Motivation

- Directional transforms avoid filtering across large discontinuities.
- Smaller high frequency coefficients in those locations.

Goal: Video encoder based on 3-D directional transforms.

Related Work: Lifting in the temporal domain for video coding [Secker and Taubman, 2003, Popescu and Bouthreau, 2001].

Key Novelties

- **Introduction to the Transform:**
 - Describe the video sequence as a weighted graph of connected pixels.
 - Apply the lifting transform on this graph.

Key Novelties:

- Graph captures spatio-temporal correlation → spatio-temporal lifting.
- Non separable approach, against common Wavelet-based video coders (1+4).
- Coefficients reordering using graph information.

Lifting Transforms on Graphs

Lifting Transform:
- To perform the transform and ensure its invertibility:
 - Update \((U_f)\)-Prediction (P) splitting.
 - Predict \((p)\) and update \((u)\) filters design.

Update-Prediction Splitting:
- Invertibility for any disjoint Update-Prediction splitting.
- Criterion we use: Maximize the total weight of the links between \(p_j\) and \(u_j\) → Maximun Cut.

Coefficient Reordering

Goal:
- Reorder the coefficients generated by our Graph-based transform in an efficient way.

Proposed Solution:
- Reorder the coefficients using graph information:
 - Inter-Subband reordering.
 - Intra-Subband reordering.

Experimental Results

Experimental Setup:
- Quantization: Subband dependent quantization.
- Scanning: Inter and Intra reordering.
- Run length encoding.
- Arithmetic coding.
- 5 levels of the transform.
- \(w_1=10; w_4=2\).

Low Complexity Transform

Problem:
- Encoder complexity increases rapidly with the number of nodes.

Proposed solution:
- Create disjoint subgraphs.
- Maintain the temporal links.

Coefficient Reordering

Inter-Subband Reordering:
- Group coefficients that belong to the same subband.
 \[\text{coeff}_{\text{inter}} = [d^{w-N}, d^{w-N-1}, \ldots, d^1]. \]

Intra-Subband Reordering:
- Reorder the coefficients in each subband as a function of the reliability of their links.

Results:

- **Number of Subgraphs** vs. **Complexity Reduction**
 - Mobile: 82 vs. 48
 - Foreman: 14 vs. 4
 - Carphone: 1 vs. 1

Encoder and Decoder

Experimental Results

<table>
<thead>
<tr>
<th>Foreman</th>
<th>Carphone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile</td>
<td>503 Kbps</td>
</tr>
<tr>
<td>Foreman</td>
<td>404 Kbps</td>
</tr>
<tr>
<td>Carphone</td>
<td>350 Kbps</td>
</tr>
</tbody>
</table>