Chapter 4 : Exercises

Exercise 4.1 Consider a discrete time OFDM modulation with $N=4$ carriers.
a) Assuming that cyclic prefix is not used, find the conditions in order to avoid ICI and ISI.
b) Using a cyclic prefix of length $C=2$, and assuming that the discrete channel at sampling time $T /(N+C)$ is $d[m]=\delta[m]+\frac{1}{3} \delta[m-2]$, obtain the discrete equivalent channels $p_{k, i}[n]$. From this result, discuss and explain whether there is ICI and ISI or not.

Exercise 4.2 Consider an OFDM modulation with $N=4$ carriers and a cyclic prefix of 2 samples. Each carrier is modulated with equiprobable QPSK symbols. Moreover, assume the following equivalent discrete channel, sampled at time $T / 6$,

$$
d[m]=\delta[m]-0,6 \delta[m-1],
$$

with additive Gaussian complex white noise (the variance is N_{0}). In the receiver, a ML decoder, designed for a QPSK modulation, is used.
a) Obtain the equivalent discrete channels $p_{k, i}[n]$ corresponding to the 16 sub-channels.
b) Obtain the SNR for each carrier.
c) Determine the probability of error per carrier and the mean probability of error.

Exercise 4.3 A communication system uses a discrete time OFDM modulation with an even number N of carriers.
a) Assume that the cyclic prefix is not used. The baseband equivalent discrete channels, sampled at time T, are denoted as $p_{i, l}[n]$ and $d[m]$ is the equivalent discrete channel sampled at time T / N.
I) Write and discuss about the conditions that $p_{k, i}[n]$ should have to fulfill to avoid intersymbol interference (ISI).
iI) Write and discuss about the conditions that $p_{k, i}[n]$ should have to fulfill to avoid intercarrier interference (ICI).
b) Assume now that a cyclic prefix is used.
I) Determine the length of the cyclic prefix needed to eliminate the interference for a given channel $d[m]$.
II) What is the loss in transmission rate compared to the system without cyclic prefix.

Exercise 4.4 A communication system uses a direct sequence spread spectrum modulation with spreading factor $N=4$, and spreading sequence $x[0]=+1, x[1]=-1, x[2]=+1$ and $x[3]=$ -1 . The transmitter filter at chip time $g_{c}(t)$ is a root-raised cosine pulse with roll-off factor $\alpha=0,25$. In the receiver a matched filter to $g_{c}(t)$ is employed. The continuos time channel impulse response is $h(t)=\delta(t)+\frac{1}{2} \delta\left(t-\frac{T}{2}\right)$, hence the discrete equivalent channel at chip time is $d[m]=\delta[m]+\frac{1}{2} \delta[m-2]$.
a) Explain how the samples $s[m]$ are generated, given the symbols $A[n]$ and the spread sequence $x[m]$, and then calculate the values of $s[m]$ for $0 \leq m \leq 11$ when $A[0]=+1, A[1]=-1$, $A[2]=-1$.
b) Obtain the sequence $v[m]$ at the output of the receiver filter $g_{c}(-t)$ when $A[0]=+1, A[1]=-1$, $A[2]=-1$ when the spread spectrum signal is transmitted through $h(t)$ and in the absence of noise (assume $A[n]=+1$ for $n<0$).
c) Explain how the observations at symbol time $q[n]$ are obtained given the sequences $v[m]$ and $x[m]$. For that you can either plot the receiver diagram or explain in a detailed form the process. Calculate the values $q[n]$ for $0 \leq n \leq 2$ in the absence of noise.

Exercise 4.5 A communication system uses a direct sequence spread spectrum modulation with spreading factor $N=5$. The symbol sequence $A[n]$ is white with mean energy E_{s}. Finally, the spreading sequence is

$$
x[0]=+1, x[1]=-1, x[2]=+1, x[3]=-1, x[4]=+1 .
$$

a) If a causal rectangle pulse of duration T_{c} (with normalized energy) is used as a shaping filter, represent the modulated signal corresponding to the sequence

$$
A[0]=+1, A[1]=+3, A[2]=-1
$$

b) Get the analytic expression of the power spectral density of the baseband signal, $S_{s}(j \omega)$, if the filter used at chip time is $g_{c}(t)=\frac{1}{\sqrt{T_{c}}} \operatorname{sinc}\left(\frac{t}{T_{c}}\right)$.
c) Obtain the values $q[n]$ for $0 \leq n \leq 2$ if the output signal of the matched filter $g_{c}(t), v(t)$, is shown in the following figure (note that the horizontal axes is scaled by T_{c}).

Exercise 4.6 An OFDM modulation uses a bandwidth of 4 kHz in the band of $5 \mathrm{kHz}-9 \mathrm{kHz}$. This modulation is used to provide a wireless communication service to a certain number of users that goes from 4 to 10 users. The communication system is composed of a base station (transmitter) that sends the OFDM modulation and a certain number of receivers (one for each user that is being served) that are physically separated. The information sequence addressed to each one of the users is sent in each of the carriers that defines the OFDM modulation.
a) Get the maximum and minimum service rate (symbol rate) that each user could get if the modulation is not using cyclic prefix. Take into account that the rate will depend on the number of users that are being served.
b) Assuming that we are giving service to 4 users $(N=4)$ and that the binary rates required by each user are $R_{\mathrm{u} 0}=8 \mathrm{kbit} / \mathrm{s}, R_{\mathrm{u} 1}=4 \mathrm{kbit} / \mathrm{s}, R_{\mathrm{u} 2}=2 \mathrm{kbit} / \mathrm{s}$ and $R_{\mathrm{u} 3}=1 \mathrm{kbit} / \mathrm{s}$, get the modulation order that each user will need.
c) The discrete time OFDM signal $s[m]$ that transports the information of the 4 users is transmitted through the wireless channel. Each user i receives the signal $s[m]$ though a different channel $d_{i}[m](i=0 \ldots 3)$ due to the different propagation channels:

$$
\begin{aligned}
& d_{i}[m]=\delta[m]+a_{i} \delta[m-1] \text { if } i=0,1 \\
& d_{i}[m]=\delta[m]+a_{i} \delta[m-2] \text { if } i=2,3
\end{aligned}
$$

Get the length of the cyclic prefix that should be added to the signal $s[m]$ so that all the users can recover their information with no ISI and ICI.
d) Design the demodulator that each user should have to recover their information sequence.

Exercise 4.7 A direct-sequence spread spectrum system with spreading factor of $N=4$, has a spreading sequence as

$$
x[m]=\delta[m]+a \delta[m-1]+b \delta[m-2]+c \delta[m-3],
$$

with $\{a, b, c\} \in\{ \pm 1\}$. The transmit filter at chip time, T_{c}, is $g_{c}(t)=\frac{1}{\sqrt{T_{c}}} \operatorname{sinc}\left(\frac{t}{T_{c}}\right)$.
a) If the transmission of the information symbols, $A[n]$, generates the baseband modulated signal, $s(t)$, that is shown in next figure

where T is the symbol time of the transmitted sequence, $A[n]$, and where we should notice that the signal amplitude, $s(t)$, is scaled by a factor of $\sqrt{T_{c}}$, get the values of a, b, and c, and the three initial values of the transmitted sequence $A[n]$.
b) The signal $s(t)$ is transmitted through an ideal channel, without noise and in the receiver is filtered with a matched filter to the transmitter at chip time, that is, $f(t)=g_{c}(-t)$. The output of this filter is $v(t)$. Get $v(t)$ from $s(t)$, draw the block diagram of the spread-spectrum receiver and compute the observations at the filter output $q[n]$, for $n \in\{0,1,2\}$.

HINT: for this transmission filter at chip time, we have $r_{g_{c}}(t)=g_{c}(t) * g_{c}(-t)=\operatorname{sinc}\left(\frac{t}{T_{c}}\right)$.
Exercise 4.8 A direct sequence spread spectrum modulation is used with a spreading factor of $N=4$. The baseband shaping pulse used is as follows

$$
g(t)=\sum_{m=0}^{N-1} x[m] g_{c}\left(t-m T_{c}\right),
$$

where the spreading sequence used is $x[m]=+1,-1,+1,-1$, for $m=0,1,2,3$, and $g_{c}(t)$ is a causal pulse with duration T_{c} (chip length) and unit energy.

a) Using the corresponding baseband spread spectrum receiver, get the output of the demodulator $q[n]$ for $n=0,1,2$, if the receiver input $r(t)$ is the signal in previous figure.
b) Get the discrete equivalent channel and the error probability for the conventional receiver if the transmitted constellation is a 2-PAM (or BPSK) $A[n] \in\{ \pm 1\}$, and the channel is $h_{e q}(t)=\delta(t)+\delta(t-T / 2)$, compare these results with the ones obtained by using an alternative sequence $x_{r}[m]=+1,-1,+1,+1$, in the receiver for the de-spreading. Is there ISI?
c) For the previous sequence used in the transmitter $x[m]$ and the channel given in the previous section, is it possible to eliminate the ISI modifying the spreading sequence in the transmitter? If so, identify such a sequence.

Exercise 4.9 A direct sequence spread spectrum modulation has a spreading factor of $N=10$. It trasnsmitts a 2-PAM constellation with normalized levels, $A[n] \in\{ \pm 1\}$. The equivalent discrete channel at chip period T_{c} is

$$
d[m]=\delta[m]-0,5 \delta[m-4]
$$

and additive noise is white, Gaussian with power spectral density $\frac{N_{0}}{2}$.
The spreading sequence $x[m]$ is $\{-1,-1,+1,+1,-1,+1,+1-1,+1,+1\}$.
a) Plot the shaping pulse at symbol period, $g(t)$, if the shaping pulse at tchip period, $g_{c}(t)$, is a causal and nomalized rectangular pulse.
b) Get the discrete equivalent channel at symbol time T. Determine if there is ISI and get the error probability if you used a memoryless symbol by symbol detector.

Carlos III
Carlos III
Exercise 4.10 In a digital communication system that uses a 4-PAM constellation with normalized levels, the binary rate is $4 \mathrm{kbits} / \mathrm{s}$, and the initial symbols of the sequence to be transmitted are

$$
A[0]=+1, A[1]=-3, A[2]=+1, A[3]=+3, A[4]=+1, A[5]=-1, A[6]=+1, A[7]=-1 .
$$

To implement the system two modulations are considered: direct sequence spread spectrum and OFDM modulation.

The equivalent discrete channel $d[m$ (equivalent discrete channel at chip period for spread spectrum, or at the time of an OFDM symbol divided by the number of carriers or carriers plus cyclic prefix for an OFDM modulation) is

$$
d[m]=\delta[m]-\frac{1}{4} \delta[m-1]+\frac{2}{3} \delta[m-2] .
$$

a) If the direct sequence spread spectrum modulation is used, with spreading factor $N=3$, spreading sequence

$$
x[m]=\delta[m]-\delta[m-1]+\delta[m-2],
$$

carrier frequency $\omega_{c}=2 \pi \times 10^{6}$ radians $/ \mathrm{s}$, and using a root-raised cosine transmitter filter with roll-off factor $\alpha=0,25$, obtain the sequence of samples of the modulated signal at chip rate, $s[m]$, which is associatted to the first 3 symbols of the data sequence given above and calculate the bandwidth of the bandpass modulated signal.
b) If an OFDM modulation with $N=4$ carriers and carrier frequency $\omega_{c}=2 \pi \times 10^{6}$ radians/s is used, obtain the ordered sequence of samples of the signal to be transmitted associatted to the 8 initial symbols of the data sequence given above, and calculate the bandwidth of the modulated signal in the following cases:
I) The system is designed to transmit using the minimal possible bandwidth (even if ISI or ICI are present).
iI) The system is designed to transmit without intersymbol and intercarrier interferences, using the minimum bandwidth which is necessary to avoid these two effects.

Exercise 4.11 A digital communication system is based on a direct sequence spread spectrum modulation to provide service simultaneously to two users (multiuser system). Spreading factor and transmitter filter at chip rate are identical for both users, $N=4$, and a causal rectangular normalized pulse

$$
g_{c}(t)=\left\{\begin{array}{ll}
\frac{1}{\sqrt{T_{c}}} & \text { si } 0 \leq t<T_{c}=\frac{T}{4} \\
0 & \text { in other case }
\end{array} .\right.
$$

For the sake of simplicity in the calcularion, from now on we will consider $T_{c}=1$ y $T=4$. First user has spreding sequence

$$
x_{1}[m]=\delta[m]-\delta[m-1]+\delta[m-2]-\delta[m-3] .
$$

a) Choose, between sequences $x_{a}[m]$ and $x_{b}[m]$, the one you consiser more appropriate to be the spreading sequence of second user, $x_{2}[n]$, explaining clearly the reason for this choice.

$$
x_{a}[m]=-\delta[m]+\delta[m-1]-\delta[m-2]+\delta[m-3], x_{b}[m]=\delta[m]-\delta[m-1]-\delta[m-2]+\delta[m-3] .
$$

b) With the previous choice for $x_{2}[m]$ (if you did not solved previous section, choose arbitrarily a sequence for second user), obtain and plot the continuous time signal $s(t)$ generated by the simultaneous transmission of both users during the first two symbol intervals (between $0 \leq t<2 T$) if data sequences bor both users are, respectively

$$
\begin{array}{c|cccc}
n & 0 & 1 & 2 & 3 \\
\hline A_{1}[n] & +1 & -3 & -1 & +1 \\
A_{2}[n] & -1 & +1 & +3 & +1
\end{array}
$$

c) If the joint signal containing the information of both users is trasmitted without distortion, obtain the observations corresponding to the first user in the two first symbols intervals, $q_{1}[0]$ and $q_{1}[1]$, prividing clear evidence of how these values have been obtained.

Exercise 4.12 A communication system uses a discrete time OFDM modulation with $N=4$ carriers and with symbol length T.

Joint transmitter, channel and receiver response $d(t)$ is the one given in the picture (in a real case, this joint response depends on the reconstruction rate of the transmitter filter; for the sake of simplicity, assume that this is the response for any rate).

a) If the preliminary system does not use cyclic prefic, determine if inter-symbol interference (ISI) and/or inter-carrier interference (ICI) will be present. In the case ISI/ICI are present, design an alternative systen to avoid them being the more efficient as possible.
b) Obtain the equivalent discrete channels $p_{k, i}[n]$ for the system designed in previous section.

Exercise 4.13 A baseband communication system uses a direct sequence spread spectrum modulation with spreading factor $N=3$ and spreading sequence

$$
x[m]=+\delta[m]-\delta[m-1]+\delta[m-2]
$$

to transmit at a binary rate of $1 \mathrm{kbit} / \mathrm{s}$ using an 8-PSK modulation with normalized levels, with the transmitted sequence being white. Transmitter filter at chip rate, $g_{c}(t)$, is a root raised cosine at chip rate with roll-off factor α, receiver filter is matched to the transmitter filter, the channel impulse response is

$$
h(t)=\delta(t)-\frac{1}{3} \delta\left(t-7 \times 10^{-3}\right)
$$

and thermal noise is white and Gaussian with power spectral density $N_{0} / 2$.
a) Obtain the analytical expression of the power spectral density of the modulated baseband signal, $s(t)$, for a generic value of the roll-off factor, and plot this power spectral density and provide the bandwidth of the modulated signal in the following case: $\alpha=0$.

REMARK: In the figure plotting the power spectral density, axes have to be properly labeled, including the appropriate numerical values.

Exercise 4.14 A digital communication system uses an OFDM modulation with $N=4$ carriers, with 16-QAM constellations with normalized levels in all carriers, to transmit at a total binary rate (taking into account the contribution of the 4 carriers) $R_{b}=8 \mathrm{Mbits} / \mathrm{s}$. Joint response between transmitter, channel and receiver, sampled at T / N in the case a cyclic prefix is not used, or at $T /(N+C)$ if a cyclic prefix of C samples is used, is

$$
d[m]=\delta[m]+\frac{1}{2} \delta[m-2]
$$

a) Explain how to avoid inter-symbol interference (ISI) and inter-carrier interference (ICI), and provide the equivalent discrete channels at symbol rate in that case.
b) Obtain the minimum bandwidth that is necessary to transmit at the specified binary rate in the following two scenarios:
I) The system is designed to transmit without ISI and ICI.
iI) The system is designed to transmit using the minimum possible bandwidth, without taking care about ISI or ICI.

Exercise 4.15 The following sequences are known

n	0	1	2	3						
$A[n]$	+1	-3	+1	-1	\quad	m	0	1	2	3
:---:	:---:	:---:	:---:	:---:						
$v[m]$	$+1,1$	$-0,9$	$-0,8$	$+0,7$						

a) A direct sequence spread spectrum modulation with spreading factor $N=4$, spreading sequence

$$
\begin{array}{c|cccc}
m & 0 & 1 & 2 & 3 \\
\hline x[m] & +1 & -1 & -1 & +1
\end{array}
$$

and carrier frequency $f_{c}=1 \mathrm{MHz}$ is employed. Transmitter filter at chip rate is a normalized root-raised cosine filter with roll-off factor $\alpha=0,2$.
I) Obtain the samples at chip rate associated to the transmission of data sequence $A[n]$ at a symbol rate of 5 kbauds, making explicit the discret instant associated to each sample (similarly as in the tables given above), and obtain the bandwidth of the modulated signal.
iI) Compute the observations at symbol rate $q[n]$ associated to the processing of the observations at chip rate obtained at the ouput of the receiver filter, $v[m]$, making explicit the discret instant n associated to each observation.
b) Now an OFDM modulation with 4 carriers is used to transmit data sequence $A[n]$ at a total symbol rate of 4 bauds with a carrier frequency $f_{c}=1 \mathrm{MHz}$.
I) Without cyclic prefix, compute the value of the samples of the transmitted signal at T / N associated to data sequence $A[n]$, making explicit the discret instant associated to each sample (similarly as in the tables given above), and obtain the bandwidth of the modulated signal.
iI) With a cyclic prefix of length $C=1$ sample, compute the value of the samples of the transmitted signal at $T /(N+C)$ associated to data sequence $A[n]$, making explicit the discret instant associated to each sample (similarly as in the tables given above), and obtain the bandwidth of the modulated signal.

Exercise 4.16 Consider a direct sequence spread spectrum modulation with spreading factor $N=10, \tilde{x}[m]=(-1)^{m}$, and $g_{c}(t) * g_{c}^{*}(-t)$ fulfills the Nyquist ISI criterio at chip period, $T_{c}=T / N$. The equivalent baseband channel is $h_{e q}(t)=\delta(t-\tau)$. Determine the equivalent discrete channel, $p[n]$ (if it nos possible to symplify the resulting expression, provide it in terms of $g_{c}(t)$). Discuss the existence of intersymbol interference (ISI) in the following cases:
a) $\tau=T$
b) $\tau=T / 2$
c) $\tau=T / 4$

