1. Orthonormalized PLS (OPLS)
- Training data: \(\Phi = [\phi(x_1), \ldots, \phi(x_i)]^T; Y = [y_1, \ldots, y_i]^T \)
- Find projection vectors for feature extraction:
 \[\tilde{\Phi} = \Phi U \]
 where each column in \(U \) is a projection vector, and \(\tilde{\Phi} \) is a centered version of \(\Phi \)
- OPLS:
 \[\begin{align*}
 \text{maximize:} & & \text{Tr}\{U^T \tilde{\Phi}^T \tilde{\Phi} Y \tilde{U} \} \\
 \text{subject to:} & & U^T \Phi \Phi^T U = I
 \end{align*} \]
- OPLS properties:
 - Only projections for input data; projected data is white
 - Optimal features for linear prediction (with a bottleneck) of the training labels with square loss, i.e.,
 \[U = \arg \min_U \| Y - \tilde{\Phi} B \|^2_F, \quad B = (\tilde{\Phi}^T \tilde{\Phi})^{-1} \tilde{\Phi}^T Y \]

2. Kernel OPLS (KOPLS)
- Representer Theorem: \(U = \tilde{\Phi}^T A \)
- KOPLS:
 \[\begin{align*}
 \text{maximize:} & & \text{Tr}\{A^T K_x K_y X A\} \\
 \text{subject to:} & & A^T K_x K_y A = I
 \end{align*} \]
- Matrix \(A \) is the solution of a gen. eigenvalue problem
 \[K_x K_y K_x A = K_x K_y AA \]
 with \(K_x = \tilde{\Phi} \tilde{\Phi}^T \) and \(K_y = Y Y^T \)

Pros
- Expressive FE for regression and classification problems, including the multi-class and multi-label cases
- Unlike other KMVA, KOPLS involves projections in the input space only
- Associated with a well-known cost function

Cons
- Kernel computations: \(I^2 \)
- Memory requirements: \(2 l^2 \)
- Dense solution: \(l \) nodes
- \(K_x, K_y \) is typically singular
- Solution may overfit

3. Sparse approximation of the KOPLS solution (rKOPLS)
- We use \(U = \Phi_R^T B \), where \(\Phi_R \) is a subset of the train dataset including \(R \) patterns \((R < l)\)
- This leads to the generalized eigenvalue problem
 \[K_R K_y K_R^T B = K_R K_R^T B A \]
 where \(K_R = \Phi_R \Phi_R^T \) is a reduced \((R \times l)\) kernel matrix

Now:
- Kernel computations: \(R \cdot l \)
- Memory requirements: \(R(R + \text{dim}(Y)) \)
- Sparse solution with \(R \) nodes
- \(K_R K_R^T \) is better conditioned than \(K_x K_y \)
- \(R \) acts as a sort of regularizer

But:
- Random selection of centroids \(\Phi_R \)
- Additional parameter \(R \): subject to a tradeoff performance vs complexity

Iterative rKOPLS algorithm
1. Compute matrices \(K_R K_R^T \) and \(K_R Y \) using
 \[K_R K_R^T = \sum k_i k_i^T \quad K_R Y = \sum k_i y_i^T \]
2. Repeat until desired or maximum number of projections:
 - Find largest gen. eigenvalue and eigenvector pair: \(\{ \lambda_i, \beta_i \} \)
 - Normalize eigenvector so that \(\beta_i^T K_R K_R^T \beta_i = 1 \)
 - Deflate \(K_R K_R^T \) according to
 \[K_{R'} K_{R'}^T - \lambda_i K_{R'} \beta_i \beta_i^T K_{R'} \]
 (equivalent to \(K_y = K_y - \lambda_i K_{R'} \beta_i \beta_i^T K_{R'} \))

Comparison with other MVA methods

<table>
<thead>
<tr>
<th>MVA Methods</th>
<th>KOPLS</th>
<th>KPLS</th>
<th>KPLS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Problem</td>
<td>max Tr{A^T K_x K_y A</td>
<td>A = I}</td>
<td>max Tr{A^T K_y Y</td>
</tr>
<tr>
<td>GEP / SVD</td>
<td>GEP(K, K_y, K_x)</td>
<td>SVD(K_y)</td>
<td>SVD(K_y)</td>
</tr>
<tr>
<td>Deflation</td>
<td>K_y K_x - K_y K_x^T K_y</td>
<td>Y = Y(I - v v^T)</td>
<td>K_y = P K_y P^T</td>
</tr>
<tr>
<td>Allows sparse</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Max n (n)</td>
<td>min {rank(K_y), rank(Y)}</td>
<td>min {rank(K_y), rank(Y)}</td>
<td>rank(K_y)</td>
</tr>
</tbody>
</table>

An illustrative example: sinc regression

- Training data: 100 points in [-4,4]; \(y = \text{sinc}(x) + \text{noise} \)
- Validation data: 1000 points in [-4,4]; noise free targets
- Gaussian kernel with \(\sigma = \sqrt{1/2} \)
- 200 independent experiments for \(R = 1:100 \)
- Only 1 projection for rKOPLS
- Optimal performance for \(R = 10 \)
- Overfitting for \(R > 10 \) is almost negligible

UCI Benchmark data sets

- Goal: Analyze the discriminative power of rKOPLS features in a benchmark of UCI multi-class classification problems.
- We compare with KPLS2, both without and with subsampling (for same training computational cost)
- Gaussian kernel; width parameter selected using 10-CV
- We use two different classification schemes:
 1) Linear regression + w.t.a.;
 2) Linear \(\nu \)-SVM

 - Classifiers relying on rKOPLS generally achieve higher accuracies, even when no subsampling is used for KPLS2
 - KPLS2 requires many more projections than rKOPLS
 - Competitive performance when compared to rbf-SVM

Further issues

- Linear SVM is able to better exploit the projections, improving the performance in *vehicle* and *letter*
- Overfitting for increasing \(R \) is not very serious, if it occurs at all
- There is no need to center the centroids \(\Phi_R \) in feature space

Feature Extraction for Music Genre Classification

- Objective: Predict musical genre from the audio stream
- Input features: AR models of MFCC coefficients (1.2 sg)
 - Each AR model is summarized in a 135 length vector
- Training data: 57,388 AR vectors, approx. evenly distributed
- Test data: 36,556 AR vectors corresponding to 500 songs
- Most kernel MVA methods cannot handle such a training set
- Gaussian kernel; width parameter selected with CV
- Classifier: SLP + softmax network

 - rKOPLS significantly outperforms KPLS2 with only 10 proj.
 - Accuracy does not increase significantly for \(R > 500 \)
 - This system is running on-line inside a plug-in for winamp