An introduction to CUDA using Python

Miguel Lázaro-Gredilla
miguel@tsc.uc3m.es

May 2013
Machine Learning Group
http://www.tsc.uc3m.es/~miguel/MLG/
Contents

Introduction

PyCUDA

gnumpy/CUDAMat/cuBLAS
 Warming up
 Solving a Gaussian process

References
Leveraging GPGPU

General-Purpose computing on the Graphics Processing Unit:

- GPUs have highly parallel architectures (>2000 cores)
- GPU cores are not independent, fully-featured CPUs
 - Flow-control operations: performance penalties
 - Maximum occupancy is not always satisfied
- Good for fast and cheap number crunching
- Very successful for neural network training and deep learning
- Heterogeneous programming can be tricky!
- Tooling is currently work in progress
APIs for GPGPU

Open computing language (OpenCL)

- Many vendors: AMD, Nvidia, Apple, Intel, IBM...
 - Standard CPUs may report themselves as OpenCL capable
- Works on most devices, but
 - Implemented feature set and extensions may vary
 - For portability, only the common subset can be used...
 - ...so maximum performance can’t be achieved

Compute unified device architecture (CUDA)

- One vendor: Nvidia (more mature tools)
- Better coherence across a limited set of devices
CUDA stack (source: Nvidia documentation)
Hardware concepts

- A grid is a 2D arrangement of independent blocks
 - of dimensions \((\text{gridDim}.x \times \text{gridDim}.y)\)
 - and with blocks at \((\text{blockIdx}.x, \text{blockIdx}.y)\)

- A block is a 3D arrangement of threads
 - of dimensions \((\text{blockDim}.x \times \text{blockDim}.y \times \text{blockDim}.y)\)
 - and with threads at \((\text{threadIdx}.x, \text{threadIdx}.y, \text{threadIdx}.z)\)

- Each thread is a unit of work and instances a kernel
 - Kernels are written in CUDA C (.cu, a variant of C/C++)
 - Each kernel is parametrized by its zero-based location

- The size of each arrangement is user configurable (within hardware constraints)
Process hierarchy (source: Nvidia documentation)
Compute capabilities

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Compute capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifications</td>
<td>1.0</td>
</tr>
<tr>
<td>64-bit in global memory</td>
<td>No</td>
</tr>
<tr>
<td>Max dim of grid</td>
<td>2</td>
</tr>
<tr>
<td>Max gridDim.x</td>
<td>65535</td>
</tr>
<tr>
<td>Max gridDim.y/z</td>
<td></td>
</tr>
<tr>
<td>Max dim of block</td>
<td></td>
</tr>
<tr>
<td>Max blockDim.x/y</td>
<td>512</td>
</tr>
<tr>
<td>Max gridDim.z</td>
<td></td>
</tr>
<tr>
<td>Max threads/block</td>
<td>512</td>
</tr>
<tr>
<td>Warp size</td>
<td></td>
</tr>
<tr>
<td>Max blocks/MP</td>
<td></td>
</tr>
<tr>
<td>Max threads/MP</td>
<td>768</td>
</tr>
</tbody>
</table>
A mid-2009 macbook pro

macbookm:release miguel$./deviceQuery

Found 1 CUDA Capable device(s)
 Device 0: "GeForce 9400M"
 CUDA Driver Version / Runtime Version 4.1 / 4.1
 CUDA Capability Major/Minor version number: 1.1
 Total amount of global memory: 254 MBytes
 (2) Multiprocessors x (8) CUDA Cores/MP: 16 CUDA Cores
 GPU Clock Speed: 1.10 GHz
 Maximum number of threads per block: 512
 Maximum sizes of each dimension of a block: 512 x 512 x 64
 Maximum sizes of each dimension of a grid: 65535 x 65535 x 1
 (. . .)
Python support for CUDA

PyCUDA

- You still have to write your kernel in CUDA C
- ...but integrates easily with numpy
- Higher level than CUDA C, but not much higher
- Full CUDA support and performance

gnumpy/CUDAMat/cuBLAS

- gnumpy: numpy-like wrapper for CUDAMat
- CUDAMat: Pre-written kernels and partial cuBLAS wrapper
- cuBLAS: (incomplete) CUDA implementation of BLAS
Contents

Introduction

PyCUDA

gnumpy/CUDAMat/cuBLAS
 Warming up
 Solving a Gaussian process

References
Exercise 1.A

Generate 10^7 random draws from a $\mathcal{N}(0, 1)$ density and count how many of them lie between -1 and +1. Time it.

Disable User Module Deleter (UMD) if using Spyder.

```python
import numpy as np
import time as t

x = np.random.randn(10e6).astype(np.float32)
start = t.time()
valid = np.logical_and(-1 < x, x < +1)
print 'CPU: Found %d values in %f secs' % (np.sum(valid), t.time()-start)
```
Exercise 1.B

Repeat 1.A using PyCUDA.

You can start from this illustration of PyCUDA usage.

```python
import numpy as np
import pycuda.autoinit
from pycuda.compiler import SourceModule
import pycuda.driver as drv
import pycuda.gputool as gpuarray

kernel = SourceModule(""
__global__ void twice(float *x)
{
    const unsigned int i = threadIdx.x + threadIdx.y*blockDim.x;
    x[i] = 2*x[i];
}
"")

twice = kernel.get_function('twice')
x = np.random.randn(16).astype(np.float32)
x_gpu = gpuarray.to_gpu(x)
twice(x_gpu, block=(4,4,1), grid=(1,1))

print x, np.sum(x)
print x_gpu.get(), np.float32(gpuarray.sum(x_gpu).get())
```
Exercise 1.B

A useful kernel might look like this:

```python
kernel = SourceModule(""
__global__ void threshold(float *x, unsigned int len)
{
    const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
    const unsigned int numThreads = blockDim.x * gridDim.x;
    for (int i = idx; i < len; i+=numThreads)
        x[i] = -1 < x[i] && x[i] < +1 ? 1.0 : 0.0;
}
""
)
threshold = kernel.get_function('threshold')
```

And the corresponding call would look like this:

```python
start = t.time()
threshold(x_gpu, np.uint32(len(x)), block=(256, 1, 1), grid=(16,1))
print 'GPU: Found %d values in %f secs' % (gpuarray.sum(x_gpu).get(),
    t.time()-start)
```
Exercise 1.B

If you’re going to invoke the same kernel many times, it’s faster to "prepare" the call:

```python
x_gpu = gpuarray.to_gpu(x)
threshold.prepare('Pi')
start = t.time()
threshold.prepared_call((16,1),(256,1,1),x_gpu.gpudata, np.uint32(len(x)))
print 'GPU: Found %d values in %f secs (prepared call)'
   (gpumax.sum(x_gpu).get(), t.time()-start)
```
Exercise 1.B

Copying from the host to the device and back can be handled automatically, but it is slower:

```python
start = t.time()
threshold(drv.InOut(x), np.uint32(len(x)), block=(256,1,1), grid=(16,1))
print 'GPU: Found %d values in %f secs (automatic conversion)'
(np.sum(x), t.time()−start)
```

I get this output for 1.A and the three 1.B variants:

CPU: Found 6828501 values in 0.102769 secs
GPU: Found 6828501 values in 0.020188 secs
GPU: Found 6828501 values in 0.020282 secs (prepared call)
GPU: Found 6828501 values in 0.166021 secs (automatic conversion)
Contents

Introduction

PyCUDA

gnumpy/CUDAMat/cuBLAS
 Warming up
 Solving a Gaussian process

References
Exercise 1.C

Repeat 1.A using gnumpy and generating only 2×10^6 values.

- gnumpy mimicks numpy. Import it as if it was numpy.
- There is no "logical_and" function AFAIK.
- There exists the "all" function, and its specialization for boolean inputs, "all2".
- If you just used PyCUDA, better restart IPython’s kernel!

```python
import gnumpy as g

x_gpu = g.garray(x).reshape(-1,1)
start = t.time()
x_gpu = g.concatenate(( -1 < x_gpu, x_gpu < +1),1)
print 'GPU: Found %d values in %f secs' %\n    (x_gpu.all2(1).sum(), t.time()-start)
```
Exercise 2.A

Generate a 2000×2000 random matrix by sampling i.i.d. from $x = \exp(t)$, where $t \sim \mathcal{N}(0, 1)$. Use numpy to do this. Time it.

```python
start = time()
x = np.random.randn(2000, 2000)
x = np.exp(x)
print('CPU: Generated %d numbers in %f secs' %
      (np.prod(np.shape(x)), time() - start))
```
Exercise 2.B

Repeat 2.A, this time using gnumpy. Time it.

```python
start = t.time()
x_gpu = g.randn(2000,2000)
x_gpu = g.exp(x_gpu)
print ('GPU: Generated %d numbers in %f secs' %
       (np.prod(np.shape(x_gpu)), t.time()−start))
```
Exercise 3.A

Generate a 2000×2000 random matrix by sampling i.i.d. from $x \sim \mathcal{N}(0, 1)$. Square it. Then sum all of its values. Use numpy to do this. Time it.

```python
x = x_gpu.asarray()
start = t.time()
print 'CPU: Matrix product, total sum is %f, computed in %f secs'
(np.sum(np.dot(x,x)), t.time()−start)
```
Exercise 3.B

Repeat 3.A, this time using gnumpy. Time it.

```python
x_gpu = g.randn(2000,2000)
start = t.time()
print 'GPU: Matrix product, total sum is %f, computed in %f secs' %
      (g.sum(g.dot(x_gpu,x_gpu)), t.time()-start)
```
Exercise 4.A

Generate a 2000×2000 random matrix A by sampling i.i.d. from $x \sim \mathcal{N}(0, 1)$. Compute $\text{trace}(A^\top A)$. Use numpy to do this. Time it.

```python
x = x_gpu.asarray()
start = t.time()
print 'CPU: Element-wise product, total sum is %f, computed in %f secs'
(np.sum(x*x), t.time() - start)
```
Exercise 4.B

Repeat 4.A, this time using gnumpy. Time it.

```python
x_gpu = g.randn(2000,2000)
start = t.time()
print 'GPU: Element-wise product, total sum is %f, computed in %f secs'
    (g.sum(x_gpu*x_gpu), t.time()-start)
```
Results using gnumpy

I get this output:

(1.A) CPU: Found 1367262 values in 0.018013 secs
(1.C) GPU: Found 1367262 values in 0.541749 secs (<= Much slower than 1.B, we’re only using 2e6 values!)

(2.A) CPU: Generated 4000000 numbers in 0.299176 secs
(2.B) GPU: Generated 4000000 numbers in 0.031891 secs (<= GPU is much faster!)

(3.A) GPU: Matrix product, total sum is -81153.687500, computed in 1.705496 secs (<= GPU is slower!)
(3.B) CPU: Matrix product, total sum is -81153.645447, computed in 1.087240 secs

(4.A) GPU: Element-wise product, total sum is 4003010.00, computed in 0.024504 secs (<= GPU is faster!)
(4.B) CPU: Element-wise product, total sum is 4003008.73, computed in 0.048110 secs

Note that the used GPU is one of the less capable in the market and numpy was linked against the fast MKL
Exercise 5.A (finally, a bit of machine learning!

Generate samples from a Gaussian process, then find its posterior mean. Use numpy. Time the solution.

```python
import numpy as np
import time as t
from matplotlib.pyplot import plot, savefig, close, title

# generate GP
x = np.arange(-5,5,0.01).reshape(-1,1); N = len(x)
K = np.exp(-0.5/0.7*(np.dot(x*x,np.ones((1,N)))
+np.dot(np.ones((N,1)),(x*x).T)-2*np.dot(x,x.T)))
Kn = K + np.eye(N)
L = np.linalg.cholesky(Kn)
y = np.dot(L,np.random.randn(N))
K = K.astype(np.float32);Kn = Kn.astype(np.float32);y = y.astype(np.float32);

# solve GP with numpy
start = t.time()
alpa = np.linalg.solve(Kn,y)
mu = np.dot(K, alpha)
print 'CPU: Found solution in %f secs (using numpy.linalg.solve)' % (t.time()-start)
plot(x,y,'bx',x,mu,'k');title('Numpy')
```
Exercise 5.B

Repeat 5.A, but this time avoid matrix inversions by using CG descent. Time the solution. Plot the results.

def conjGrad(A,b,tol=1.0e−3):
 N = len(b)
 x = np.zeros(N).astype(np.float32)
 r = b - np.dot(A,x)
 p = r.copy()
 for i in range(N):
 z = np.dot(A,p)
 alpha = np.dot(p,r)/np.dot(p,z)
 x = x + alpha*p
 r = b - np.dot(A,x)
 if (np.sqrt(np.dot(r,r))) < tol:
 break
 else:
 beta = -np.dot(r,z)/np.dot(p,z)
 p = r + beta*p
 print 'Iterations required on CPU:', i
 return x

start = t.time()
alpha = conjGrad(Kn,y)
mu = np.dot(K, alpha)
print 'CPU: Found solution in %f secs' % (t.time()—start)
plot(x,y,'bx',x,mu,'k')
Exercise 5.C

Repeat 5.B, but this time use gnumpy.

```python
import gnumpy as g

def conjGradGPU(A,b, tol=1.0e−3):
    N = len(b)
    x = g.zeros(N)
    r = b - g.dot(A,x)
    p = r.copy()
    for i in range(N):
        z = g.dot(A,p)
        alpha = g.dot(p, r) / g.dot(p, z)
        x = x + alpha * p
        r = b - g.dot(A,x)
        if (g.sqrt(g.dot(r, r)) < tol):
            break
        else:
            beta = -g.dot(r, z) / g.dot(p, z)
            p = r + beta * p
    print 'Iterations required on GPU:', i
    return x

K = g.garray(K); Kn = g.garray(Kn); y = g.garray(y)
start = t.time()
alpha = conjGradGPU(Kn,y)
mu = g.dot(K, alpha)
print 'GPU: Found solution in %f secs' % (t.time()−start)
plot(x,y.as_numpy_array(),’bx’,x,mu.as_numpy_array(),’r’); title('Gnumpy')
```
Results for GP solution using gnumpy

I get this output:

(5.A) CPU: Found solution in 0.073970 secs (using numpy.linalg.solve)

(5.B) Iterations required on CPU: 30
(5.B) CPU: Found solution in 0.070011 secs

(5.C) Iterations required on GPU: 29
(5.C) GPU: Found solution in 1.299504 secs

(Using CUDAMat directly) Iterations required on GPU: 30
(Using CUDAMat directly) GPU: Found solution in 0.442285 secs
Python support for CUDA not covered here

- Accelerate, within NumbaPro
- scikits.cublas
- (…)
Final remarks

- Some operations are much faster on the GPU, even on low-end ones
- Proper timing should take into account
 - Language (for loops are very slow in Python)
 - Precision (32 bits operations are also faster on CPU)
- `gnumpy/CUDAMat/cuBLAS` are not fully optimized
- Larger matrices result in bigger speedups (if they fit!)
References

- **[nVIDIA]** CUDA C programming guide. From nVIDIA documentation.

- **[PyCUDA]** PyCUDA documentation. http://documen.tician.de/pycuda/

- **[CUDAMat]** CUDAMat documentation.
 http://www.cs.toronto.edu/~vmnih/docs/cudamat_tr.pdf

- **[gnumpy]** gnumpy documentation.
 http://www.cs.toronto.edu/~tijmen/gnumpyDoc.html