ELE 539B: Coding Theory

Homework 4: Spectra of Line Codes

No.1. Calculate a closed form expression for the spectrum of the line code described below under the assumption that the input data bits a_k are independent and equiprobable.

The Miller code is a rate 1/2 code. It is just a rule for inserting a binary digit between data bits. The Miller codeword corresponding to raw data (a_k) is $(\bar{a}_{k-1}\bar{a}_k, a_k)$. Thus

$$(0,0) \to (0,1,0), (1,0) \to (1,0,0), (0,1) \to (0,0,1), \text{ and } (1,1) \to (1,0,1).$$

The codeword corresponding to the data sequence given above is

The modification rule is that the symbol 1 determines a change in level and that the symbol 0 determines no change in level. The Miller codeword given above is written as

The two levels are ± 1 so that the Miller codeword (y_{2k}, y_{2k+1}) is the sequence

The line code (z_{ℓ}) is obtained by passing the Miller codeword (y_{ℓ}) through a 1-D filter. Thus

$$z_{2k} = y_{2k} - y_{2k-1}$$
 and $z_{2k+1} = y_{2k+1} - y_{2k}$.

(A) There are 8 channel states corresponding to the triples $(a_{k-2}, a_{k-1}; y_{2k-3})$, and from any given state there are two equiprobable transitions corresponding to the different values of a_k . This transition is labeled with the codeword (z_{2k}, z_{2k+1}) . Complete the state transition matrix given below.

Sample calculation: initial state (00;1), $a_k=1$. Here $y_{2k-3}=1$, $a_{k-2}=0$, $a_{k-1}=0$, $a_k=1$. The corresponding Miller codeword is 1001 which is written as

$$(y_j)_{j=2k-2}^{2k+1} = (-1, -1, -1, 1).$$

Now $(z_{2k}, z_{2k+1}) = (-1 - (-1), 1 - (-1)) = (0, 2)$ and the new state is (0, 1; -1).

Hint:
$$(ab;d) \xrightarrow{(z_1,z_2)} (bc;e)$$
 if and only if $(ab;\overline{d}) \xrightarrow{(-z_1,-z_2)} (bc;-e)$.

(B) Calculate the 2×8 matrix e with entries the sum of the signal points that can be transmitted when entering state ℓ weighted by the probability of their appearance.

$$e = \begin{bmatrix} (00;1) & (00;-1) & (01;1) & (01;-1) & (10;1) & (10;-1) & (11;1) & (11;-1) \\ -1/4 & 1/4 & & & & & & & & \\ \hline 0 & 0 & & & & & & & & \end{bmatrix}$$

Sample calculation: The equilibrium probability distribution is uniform so the weighted sum of the signal points that can be transmitted on entering state (00;-1) is $\frac{1}{8} \times \frac{1}{2} \times ((2,0)+(2,0)) = (1/4,0)$.

Calculate the 8×2 matrix d with entries the average of the signal points that can be transmitted from a given state.

- (C) Let P be the matrix of the state transition probabilities. Calculate ed, ePd, eP^2d , eP^3d , and eP^4d . Prove that $eP^kd=-eP^{k-4}d/4$ for $k\geq 4$.
- (D) Let $z = e^{i\theta}$. The spectrum S(z) is given by

$$S(z) = R_0 + f(z) + f(z^{-1})$$

where R_0 is the average transmitted signal power and

$$f(z) = \sum_{k \ge 1} R_k z^k.$$

Prove that $R_0 = 3/2$ and that

$$f(z) = \frac{-12z^2 - 8z^3 + 2z^4 + 8z^5 + 4z^6 - 4z^7 - 5z^8}{4(4+z^8)}.$$

(E) Graph the spectrum S(z).