorem can be extended with some
care to the case where the inputs {X} are block-wise
IID, e.g., if {(Xak, Xog+1)} are IID.

An exact expression for the fading number x ({HxXy})
of the SIMO fading {H; Xy} is given in [2]. However, this
expression is not easy to evaluate. It can always be lower
bounded by considering linear combining at the receiver
which reduces the SIMO channel to a SISO channel for
which the fading number is easier to compute (8):

X({HrXx}) = x({o Hp Xk }) (35)

(o € C"® deterministic), or by ignoring the memory in
{Hx X}

X{HpXk}) > xip (H1X0), (36)
or by applying both reductions
X({HpX4%}) > xup(a'Hi Xy) (37)

where the subscript “IID” denotes the fading number in
the memoryless case with equal marginals. The advan-
tage of the latter is that it only depends on the marginal
law of {Hj}.

A particular choice for {X} which we shall find useful
is the zero-mean multi-variate isotropic Gaussian law. It
greatly simplifies the analysis of the second term on the
RHS of (34). With this choice, we can use Theorem 4 to
establish the following result on slowly varying Gaussian
fading channels.

Theorem 5. Let the MIMO fading {Hy} be spatially
IID with each component of {Hy} being a circularly
symmetric zero-mean unit-variance complex Gaussian

process of temporal autocorrelation function K] =
E[H;Jru(r,t)Hk(r, t)}, v € 7, where H* denotes the

complex conjugate of H. Let nyi = min{ng,nt} and
let

e 2  max E[|HV(T,1f) —HO(Tat)F]

max
1<v<nmint2

=2 1§u127?§i,,+2(1 — Re{K[v]}) (38)
where Re{K[v]} denotes the real part of K[v]. Then
1
Xave({Hi}) > nimin log = + Const(nmin) (39)

de

where the correction term Const(nmin) depends only on
Nmin and not on the autocorrelation K[].

Note that by using Theorem 5 with ever more slightly
truncated Gaussian laws one can show that the lower
bound (39) also holds for a peak-power constraint. Fur-
ther note that in the above theorem we can replace €2,,
with

Erax = 2

max max

o mex  (1L-Re{K[r()]})  (40)

where 7(+) is any permutation of the natural numbers N.
B. Upper Bounds

Theorem 6. Consider a mean-D spatially independent
Gaussian MIMO fading {Hy} such that the random pro-
cess {Hy(r,t)—d(r,t)} is a zero-mean unit-variance circu-
larly symmetric stationary and ergodic complex Gaussian

process with spectral distribution function Fy.(-). Then
Xave({Hi})
< Xav H;)+ max » lo —n 41
0 (H) + oo 12 e e,
with
1/2
€, = exp {/ log Fy ;(A) d/\} : (42)
—-1/2

From this theorem, we can derive an upper bound on
the fading number when the fading process {H}} is spa-
tially IID.

Corollary 7. Let the mean-D Gaussian MIMO fading
{H} be such that the process {Hy — D} is spatially IID
with each component being a zero-mean unit-variance cir-
cularly symmetric complex Gaussian process of spectral
distribution function F(-). Then denoting €2, which is
now independent of (r,t) by € the upper bound (41) be-
comes
Xavs({BkD) € Xavgun(F) + nlog 5. (43)
Note that xave,1mD (Hy) is unknown for general fading
matrices H;. However, X avg 11D (Hy) is known in the case
where H; is rotation commutative. General and specific
upper bounds on xyip (H;) for the case where the ng X nr
matrix Hy is of the form H; = D + ]I:]h where D is deter-
ministic and Hj is spatially IID with each component of
H; being a zero-mean unit-variance circularly symmetric
complex Gaussian random variable are given in [1].



C. MISO Fading

An upper bound on the fading number of spatially inde-
pendent Gaussian MISO channels follows from Theorem
6 by recalling that [1, Corollary 4.28]

Xave 1o (H1) = xppp(Hy) = —1 + logd? — Ei(—d?)
(44)

where s
|E[H] ]

d. = max ———E——.

Ixll=1 /Var(H}X)

This can be used to derive the following results on MISO
fading channels.

(45)

Corollary 8. Consider a regular zero-mean spatially in-
dependent Gaussian MISO flat fading channel where the
spectral distribution function of the unit-variance process
{H(t)} is given by Fy(-). Then irrespective of whether a
peak or an average power constraint is imposed,

1
X({Hp}) = —1 =7 +log 5— (46)
where
1/2
2 _ : /
€min = | 1000 _exp {/ s log Fy (\) d)\} . (47)

Moreover, this fading number can be achieved with beam
selection, i.e., by transmitting from the antemna that
yields the smallest prediction error.

Corollary 9. Consider a reqular Gaussian MISO fading
channel where the mean of the fading process {Hy} is de-
noted by d. Assume that {Hy — d} is spatially 1ID and
that each of its components is a zero-mean unit-variance
circularly symmetric compler Gaussian process of spec-
tral distribution function F(-). Then for both an average
power constraint and a peak power constraint the fading
number is

X({Hi}) = —1 +log[d|* — Ei(—[|d]|*) + log 612 (48)

Moreover, the fading number is achievable with beam
forming.

The following theorem generalizes Theorem 6 to chan-
nels that are not spatially independent.

Theorem 10. Let the mean-d MISO fading process be
such that the process {Hy — d} is a zero-mean circu-
larly symmetric stationary ergodic complex Gaussian pro-
cess with matriz-valued spectral distribution function F(-),
and with covariance matriz K. Furthermore, assume that

the prediction error covariance matriz X is non-singular.
Then,

K
XAvg({Hk}) < —1+log di — El(*di) + log ” ” (49)

with dy as in (45) and where Apin is the smallest eigen-
value of .

IV. THE Pre-LoG

In this section we shall extend the SISO results on the
pre-log [3], [4] to the multi-antenna case.

Corollary 11. Consider a mean-D spatially independent
MIMO fading {H}} where the random process { Hy(r,t) —
d(r,t)} is a zero-mean unit-variance circularly symmetric
complexr Gaussian process with spectral distribution func-
tion Fr (). Then

n

IIpp < max
1<t<nr

R

(O FLY) =0} (50)
r=1
Corollary 12. Consider a mean-D Gaussian MIMO fad-
ing {Hy} where {Hy — D} is spatially IID with each com-
ponent being a zero-mean unit-variance circularly sym-

metric complex Gausian process of spectral distribution
function F(-). Then

For spatially independent Gaussian MISO channels,
the upper bound provided in Corollary 11 is tight.

Corollary 13. Consider a mean-d spatially indepen-
dent Gaussian MISO fading {Hy} such that the process
{Hg(t) — d(t)} is a zero-mean unit-variance circularly
symmetric complexr Gaussian process of spectral distribu-
tion function Fi(-). Then, the pre-log is

Ipp = max pu({\: F{(A) =0}).

1<t<nm

(52)

Moreover, this pre-log can be achieved with beam selec-
tion.

V. A GAUss-MARKOV FADING PROCESS

A very simple model for a slowly varying channel is the
Gauss-Markov fading model (see for example [9] or [5]).
Here {Hg} is a zero-mean spatially IID Gaussian process

with
Hy, =1 —e2H,_1 + W, (53)
where {W},} is spatially IID with {Wj(r,t)} consisting of

IID zero-mean unit-variance circularly symmetric com-
plex Gaussians. In the above £2 is the mean squared
error of the one-step predictor of Hy(r,t) from its infinite
past.

In the following, we consider a MIMO Gauss-Markov
fading channel with n = ng = nr transmit and receive
antennas. With the aid of Corollary 7 one can upper
bound the fading number xave({Hg}) as

Xave({Hi}) < nlog;gi2 + Const(n) (54)
where the correction term Const(n) is just a function of
n and not of 2. Similarly, we can use Theorem 5 to lower
bound the fading number as

Xavg({He}) > nlog€—12 + Const(n) + o(e?) (55)

where the o(g?) term tends to zero as €2 — 0.



VI. THE FADING NUMBER AND DEGREES OF
FREEDOM

The “number of degrees of freedom” ny;, of a system
employing nt transmit antennas and ng receive antennas
is defined by nmin = min{nt,nr}. It plays an impor-
tant role in the high-SNR asymptotic analysis of coherent
MIMO fading channels [10] as well as in the asymptotic
analysis of the block-constant fading model [11], [12].

The role of degrees of freedom in non-coherent commu-
nication is more subtle. Indeed, if the limit in (7) exists
then the asymptotic expansion

C(SNR) = log(1 + log(1 +SNR)) + x +o(1)  (56)

indicates that at very high SNR, when the loglog SNR
term dominates the fading number y, capacity grows
double-logarithmically in the SNR and the number of
transmit and receive antennas hardly influences capacity.

Great care, however, must be exercised when apply-
ing this argument. For this argument to demonstrate the
irrelevance of the degrees of freedom in determining chan-
nel capacity, the SNR must not only be large enough so
that (56) be a good approximation, but it must also be
large enough so that the loglog SNR term dominate the
fading number y. While, as we shall argue, the approx-
imation (56) begins to hold at reasonable SNRs, for the
loglog SNR term to dominate the fading number x the
SNR must be larger than the double exponentiation of
the fading number. When the fading number is large, as
in slowly varying channels, this latter condition only be-
gins to hold at extremely high SNRs (even though (56)
begins to hold at relatively moderate SNRs).

What then is the role of degrees of freedom in slowly
varying non-coherent communication? For slowly varying
channels, degrees of freedom play a key role in determin-
ing the fading number! Indeed — at least when ng < nr
— Theorem 5 & Corollary 7 combine to prove that for
very slowly varying fading channels the fading number is
roughly proportional to nyiy-

The picture that emerges is thus the following. The ap-
proximation (56) is quite reasonable as of relatively mod-
erate SNRs. For slowly varying channels the loglog SNR
dominates the fading number only at extremely high
SNRs. At these extremely high SNRs, degrees of free-
dom, indeed, hardly influence capacity. However, increas-
ing the number of degrees of freedom increases the fad-
ing number x and hence pushes this extremely high-SNR,
regime further and further away. If we think of the fad-
ing number as an indication of the maximal rate at which
power efficient communication is achievable on the chan-
nel, then we can say that for slowly varying spatially inde-
pendent Gaussian fading this rate is roughly proportional
to the number of degrees of freedom. Thus, increasing the
number of degrees of freedom increases the practical limit
on power-efficient communication over the channel.

The results of [5], [6] on slowly-varying Gauss-Markov
channels are, in fact, in agreement with this picture. It
is just critical to understand that when they write [5]
“However, when the SNR gets much larger, the Lapidoth-
Moser regime kicks in ...” they mean that it is only

at much larger SNRs that the loglog SNR term in (56)
dominates the fading number y. The applicability of (56)
begins at far lower SNRs.

Note that our results on the fading number and degrees
of freedom are not specific to Gauss-Markov fading. It
suffices that the auto-correlation decay slowly and that
the difference between the present fading and any fading
in the past nmin + 2 symbols be of expected squared error
that is not much larger than the prediction error based
on the infinite past. That is, we require that
Cinax

log 2

be roughly a constant. (Here epay is defined in (38) and
€2 is the prediction error in predicting the present value
of the process Hy(r,t) from its infinite past.) This is
certainly the case for Gauss-Markov processes.
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