Toward semantic segmentation based on Community
detection in Graphs

Abdelmalik Moujahid

abdelmalik.moujahid@uc3m.es

January 25, 2017
Overview

1. Global view
2. Dataset
3. Image segmentation
4. Feature descriptors
5. Graph construction methods
6. Community detection
7. Results
8. References
Flow diagram of the full automatic detection of regions of interest (ROIs) in orthophotos: The framework broadly follows a four-step procedure: image over-segmentation, feature descriptors extraction, graph construction, and community detection.
For the task of automatic scene parsing, the supervised approaches need training images in which a set of images are delineated and labeled by categories.
Orthophotos

- 12 large orthophotos depicting several zones in the region of Belfort city situated on the north-eastern of France.

- The spatial resolution of these orthophotos, provided by Communauté de l’Agglomération Belfortaine (CAB 2008), is (1 pixel=16 cm).

- These orthophotos contain about 200 buildings. In these orthophotos, the building roofs have different colours and textures.

- The background contains highly varying appearances corresponding to vegetation, cars, roads, and other objects.
Some popular segmentation algorithms

- Watershed Algorithm
- Statistical Region Merging (SRM)
- Mean shift algorithm (MS)
- Superpixels algorithm
Covariance descriptors

Input image

$d \times d$

$logm(Cov)$

$d(d+1)/2$

$d \times d$

Covariance Descriptor

$d \times N$

$M \times N$

Image features
In our work, we consider 23 image features, i.e., $d = 23$.

- x and y coordinates
- 6 image derivatives
- 6 color channels both in RGB and HSV spaces
- 9 Local Binary Pattern images obtained by combining three different modes and three radii

For all LBP images, the number of neighboring points is fixed to 8. Since the number of channels used is 23, it follows that the descriptor of each segmented region is described by $23 \times 24 / 2 = 276$ features.

Color histograms is computed quantizing uniformly each color channel into 16 bins resulting in a descriptor of size given by 4096 bins.
Graph construction methods: K-Nearest Neighbor

Given n points $x_i, ..., x_n$ in \mathbb{R}^d

1. Constructing the adjacency graph from data: We put an edge between nodes i and j if x_i and x_j are "close" (ϵ-neighborhoods with $\epsilon \in \mathbb{R}$ and k-nearest neighbors, $k \in \mathbb{N}$).

2. Estimating the weights of the graph edges: if nodes i and j are connected, put

$$W_{ij} = e^{-\frac{||x_i - x_j||^2}{\sigma}}$$

otherwise, $W_{ij} = 0$.
Given n points x_i, \ldots, x_n in R^d

1. Discovering the adjacency information. For each x_i, find the k-nearest neighbors in the data set, x_{i1}, \ldots, x_{ik} (this subset could be data points contained in an ϵ-ball around x_i).

2. Compute the weights W_{ij} that best linearly reconstruct each x_i from its neighbors, solving the constrained least-squares problem:

$$\sum_{i=1}^{n} \left\| x_i - \sum_{j=1}^{k} W_{ij} x_j \right\|^2$$

subject to $W1_n = 1_n$, $W \geq 0$
Community detection differs from graph partitioning in that the number and size of the groups into which the graph is divided are not specified in advance, which makes this method more suitable to solve real situations. In fact, community detection is more often used as a tool for understanding the structure of a network, for shedding light on large-scale patterns of connection that may not be easily visible in the raw network topology.
Spectral modularity maximization problem

Assortative mixing

A network is **assortative** if a significant fraction of the edges in the network run between vertices of the same type.

\[
Q = \frac{1}{2m} \sum_{ij} (W_{ij} - \frac{k_i k_j}{2m}) \delta(c_i, c_j)
\]

\(k_i\) (\(k_j\)) is the degree of node \(i\) (\(j\)), \(m = \sum_{ij} W_{ij}\) is the total number of edges in the network and \(\delta(c_i, c_j)\) is the Kronecker delta.

This quantity \(Q\) is called the **modularity** and is a measure that has high value when many edges in a graph fall between vertices of the same group than one would expect by chance.
The quantity,

\[B_{ij} = W_{ij} - \frac{k_i k_j}{2m} \]

is called \textbf{modularity matrix}. Note that \(B_{ij} \) has the property

\[\sum_j B_{ij} = \sum_j W_{ij} - \frac{k_i}{2m} \sum_j k_j = k_i - \frac{k_i}{2m} 2m = 0 \]
Spectral modularity maximization problem

Let $S = (s_c)$ be an $n \times C$ membership matrix defined as:

$$S_{ic} = \begin{cases}
1 & \text{if node } i \text{ is in community } c, \\
0 & \text{otherwise}
\end{cases}$$

$$Q = \frac{1}{2m} Tr(s^T B s),$$

$$Q = \frac{1}{2m} \sum_{i=1}^{n} \sum_{c=1}^{C} \beta_i (v_i^T s_c)^2,$$

where $V = (v_1, v_2, \ldots)$ is the matrix of eigenvectors of B, and β_i is the eigenvalue corresponding to v_i.
Therefore, to reveal the community structure of the similarity graph, we proceed as follows:

1. we retain the μ eigenvectors corresponding to the largest positive eigenvalues,
2. we iterate over $j = 1, \ldots, \mu$, spanning the whole range of possible groups.
 - we run a K-means algorithm on the retained eigenvectors looking for a partition into $K = j + 1$ groups.
 - we compute the corresponding modularity $Q(j)$
3. we chose the optimal partition as the one with the maximum modularity $\max(Q)$.
Results

Table: Miss-classification error (MCE) and entropy (associated with the building roofs) have been used as supervised measures to quantify the performance of clustering.

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>K-medoids</th>
<th>K-means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modularity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knn</td>
<td>0.72</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LLE</td>
<td>0.73</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knn</td>
<td>0.27</td>
<td>0.41</td>
<td>0.60</td>
</tr>
<tr>
<td>LLE</td>
<td>0.26</td>
<td>0.43</td>
<td>0.44</td>
</tr>
<tr>
<td>Entropy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knn</td>
<td>0.17</td>
<td>0.26</td>
<td>0.31</td>
</tr>
<tr>
<td>LLE</td>
<td>0.18</td>
<td>0.27</td>
<td>0.26</td>
</tr>
</tbody>
</table>
Results

Table: The performance measures associated with roofs detection

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>F1 measures</th>
<th>Matthews correlation coefficients (MCC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B (Knn)</td>
<td>K-medoids</td>
<td>K-means</td>
</tr>
<tr>
<td>B</td>
<td>95.24</td>
<td>92.63</td>
<td>88.94</td>
</tr>
<tr>
<td>LLE</td>
<td>95.31</td>
<td>91.87</td>
<td>91.70</td>
</tr>
<tr>
<td></td>
<td>B (Knn)</td>
<td>K-medoids</td>
<td>K-means</td>
</tr>
<tr>
<td>B</td>
<td>84.53</td>
<td>74.56</td>
<td>57.09</td>
</tr>
<tr>
<td>LLE</td>
<td>84.84</td>
<td>72.90</td>
<td>71.43</td>
</tr>
<tr>
<td></td>
<td>B (Knn)</td>
<td>K-medoids</td>
<td>K-means</td>
</tr>
<tr>
<td>B</td>
<td>0.82</td>
<td>0.72</td>
<td>0.55</td>
</tr>
<tr>
<td>LLE</td>
<td>0.83</td>
<td>0.69</td>
<td>0.68</td>
</tr>
</tbody>
</table>
Table: Proximity matrix reporting distances between clusters for a partition of the orthophoto into 8 clusters.

<table>
<thead>
<tr>
<th>Clust.</th>
<th>1 (y)</th>
<th>2 (m)</th>
<th>3 (c)</th>
<th>4 (r)</th>
<th>5 (g)</th>
<th>6 (b)</th>
<th>7 (w)</th>
<th>8 (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (y)</td>
<td>0</td>
<td>4.66</td>
<td>5.30</td>
<td>3.05</td>
<td>5.26</td>
<td>4.32</td>
<td>3.64</td>
<td>3.06</td>
</tr>
<tr>
<td>2 (m)</td>
<td>-</td>
<td>0</td>
<td>5.21</td>
<td>4.54</td>
<td>5.71</td>
<td>3.38</td>
<td>3.31</td>
<td>5.38</td>
</tr>
<tr>
<td>3 (c)</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>2.75</td>
<td>4.97</td>
<td>3.11</td>
<td>5.34</td>
<td>7.63</td>
</tr>
<tr>
<td>4 (r)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>4.69</td>
<td>3.42</td>
<td>3.40</td>
<td>5.78</td>
</tr>
<tr>
<td>5 (g)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3.98</td>
<td>5.83</td>
<td>6.31</td>
</tr>
<tr>
<td>6 (b)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>4.55</td>
<td>5.56</td>
</tr>
<tr>
<td>7 (w)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>5.22</td>
</tr>
<tr>
<td>8 (k)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>
Segmented image (8 clusters)
Results

Roofs

Clustering 2

Roads

Clustering 6
Results

Vegetation

Cluster3

Vegetation

Cluster4
M. Belkin and P. Niyogi.
Laplacian eigenmaps for dimensionality reduction and data representation.

Survey on spectral clustering algorithm.

F. Dornaika, A. Moujahid, Y. E. Merabet, and Y. Ruichek.
Building detection from orthophotos using a machine learning approach: An empirical study on image segmentation and descriptors.

Learning hierarchical features for scene labeling.

S. Fortunato.
Community detection in graphs.
M. Bereta, P. Karczmarek, W. Pedrycz, and M. Reformat.
Local descriptors in application to the aging problem in face recognition.

Garima, H. Gulati, and P. K. Singh.
Clustering techniques in data mining: A comparison.

Finding community structure in networks using the eigenvectors of matrices.

Modularity and community structure in networks.

Nonlinear dimensionality reduction by locally linear embedding.
The End