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Abstract—Consider a binary statistical hypothesis testing prob-
lem, where n independent and identically distributed random
variables Zn are either distributed according to the null hy-
pothesis P or the alternate hypothesis Q, and only P is known.
A well-known test that is suitable for this case is the so-called
Hoeffding test, which accepts P if the Kullback-Leibler (KL)
divergence between the empirical distribution of Zn and P is
below some threshold. In this work, we characterize the first
and second-order terms of the type-II error probability for a
fixed type-I error probability for the Hoeffding test as well as
for divergence tests, where the KL divergence is replaced by
a general divergence. We demonstrate that, irrespective of the
divergence, divergence tests achieve the first-order term of the
Neyman-Pearson test, which is the optimal test when both P and
Q are known. In contrast, the second-order term of divergence
tests is strictly worse than that of the Neyman-Pearson test.
We further demonstrate that divergence tests with an invariant
divergence achieve the same second-order term as the Hoeffding
test, but divergence tests with a non-invariant divergence may
outperform the Hoeffding test for some alternate hypotheses Q.

I. INTRODUCTION

Consider a binary hypothesis testing problem that decides
whether a sequence of independent and identically distributed
(i.i.d.) random variables Zn is either generated from distribu-
tion P or from distribution Q. Assume that both distributions
are discrete and the hypothesis test has access to P but not to
Q. A suitable test for this case is the well-known Hoeffding
test [1], which accepts P if DKL(TZn∥P ) < c, for some c > 0,
and otherwise accepts Q. Here, TZn is the type (the empirical
distribution) of Zn and DKL(P∥Q) is the Kullback-Leibler
(KL) divergence between P and Q [2]. In this paper, we
analyze the second-order performance of the Hoeffding test as
well as of Hoeffding-like tests, referred to as divergence tests,
where the KL divergence is replaced by other divergences (see
Section II for a rigorous definition).
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We focus on the asymptotic behaviour of the type-II error
βn (the probability of declaring hypothesis P under hypothesis
Q) for a fixed type-I error αn (the probability of declaring
hypothesis Q under hypothesis P ). When both P and Q are
known, the optimal test is the likelihood ratio test, also known
as the Neyman-Pearson test. For this test, the smallest type-II
error βn for which αn ≤ ϵ satisfies [3, Prop. 2.3]

− lnβn = nDKL(P∥Q)−
√
nV (P∥Q)Q−1(ϵ) + o(

√
n) (1)

as n → ∞, where

V (P∥Q) ≜
k∑

i=1

Pi

[(
ln

Pi

Qi
−DKL(P∥Q)

)2
]

(2)

denotes the divergence variance; Q−1(·) denotes the inverse
of the tail probability of the standard Normal distribution;
Pi and Qi denote the i-th components of P and Q; and
k denotes their dimension. Here and throughout this paper,
we write an = o(bn) for two sequences {an} and {bn} of
real numbers if limn→∞

an

bn
= 0. We write an = O(bn) if

limn→∞ |an

bn
| < ∞. By inspecting the expansion of − lnβn

in (1), one can define the first-order term β′ and the second-
order term β′′ of any hypothesis test T as

β′ ≜ lim
n→∞

− lnβn(T)
n

(3)

and
β′′ ≜ lim

n→∞

− lnβn(T)− nβ′
√
n

(4)

if the limits exist. The first-order term β′ is sometimes referred
to as the error exponent. For the Neyman-Pearson test, we have
β′ = DKL(P∥Q) and β′′ = −

√
V (P∥Q)Q−1(ϵ).

It was shown in [1] that the first-order term β′ of the
Hoeffding test is also DKL(P∥Q). In other words, the Ho-
effding test is first-order optimal. Recently, we have demon-
strated [4] that the second-order term of the Hoeffding test
is β′′ = −

√
V (P∥Q)Q−1

χ2
k−1

(ϵ), where Q−1
χ2
k−1

(·) denotes the
inverse of the tail probability of the chi-square distribution
with k − 1 degrees of freedom. Since

√
Q−1

χ2
k−1

(ϵ) > Q−1(ϵ),
it follows that the second-order performance of the Hoeffding
test is worse than that of the Neyman-Pearson test.

In this paper, we analyze the second-order performance of
the divergence test TD, which accepts P if D(TZn∥P ) < c,



for some c > 0, and otherwise accepts Q. The divergence
D of the divergence test TD is arbitrary, so TD includes
the Hoeffding test as a special case when D = DKL. We
demonstrate that the divergence test TD achieves the same
first-order term β′ as the Neyman-Pearson test, irrespective of
the divergence D. Hence, TD is first-order optimal for every
divergence D. We further demonstrate that, for the class of
invariant divergences [5], which includes the Rényi divergence
and the f-divergence (and, hence, also the KL divergence), the
divergence test TD achieves the same second-order term β′′ as
the Hoeffding test. In contrast, we show that a divergence test
TD with a non-invariant divergence may achieve a second-
order term β′′ that is strictly better than that of the Hoeffding
test for some Q and ϵ.

A. Related Work

The considered hypothesis testing problem falls under
the category of composite hypothesis testing [6]. Indeed, in
composite hypothesis testing, the test has no access to the
distribution P of the null hypothesis and the distribution Q of
the alternate hypothesis, but it has the knowledge that P and Q
belong to the sets of distributions P and Q, respectively. Our
setting corresponds to the case where P = {P} and Q = Pc

(where we use the notation Ac to denote the complement of
a set A).

The Hoeffding test is a particular instance of the generalized
likelihood-ratio test (GLRT) [7], which is arguably the most
common test used in composite hypothesis testing. A useful
benchmark for the Hoeffding test is the Neyman-Pearson test,
which is the optimal test when both P and Q are known.
As mentioned before, the Hoeffding test achieves the same
first-order term β′ as the Neyman-Pearson test, both in Stein’s
regime, where the type-I error satisfies αn ≤ ϵ, as well as in
the doubly-exponential regime, where αn ≤ e−nγ , γ > 0; see,
e.g., [1], [8]–[11]. Thus, the first-order term of the Neyman-
Pearson test can be achieved without having access to the
distribution Q of the alternate hypothesis. However, not having
access to Q negatively affects higher-order terms. For example,
for a given threshold γ, the type-I error of the Hoeffding test
satisfies [11, Eq. (10)]

αn = n
k−3
2 e−nγ(c′ + o(1)) (5)

whereas for the corresponding Neyman-Pearson test [11,
Eq. (9)]

αn = n− 1
2 e−nγ(c+ o(1)). (6)

Here, c and c′ are constants that only depend on P , Q, and γ.
Moreover, it was demonstrated in [9] that the variance of the
normalized Hoeffding test statistic nDKL(TZn∥P ) converges
to 1

2 (k−1) as n → ∞. Both results suggest that, for moderate
n, the Hoeffding test scales unfavorably with the cardinality
of P and Q, which motivated the authors of [9] to propose
their test via mismatched divergence. The same observation
can be made for Stein’s regime. Indeed, as mentioned before,
the second-order term of the Hoeffding test is [4]

β′′ = −
√
V (P∥Q)Q−1

χ2
k−1

(ϵ) (7)

whereas the second-order term of the Neyman-Pearson test is
[3, Prop. 2.3]

β′′ = −
√

V (P∥Q)Q−1(ϵ). (8)

Since Q−1
χ2
k−1

(ϵ) is monotonically increasing in k, this again
suggests an unfavorable scaling with the cardinality of P and
Q.

Our setting where P = {P} and Q = Pc was also studied
by Watanabe [12], who proposed a test that is second-order
optimal in some sense. The related case where only training
sequences are available for both P and Q was considered in
[13]. The test proposed in [13] was later shown to be second-
order optimal [14].

II. DIVERGENCE AND DIVERGENCE TEST

A. Divergence

Let us consider a random variable Z that takes value in a
discrete set Z = {a1, · · · , ak} with cardinality |Z| = k ≥ 2.
Let P(Z) denote the set of probability distributions on Z , and
let P(Z) denote the set of probability distributions with strictly
positive probabilities. Any probability distribution R ∈ P(Z)
can be written as a length-k vector R = (R1, · · · , Rk)

T, where
Ri ≜ Pr{Z = ai}, i = 1, · · · , k. Note that this R can also
be represented by its first (k − 1) components, denoted by
the vector R = (R1, · · · , Rk−1)

T, which takes value in the
coordinate space

Ξ ≜

{
(R1, · · · , Rk−1)

T : Ri > 0,

k−1∑
i=1

Ri < 1

}
. (9)

Given any two probability distributions S,R ∈ P(Z),
one can define a non-negative function D(S∥R), called a
divergence, which represents a measure of discrepancy be-
tween them. A divergence is not necessarily symmetric in its
arguments and also need not satisfy the triangle inequality;
see [15], [16] for more details. More precisely, a divergence
is defined as follows [15]:

Definition 1: Consider two distributions S and R in P(Z).
A divergence D : P(Z)×P(Z) → [0,∞) between S and R,
denoted by D(S∥R), is a smooth function1 of S ∈ Ξ and
R ∈ Ξ (we may write D(S∥R) = D(S∥R)) satisfying the
following conditions:

1) D(S∥R) ≥ 0 for every S,R ∈ P(Z).
2) D(S∥R) = 0 if, and only if, S = R.
3) When S = R + ε for some ε = (ε1, · · · , εk−1)

T, the
Taylor expansion of D satisfies

D(R+ ε∥R) =
1

2

k−1∑
i,j=1

gij(R)εiεj +O(∥ε∥32) (10)

as ∥ε∥2 → 0 for some (k − 1) × (k − 1)-dimensional
positive-definite matrix G(R) = [gij(R)] that depends
on R. In (10), ∥ε∥2 is the Euclidean norm of ε.

1We shall say that a function is smooth if it has partial derivatives of all
orders.



4) Let R ∈ P(Z), and let {Sn} be a sequence of distribu-
tions in P(Z) that converges to a distribution S on the
boundary of P(Z). Then,

lim
n→∞

D(Sn∥R) > 0. (11)

Remark 1: We follow the definition of divergence from the
information geometry literature. In particular, according to [15,
Def. 1.1], a divergence must satisfy the first three conditions
in Definition 1. Often, the behavior of divergence on the
boundary of P(Z) is not specified. In Definition 1, we add the
fourth condition to treat the case of sequences of distributions
{Sn} that lie in P(Z) but converge to a distribution on the
boundary of P(Z). Note that condition 4) is consistent with
conditions 1) and 2).

Given a divergence D and R ∈ P(Z), consider the
function D(·∥R) : Rk−1 → R. By computing the partial
derivatives of D(S∥R) with respect to the first variable
S = (S1, · · · , Sk−1)

T, it follows from the third condition in
Definition 1 that

D(S∥R) = (S−R)TAD,R(S−R) +O(∥S−R∥32) (12)

as ∥S−R∥2 → 0, where AD,R is the matrix associated with
the divergence D at R, which has components

aij(R) ≜
1

2

∂2

∂Si∂Sj
D(S∥R)

∣∣∣∣
S=R

, i, j = 1, · · · , k − 1.

(13)
Based on AD,R, we can introduce the notion of an invariant
divergence.

Definition 2: Let D be a divergence, and let R ∈ P(Z).
Then, D is said to be an invariant divergence on P(Z) if the
matrix associated with the divergence D at R is of the form
AD,R = ηΣR for a constant η > 0 (possibly depending on
R) and a matrix ΣR with components

Σij(R) =

{
1
Ri

+ 1
Rk

, i = j
1
Rk

, i ̸= j.
(14)

The notion of an invariant divergence is adapted from the
notion of invariance of geometric structures in information
geometry; see [15], [17] for more details. The matrix ΣR

represents the unique invariant Riemannian metric in P(Z)
with respect to the coordinate system Ξ; see [18, Eq. (47)],
[5] for more details. However, in the information geometry
literature, the constant η is often required to be independent
of R. Well-known divergences, such as the KL divergence, the
f -divergence, and the Rényi divergence, are invariant [19]. For
an invariant divergence, (12) becomes

D(S∥R) = η(S−R)TΣR(S−R) +O(∥S−R∥32) (15)

as ∥S−R∥2 → 0, where η is a positive constant.
There are many divergences that do not satisfy (15). An

example is the squared Mahalanobis distance, which is of the
form

DSM(S∥R) = (S−R)TWR(S−R) (16)

for some positive-definite matrix WR. This divergence is non-
invariant if WR is not a constant multiple of ΣR.

For a detailed list of divergences and their properties, we
refer to [19, Ch. 2].

B. General Setting and Divergence Test

We consider a binary hypothesis testing problem with null
hypothesis H0 and alternate hypothesis H1. We assume that,
under hypothesis H0, the length-n sequence Zn of observa-
tions is i.i.d. according to P ∈ P(Z); under hypothesis H1,
the sequence of observations Zn is i.i.d. according to Q, where
Q ∈ P(Z) \ {P}.

We next define the divergence test. To this end, we first
introduce the type distribution, which for every sequence zn

is defined as

Tzn(ai) ≜
1

n

n∑
ℓ=1

1{zℓ = ai}, i = 1, . . . , k (17)

where 1{·} denotes the indicator function.
For a divergence D and a threshold r > 0, a divergence test

TD
n (r) for testing H0 against the alternative H1 is defined as

follows:
Observe Zn: if D(TZn∥P ) < r, then H0 is accepted;

else H1 is accepted.

When the divergence D is the Kullback-Leibler divergence
DKL, the divergence test becomes the Hoeffding test, proposed
by Hoeffding in [1].

For r > 0, define the acceptance region for H0 as

AD
n (r) ≜ {zn : D(Tzn∥P ) < r} . (18)

Then, the type-I and the type-II errors are given by

αn

(
TD
n (r)

)
≜ Pn

(
AD

n (r)c
)

(19)

βn

(
TD
n (r)

)
≜ Qn

(
AD

n (r)
)
. (20)

Our goal is to analyze the asymptotic behavior of the type-II
error βn when the type-I error satisfies αn ≤ ϵ, 0 < ϵ < 1.

III. MAIN RESULTS

The asymptotic behavior of the divergence test depends on
the asymptotic behavior of the random variable nD(TZn∥P )
in the limit as n → ∞. For certain divergences, the limiting
distribution of nD(TZn∥P ) has been analyzed in the literature.
For example, when D is the KL divergence, a well-known
result by Wilks [20] states that 2nDKL(TZn∥P ) converges in
distribution to a chi-square random variable with k−1 degrees
of freedom. This result generalizes to the α-divergence [21,
Th. 3.1], [22, Th. 3]. In Lemma 1, we show that, for a general
divergence D, nD(TZn∥P ) converges in distribution to a
generalized chi-square random variable, defined as follows:

Definition 3: The generalized chi-square distribution is the
distribution of the random variable

ξ =

m∑
i=1

wiΥi (21)



where wi, i = 1, · · · ,m are deterministic weight parame-
ters and Υi, i = 1, · · · ,m are independent chi-square ran-
dom variables with degree of freedom 1. We shall denote
the generalized chi-square distribution with weight vector
w = (w1, · · · , wm)T and degrees of freedom m by χ2

w,m. If
wi = 1 for all i, then the generalized chi-square distribution
becomes the chi-square distribution χ2

m with degrees of free-
dom m.

Lemma 1: Let Zn be a sequence of i.i.d. random vari-
ables distributed according to the distribution P of the
null hypothesis, and let D be a divergence. Further let
λ = (λ1, · · · , λk−1)

T be a vector that contains the eigenvalues
of the matrix Σ

−1/2
P AD,PΣ

−1/2
P , where AD,P is the matrix

associated with the divergence D at P and the matrix ΣP

is defined in (14). Then, the tail probability of the random
variable nD(TZn∥P ) satisfies

Pn(nD(TZn∥P ) ≥ c) = Qχ2
λ,k−1

(c) +O(δn), c ≥ 0 (22)

for some positive sequence {δn} that is independent of c and
satisfies limn→∞ δn = 0. Here, Qχ2

λ,k−1
(c) ≜ Pr(ξ ≥ c) is the

tail probability of the generalized chi-square random variable
ξ with weight vector λ and degrees of freedom k − 1.

Proof: Omitted due to space limitations.
We are now ready to present the main result of this paper:
Theorem 1: Let D be a divergence as defined in Definition 1,

and let 0 < ϵ < 1. Further let P,Q ∈ P(Z) and P ̸= Q. Recall
that the cardinality of Z is k ≥ 2. Then, for all sequences of
thresholds {rn} satisfying

αn(TD
n (rn)) ≤ ϵ (23)

the divergence test TD
n introduced in Section II-B satisfies

sup
rn : αn(TD

n (rn))≤ϵ

− lnβn

(
TD
n (rn)

)
= nDKL(P∥Q)−

√
n
√

cTA−1
D,Pc

√
Q−1

χ2
λ,k−1

(ϵ)

+O(max{δn
√
n, lnn}). (24)

Here, AD,P is the matrix associated with the diver-
gence D at P; the sequence {δn} was defined in (22);
c = (c1, · · · , ck−1)

T is a vector with components

ci ≜ ln

(
Pi

Qi

)
− ln

(
Pk

Qk

)
, i = 1, · · · , k − 1; (25)

and Q−1
χ2
λ,k−1

is the inverse of the tail probability Qχ2
λ,k−1

introduced in Lemma 1.
Proof: Omitted due to space limitations.

Remark 2: Since the sequence {δn} tends to zero as n → ∞,
we have that O(max{δn

√
n, lnn}) = o(

√
n).

Corollary 1: For the class of invariant divergences, (24) in
Theorem 1 becomes

sup
rn : αn(TD

n (rn))≤ϵ

− lnβn

(
TD
n (rn)

)
= nDKL(P∥Q)−

√
nV (P∥Q)Q−1

χ2
k−1

(ϵ) + o(
√
n). (26)

Since the KL divergence belongs to the class of invariant
divergences, it follows that (26) also characterizes the second-
order performance of the Hoeffding test.

We observe from Theorem 1 that the divergence test TD
n

achieves the same first-order term β′ as the Neyman-Pearson
test, irrespective of D. In contrast, it can be shown that

−
√
cTA−1

D,Pc
√

Q−1
χ2
λ,k−1

(ϵ) < −
√
V (P∥Q)Q−1

N (ϵ). (27)

Thus, the second-order term β′′ of the divergence test TD is
strictly smaller than the second-order term of the Neyman-
Pearson test.

In the next section, we show that there are divergences for
which the divergence test outperforms the Hoeffding test for
certain distributions Q of the alternate hypothesis.

IV. SECOND-ORDER PERFORMANCE COMPARISON

In order to contrast the performances of different divergence
tests, we numerically evaluate the second-order performances
of TDKL and TDSM , where DKL is the KL divergence and
DSM is the squared Mahalanobis distance. Recall that the
KL divergence is an invariant divergence. For the squared
Mahalanobis distance, we shall consider (16) with WP having
components

Wij(P) =

{
1

2P 2
i
+ 1

2P 2
k
, i = j

1
2P 2

k
, i ̸= j

(28)

which is a non-invariant divergence. To better visualize the
second-order performances, we focus on distributions with
dimension k = 3 and represent them by the two-dimensional
vectors P = (P1, P2)

T and Q = (Q1, Q2)
T in the coordinate

space Ξ.
Since the first-order term β′ of the divergence test TD is

not affected by the choice of D, we shall compare the second-
order performances of TDKL and TDSM by considering the ratio
of the second-order terms β′′ as a function of P , Q, and ϵ:

ρ(P,Q, ϵ) ≜

√
cT(WP)−1c

√
Q−1

χ2
λ,2

(ϵ)√
V (P∥Q)

√
Q−1

χ2
2
(ϵ)

. (29)

If ρ(P,Q, ϵ) > 1, then the second-order term of the divergence
test is strictly smaller than the second-order term of the
Hoeffding test, hence the Hoeffding test has a better second-
order performance. In contrast, if ρ(P,Q, ϵ) < 1, then the
divergence test has a better second-order performance.

In Fig. 1, we plot the contour lines of the ratio ρ(P,Q, ϵ)
as a function of Q ∈ Ξ for ϵ = 0.02 and the three different
null hypotheses P = (0.15, 0.6), P = (0.32, 0.35), and
P = (0.1, 0.8). In the figure, the coordinate space Ξ is divided
into two regions: one region is labeled as “Hoeffding test bet-
ter" and includes the points Q ∈ Ξ for which ρ(P,Q, ϵ) > 1;
the other region is labeled as “Divergence test better" and
includes the points Q ∈ Ξ for which ρ(P,Q, ϵ) < 1. The
solid contour line drawn in all three sub-figures shows all the
points Q ∈ Ξ for which the Hoeffding test and the divergence



(a) P = (0.15, 0.6, 0.25) (b) P = (0.32, 0.35, 0.33) (c) P = (0.1, 0.8, 0.1)

Fig. 1: Second-order performance comparison between the Hoeffding test TDKL and the divergence test TDSM for the three
different null hypotheses P = (0.15, 0.6, 0.25), P = (0.32, 0.35, 0.33), and P = (0.1, 0.8, 0.1) and ϵ = 0.02.

test have the same second-order performance. For each sub-
figure, the color bar on the right indicates the values of the
ratio ρ(P,Q, ϵ).

Observe that there are distributions Q of the alternate
hypothesis for which the Hoeffding test has a better second-
order performance than the divergence test, and there are
distributions Q for which the opposite is true. The set of dis-
tributions Q for which one test outperforms the other typically
depends on the distribution P of the null hypothesis and on
ϵ. Potentially, this behavior could be exploited in a composite
hypothesis testing problem by tailoring the divergence D of
the divergence test TD to the set Q of possible alternate
distributions.
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