Golay, Heisenberg and Weyl

Robert Calderbank
Princeton University

Abstract

Sixty years ago, efforts by Marcel Golay to improve the sensitivity of far infrared spectrometry led to his discovery of pairs of complementary sequences. These sequences are finding new application in active sensing, where the challenge is how to see faster, to see more finely where necessary, and to see with greater sensitivity, by being more discriminating about how we look.

Sponsored in part by NSF, AFOSR, ONR and DARPA

A. R. Calderbank

Acknowledgments

Stephen Howard DSTO, Australia

Bill Moran

Univ. Melbourne

Doug Cochran
 Stephen Searle
 Sofia Suvarova
 Mike Zoltowski

Graduate Students:
Vaneet Aggarwal
Lorne Applebaum
Yuejie Chi
Philip Vetter
Ali Pezeshki
Princeton and CSU

Undergraduates:
Brian Nowakowski

Measurement: Ancient and Modern

Golay and Multi-Slit Spectrometry

Far Infrared Spectrometry identifies molecules by detecting the characteristic absorption frequencies of specific chemical bounds.

Spectrometer with spinning disks and slits encoding Walsh functions
Spectrometer with fixed slits encoding Golay complementary pairs

Bridges across the infrared radio gap - Proc. IRE.

Obstacles to Infrared Spectrometry

- Sources of interest are typically small thus emit and absorb weakly.
- Blackbody radiation from the environment and the equipment itself at room temperature is strongly concentrated in the infrared spectrum and overlaps the signal
 of interest.
- Detectors were temperature sensors that could not by themselves distinguish between different frequencies of infrared radiation but merely integrated total thermal energy received.

The Origin of Golay Complementary Pairs
PATH 1: $x=+++-++-+$

PATH 2: $y=+++---+-$

Golay Complementary Sequences (Golay Pairs)

Definition: Two length L unimodular sequences $x(\ell)$ and $y(\ell)$ are Golay complementary if the sum of their autocorrelation functions satisfies

$$
R_{x}(k)+R_{y}(k)=2 L \delta_{k, 0}
$$

for all $-(L-1) \leq k \leq L-1$.

Golay Complementary Sequences (Golay Pairs)

Definition: Two length L unimodular sequences $x(\ell)$ and $y(\ell)$ are Golay complementary if the sum of their autocorrelation functions satisfies

$$
R_{x}(k)+R_{y}(k)=2 L \delta_{k, 0}
$$

for all $-(L-1) \leq k \leq L-1$.

Golay Complementary Sequences (Golay Pairs)

Definition: Two length L unimodular sequences $x(\ell)$ and $y(\ell)$ are Golay complementary if the sum of their autocorrelation functions satisfies

$$
R_{x}(k)+R_{y}(k)=2 L \delta_{k, 0}
$$

for all $-(L-1) \leq k \leq L-1$.

1										1	1	-1

1	1	1	1	-1	-1	-1	1	-1				
1	1	1	-1	-1	-1	1	-1					

Golay Complementary Sequences (Golay Pairs)

Definition: Two length L unimodular sequences $x(\ell)$ and $y(\ell)$ are Golay complementary if the sum of their autocorrelation functions satisfies

$$
R_{x}(k)+R_{y}(k)=2 L \delta_{k, 0}
$$

for all $-(L-1) \leq k \leq L-1$.

| 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\quad| 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Golay Complementary Sequences (Golay Pairs)

Definition: Two length L unimodular sequences $x(\ell)$ and $y(\ell)$ are Golay complementary if the sum of their autocorrelation functions satisfies

$$
R_{x}(k)+R_{y}(k)=2 L \delta_{k, 0}
$$

for all $-(L-1) \leq k \leq L-1$.

Golay Complementary Sequences (Golay Pairs)

Definition: Two length L unimodular sequences $x(\ell)$ and $y(\ell)$ are Golay complementary if the sum of their autocorrelation functions satisfies

$$
R_{x}(k)+R_{y}(k)=2 L \delta_{k, 0}
$$

for all $-(L-1) \leq k \leq L-1$.

Golay Complementary Sequences (Golay Pairs)

Definition: Two length L unimodular sequences $x(\ell)$ and $y(\ell)$ are Golay complementary if the sum of their autocorrelation functions satisfies

$$
R_{x}(k)+R_{y}(k)=2 L \delta_{k, 0}
$$

for all $-(L-1) \leq k \leq L-1$.

Golay Complementary Sequences (Golay Pairs)

Definition: Two length L unimodular sequences $x(\ell)$ and $y(\ell)$ are Golay complementary if the sum of their autocorrelation functions satisfies

$$
R_{x}(k)+R_{y}(k)=2 L \delta_{k, 0}
$$

for all $-(L-1) \leq k \leq L-1$.

1	1	1	-1	1	1	-1	1
1	1	1	-1	1	1	-1	1

Golay Complementary Sequences (Golay Pairs)

Definition: Two length L unimodular sequences $x(\ell)$ and $y(\ell)$ are Golay complementary if the sum of their autocorrelation functions satisfies

$$
R_{x}(k)+R_{y}(k)=2 L \delta_{k, 0}
$$

for all $-(L-1) \leq k \leq L-1$.

Golay Complementary Sequences (Golay Pairs)

Definition: Two length L unimodular sequences $x(\ell)$ and $y(\ell)$ are Golay complementary if the sum of their autocorrelation functions satisfies

$$
R_{x}(k)+R_{y}(k)=2 L \delta_{k, 0}
$$

for all $-(L-1) \leq k \leq L-1$.

Golay Complementary Sequences (Golay Pairs)

Definition: Two length L unimodular sequences $x(\ell)$ and $y(\ell)$ are Golay complementary if the sum of their autocorrelation functions satisfies

$$
R_{x}(k)+R_{y}(k)=2 L \delta_{k, 0}
$$

for all $-(L-1) \leq k \leq L-1$.

Golay Complementary Sequences (Golay Pairs)

Definition: Two length L unimodular sequences $x(\ell)$ and $y(\ell)$ are Golay complementary if the sum of their autocorrelation functions satisfies

$$
R_{x}(k)+R_{y}(k)=2 L \delta_{k, 0}
$$

for all $-(L-1) \leq k \leq L-1$.

Golay Complementary Sequences (Golay Pairs)

Definition: Two length L unimodular sequences $x(\ell)$ and $y(\ell)$ are Golay complementary if the sum of their autocorrelation functions satisfies

$$
R_{x}(k)+R_{y}(k)=2 L \delta_{k, 0}
$$

for all $-(L-1) \leq k \leq L-1$.

Golay Complementary Sequences (Golay Pairs)

Definition: Two length L unimodular sequences $x(\ell)$ and $y(\ell)$ are Golay complementary if the sum of their autocorrelation functions satisfies

$$
R_{x}(k)+R_{y}(k)=2 L \delta_{k, 0}
$$

for all $-(L-1) \leq k \leq L-1$.

Golay Complementary Sequences (Golay Pairs)

Definition: Two length L unimodular sequences $x(\ell)$ and $y(\ell)$ are Golay complementary if the sum of their autocorrelation functions satisfies

$$
R_{x}(k)+R_{y}(k)=2 L \delta_{k, 0}
$$

for all $-(L-1) \leq k \leq L-1$.

Radar Fundamentals

Illuminate a scene with a waveform and analyze the return to

- Detect the presence of a target
- Estimate target range from round trip delay
- Estimate target velocity from Doppler effect

Radar Imaging

Autocorrelation Function:

$$
R_{s}(\tau)=\int_{-\infty}^{\infty} s(t) \overline{s(t-\tau)} d t
$$

Ideal: Impulse-like

Radar Imaging

Ambiguity Function:

$A_{s}(\tau, \nu)=\int_{-\infty}^{\infty} s(t) \overline{s(t-\tau)} e^{-j 2 \pi \nu t} d t$
Ideal: Thumbtack

Ambiguity Function

Pulse Train: Sequence of waveforms separated in time

$$
\mathcal{S}(t)=\sum_{n=0}^{N-1} s(t-n T)
$$

Ambiguity function of pulse train:

$$
A_{\mathcal{S}}(\tau, \nu)=\underbrace{\left(\sum_{n=0}^{N-1} e^{j n 2 \pi \nu T}\right)} A_{s}(\tau, \nu)+\text { terms at } m T
$$

Doppler shifts
over PRIs

Radar Waveforms

Phase Coded Waveforms:

$$
s(t)=\sum_{\ell=0}^{L-1} x(\ell) \operatorname{rect}\left(\frac{t-\ell T_{c}}{T_{c}}\right)
$$

$\{x(\ell)\}_{\ell=0}^{L-1}$: length $-L$ unimodular sequence (typically 1 and -1)

Autocorrelation Functions:

Frank Code

Barker Code

Golay Complementary
Codes

Sensitivity to Doppler

"Although the autocorrelation sidelobe level is zero, the ambiguity function exhibits relatively high sidelobes for nonzero Doppler." [Levanon, Radar Signals, 2004, p. 264]

Why? Roughly speaking

$$
R_{x}(k)+R_{y}(k) e^{j \theta} \neq \alpha(\theta) \delta_{k, 0}
$$

Sensitivity to Doppler

Range Sidelobe Problem: A weak target located near a strong target can be masked by the range sidelobes of the ambiguity function centered around the strong target.

Degrees of Freedom-Time

Coordinating Waveforms in Time:

Question: Is it possible to design a Doppler resilient sequence of Golay pairs $\left(x_{0}, x_{1}\right), \ldots,\left(x_{N-2}, x_{N-1}\right)$ to have

$$
\sum_{n=0}^{N-1} e^{j n \theta} R_{x_{n}}(k) \approx \beta(\theta) \delta_{k, 0} ; \quad \text { for all } \theta \in \Theta
$$

in a given Doppler interval Θ ?

Doppler Resilient Golay Pairs

- Two Golay pairs $\left(x_{0}, x_{1}\right)$ and $\left(x_{2}, x_{3}\right)$ over 4 PRIs:

$$
R_{x_{0}}(k)+e^{j \theta} R_{x_{1}}(k)+e^{j 2 \theta} R_{x_{2}}(k)+e^{j 3 \theta} R_{x_{3}}(k) \approx \beta(\theta) \delta_{k, 0}, \quad \forall \theta \in \Theta
$$

- How about around zero Doppler? Taylor Expansion
- First order approximation:

$$
\underbrace{\underbrace{0 R_{x_{0}}(k)+R_{x_{1}}(k)}_{1 R_{x_{1}}(k)}+\underbrace{2 R_{x_{2}}(k)+3 R_{x_{3}}(k)}_{2 \times 2 L \delta_{k, 0}+1 R_{x_{3}}(k)}}_{3 \times 2 L \delta_{k, 0}}
$$

- Condition: $\left(x_{1}, x_{3}\right)$ also Golay pair.
- Example:

$$
\begin{array}{llll}
x_{0} & x_{1} & x_{2} & x_{3} \\
x & y & y & x
\end{array}
$$

Doppler Resilient Pulse Trains

p-Pulse Train: Transmission of a Golay pair x and y is coordinated according to a binary sequence $\mathbf{p}=\left\{p_{n}\right\}$, $n=0, \ldots, 2^{M}-1$ over $N=2^{M}$ PRIs:

$$
\underbrace{\frac{1}{2}\left[R_{x}(k)+R_{y}(k)\right] \sum_{n=0}^{2^{M}-1} e^{j n \theta}}_{\text {Sidelobe free }}+\underbrace{\frac{1}{2}\left[R_{x}(k)-R_{y}(k)\right] \sum_{n=0}^{2^{M}-1}(-1)^{p_{n}} e^{j n \theta}}_{\text {Range sidelobes }}
$$

Key observation: Magnitudes of range sidelobes are proportional to the magnitude of the spectrum of the sequence $(-1)^{p_{n}}$:

$$
S_{\mathbf{p}}(\theta)=\sum_{n=0}^{2^{M}-1}(-1)^{p_{n}} e^{j n \theta}
$$

Approach: Design $\mathbf{p}=\left\{p_{n}\right\}$ to shape the spectrum $S_{\mathbf{p}}(\theta)$.

PTM Pulse Train: Zero-forcing Taylor Moments

Theorem: To zero-force up to M Taylor moments of the spectrum $S_{\mathbf{p}}(\theta)$ around $\theta=0$, coordinate the transmission of a Golay pair (x, y) according to the length $N=2^{M+1}$ PTM sequence, with 0 locations corresponding to x and 1 locations corresponding to y.

Prouhet-Thue-Morse Sequence: The nth term in the PTM sequence p_{n} is the sum of the binary digits of $n \bmod 2$:

n	$(0)=0000$	$(1)=0001$	$(2)=0010$	$(3)=0011$
p_{n}	0	1	1	0

Example: Length-8 PTM Pulse Train

x	y	y	x	y	x	x	y
0	1	1	0	1	0	0	1

PTM Pulse Train in Action

Alternating Pulse Train

PTM Pulse Train

By transmitting a Golay pair according to the PTM sequence we can clear out the range sidelobes along modest Doppler frequencies.

Range Sidelobe Suppression at Higher Doppler Frequencies

Theorem: There exists a unique first-order RM codeword that minimizes the range sidelobes in the Doppler interval $\left[\frac{\pi k}{2^{M}}, \frac{\pi(k+1)}{2^{M}}\right]$.
Theorem: The k-oversampled PTM sequence of length $2^{M} k$ produces an M th order null at $\theta=2 \pi \ell / k$ for all co-prime ℓ and k.
Corollary: Oversampled PTM sequence produces an $(M-1)$ th order null at $\theta=0$ and $(M-2)$ th order nulls at all $\theta=\pi \ell / k$.

Example: $M=3, k=3 \longrightarrow\left\{p_{n}\right\}=000111111000 \cdots$

Degrees of Freedom-Polarization/Space

Polarization: Alamouti space-time block code is used to coordinate transmission on V and H channels

Multiple Dimensions: Paraunitary filter banks introduced by Tseng and Liu to study acoustic surface waves

Polamouti Transmission:

$$
R=\left(\begin{array}{cc}
h_{V V} & h_{V H} \\
h_{H V} & h_{H H}
\end{array}\right)\left(\begin{array}{cc}
x & -\widetilde{y} \\
y & \widetilde{x}
\end{array}\right)+\text { Noise }
$$

Unitary property: Interplay between Alamouti signal processing and perfect autocorrelation property of Golay pairs

$$
\left(\begin{array}{cc}
x & -\widetilde{y} \\
y & \widetilde{x}
\end{array}\right)\left(\begin{array}{cc}
\widetilde{x} & \widetilde{y} \\
-y & x
\end{array}\right)=\left(\begin{array}{cc}
2 L & 0 \\
0 & 2 L
\end{array}\right)
$$

Instantaneous Radar Polarimetry eliminates range sidelobes and improves detection performance, without adding to signal processing complexity

Degrees of Freedom-Frequency

Roadblock to OFDM radar: A pair of complementary waveforms cannot be multiplexed in frequency because of an unknown range-dependent phase term, thereby preventing coherent combining; this limits the applicability of any set of orthogonal waveforms.

Golay Pairs: Autocorrelation Properties

$$
\begin{aligned}
& R_{p_{1}}(k)=-R_{p_{2}}(k), \text { for } k \neq 0 \\
& R_{p_{1}}^{2}(k)=R_{p_{2}}^{2}(k), \text { for } k \neq 0
\end{aligned}
$$

$$
R_{p_{1}}(2 k)=R_{p_{2}}(2 k)=0, \text { for } k \neq 0
$$

$$
R_{p_{1}}(k)+R_{p_{2}}(k)=2 L \delta(k)
$$

Modified Golay Pairs

- Design a pair of sequences such that

$$
R_{p}^{2}(k)+R_{q}^{2}(k)=C \delta(k)
$$

- At least one of the squared autocorrelations must be negative at some values of k.
- Possible only if the sequence has imaginary components.
- Let $p_{1}(n)$ and $p_{2}(n)$ be a Golay pair. Define

$$
q_{2}(n)=p_{2}(n) e^{j \frac{\pi}{2} n} \longrightarrow R_{q_{2}}(k)=R_{p_{2}}(k) e^{j \frac{\pi}{2} k}
$$

Then

$$
\begin{aligned}
R_{q_{2}}^{2}(k) & =R_{p_{2}}^{2}(k) e^{j \pi k}= \begin{cases}-R_{p_{1}}^{2}(k) & k \text { odd } \\
0 & k \neq 0 \text { even } \\
R_{p_{1}}^{2}(k) & k=0\end{cases} \\
& \longrightarrow R_{q_{2}}^{2}(k)+R_{p_{1}}^{2}(k)=2 L^{2} \delta(k)
\end{aligned}
$$

Modified Golay Pairs for Radar

- Modified Golay pair p_{1} and q_{2} is used to phase code a pulse.
- First code is transmitted at carrier frequency.
- Second code is transmitted twice, offset equally above and below the carrier.

Received signal:

$$
\begin{aligned}
& y_{1}(t)=a e^{-j \omega_{c} d} s_{1}(t-\tau) \\
& y_{2 a}(t)=a e^{-j\left(\omega_{c}+\omega_{b}\right) d} s_{2}(t-\tau) \\
& y_{2 b}(t)=a e^{-j\left(\omega_{c}-\omega_{b}\right) d} s_{2}(t-\tau)
\end{aligned}
$$

Receiver signal processing:

$$
\Gamma(\tau)=R_{s_{1} y_{1}}^{2}(\tau)+R_{s_{2} y_{2 a}}(\tau) \times R_{s_{2} y_{2 b}}(\tau)
$$

Optimizable Waveforms

Evolution of Radar Platforms

SISO Radar:

- Transmits a fixed waveform over multiple pulse repetition intervals (PRIs) for range-Doppler imaging.

MIMO Radar (Waveform Agile):

- Capable of simultaneous transmission of multiple waveforms across frequency, polarization, and space

Radar Networks:

- MIMO radar capabilities plus multiple views

Chesapeake Bay Radar

National weather radar network

D_{4} : The Symmetry Group of the Square

Generated by matrices $\mathrm{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $\mathrm{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

$$
\begin{array}{rlrl}
\mathrm{xz} & =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) & & \text { anticlockwise rotation by } \frac{\pi}{2} \\
\mathrm{z} & =\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right) & \text { reflection in the horizontal axis }
\end{array}
$$

D_{4} is the set of eight 2×2 matrices $\varepsilon D(a, b)$ given by

$$
\varepsilon D(a, b)=\varepsilon\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)^{a}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)^{b} \text { where } \varepsilon= \pm 1 \text { and } a, b=0 \text { or } 1 .
$$

$$
\mathrm{x}^{2}=\mathrm{z}^{2}=I_{2}
$$

$$
\left.\begin{array}{l}
\mathrm{zx}=\left(\begin{array}{ll}
1 & \\
{ }^{1}-1
\end{array}\right)\left({ }_{1}^{1}\right)=\left({ }_{-1}{ }^{1}\right) \\
\mathrm{xz}=\left(1^{1}\right)\binom{1}{{ }^{1}-1}=\left(1^{-1}\right)
\end{array}\right] \mathrm{xz}=-\mathrm{zx}
$$

The Heisenberg-Weyl Group $\mathcal{W}\left(\mathbb{Z}_{2}^{m}\right)$

$\mathcal{W}\left(\mathbb{Z}_{2}^{m}\right)$ is the m-fold Kronecker product of D_{4} extended by $i I_{2^{m}}$.
$i^{\lambda} p_{m-1} \otimes \ldots \otimes p_{0}$ where $p_{j}=I_{2}, \mathrm{x}, \mathrm{z}$, or xz for $j=0,1, \ldots, m-1$
There are $2^{2 m+2}$ elements, each represented by a pair of binary m-tuples
$a \quad b$

$$
\mathrm{xz} \otimes \mathrm{x} \otimes \mathrm{z} \otimes \mathrm{xz} \otimes I_{2} \leftrightarrow D(11010,10110)
$$

Theorem: $D(a, b) D\left(a^{\prime}, b^{\prime}\right)=(-1)^{a^{\prime} \cdot b+b^{\prime} \cdot a} D\left(a^{\prime}, b^{\prime}\right) D(a, b)$

$$
D(a, b)^{2}=(-1)^{a . b} I_{2^{m}}
$$

$D(01,11)=\left(\begin{array}{l|l|l}+^{-} & & \\ + & \\ \hline & - & +\end{array}\right), D(10,10)=\left(\begin{array}{llll} & & \\ & & & - \\ \hline+ & & \end{array}\right)$

- The operators $D(a, 0)$ are the time shifts of the binary world.
- The operators $D(0, b)$ are the frequency shifts of the binary world.
- Walsh functions are the sinusoids of the binary worldeigenfunctions of the time shift operator.

Chirps in the Binary World

Second order Reed-Muller codewords are the chirps of the binary world.

Maximal
Commutative Subgroup

$$
X \longrightarrow X_{P}=d_{P}^{-1} X d_{P}
$$

$$
d_{P}=\operatorname{diag}\left[i^{v P v^{T}}\right]
$$

Orthonormal Basis $H_{2^{m}} \longrightarrow H_{2^{m}} d_{P}$
Example: $m=3, P=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$
$H_{8}=\frac{1}{2 \sqrt{2}}\left[\begin{array}{llll|llll}+ & + & + & + & + & + & + & + \\ + & - & + & - & + & - & + & - \\ + & + & - & - & + & + & - & - \\ + & - & - & + & + & - & - & + \\ \hline+ & + & + & + & - & - & - & - \\ + & - & + & - & - & + & - & + \\ + & + & - & - & - & - & + & + \\ + & - & - & + & - & + & + & -\end{array}\right] d_{P}=\left[\begin{array}{lllllllll}1 & & & & & & & \\ & 1 & & & & & & \\ & & 1 & & & & & \\ & & & -1 & & & & \\ \hline & & & & i_{1} & & & \\ & & & & & i & & \\ & & & & & & -i & \\ \hline\end{array}\right.$

Representation of Operators

Inner Products: $(R, S)=\operatorname{Tr}\left(R^{\dagger} S\right)$
Hilbert-Schmidt or Frobenius Norm: $\|S\|=\operatorname{Tr}\left(S^{\dagger} S\right)^{\frac{1}{2}}$
Orthonormal Basis: $\frac{1}{\sqrt{N}} D(a, b), a, b \in \mathbb{Z}_{2}^{m}$ where $N=2^{m}$

$$
\operatorname{Tr}\left(D(a, b)^{\dagger} D\left(a^{\prime}, b^{\prime}\right)\right)=N \delta_{a, a^{\prime}} \delta_{b, b^{\prime}}
$$

Weyl Transform: Given an operator S write

$$
\begin{aligned}
S & =\frac{1}{N} \sum_{a, b \in \mathbb{Z}_{2}^{m}} \operatorname{Tr}\left(D(a, b)^{\dagger} S\right) D(a, b) \\
& =\sum_{a, b \in \mathbb{Z}_{2}^{m}} S(a, b)\left[\frac{1}{\sqrt{N}} D(a, b)\right]
\end{aligned}
$$

The Weyl Tranform is the isometry

$$
S \longleftrightarrow(S(a, b))=\left(\frac{1}{\sqrt{N}} \operatorname{Tr}\left(D(a, b)^{\dagger} S\right)\right)
$$

Walsh Sequence: $\theta^{\dagger}=\frac{1}{2}(+-+-)=\frac{1}{2} \mathbf{1} D(00,01)$
Rank One Projection Operator: $\theta \theta^{\dagger}=\frac{1}{4}\left[\begin{array}{cc|cc}+ & - & + & - \\ - & + & - & + \\ \hline+ & - & + & - \\ - & + & - & +\end{array}\right]$

$$
\begin{aligned}
\theta \theta^{\dagger} & =\frac{1}{4}\left[I_{4}-\left[\begin{array}{ll|l}
& 1 & \\
\hline
\end{array}\right.\right. \\
\hline & \\
& \\
& \\
& \\
& =\frac{1}{4} \sum_{a \in \mathbb{Z}_{2}^{2}}(-1)^{a \cdot(01)} D(a, 0)
\end{aligned}
$$

Dirac Sequence: $\varphi^{\dagger}=\theta^{\dagger} H_{4}=(0100)$
Rank One Projection Operator: $\varphi \varphi^{\dagger}=\left[\begin{array}{cc|cc}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

$$
\varphi \varphi^{\dagger}=\frac{1}{4} \sum_{b \in \mathbb{Z}_{2}^{2}}(-1)^{(01) \cdot b} D(0, b)
$$

Weyl Transforms of Operators

The more symmetries of a sequence θ the smaller is the support of Weyl transform of $\theta \theta^{\dagger}$.

Isotropy Subgroup: $H_{\theta}=\left\{g \in \mathcal{W}\left(\mathbb{Z}_{2}^{m}\right) \mid g \theta=c_{g} \theta\right\}$
Theorem: H_{θ} is commutative and $S_{\theta}(a, b)=0$ unless $D(a, b)$ commutes with every $D\left(a^{\prime}, b^{\prime}\right)$ in H_{θ}.
$\mathbf{S}_{\Delta, 0}$: Union of supports of cyclic shift operators $\Delta(k, 0)$
Theorem: $(a, b) \in S_{\Delta, 0} \Longleftrightarrow a \neq 0, b_{m-1}=0$ and a covers b. The support takes the form of a pair of Sierpinski triangles.

Connecting Periodic and Aperiodic Correlation

$$
\theta=\sum_{v, v_{m-1}=0} \theta_{v} e_{v} \text { and } \varphi=\sum_{v, v_{m-1}=0} \varphi_{v} e_{v}
$$

We may view θ, φ as sequences $\bar{\theta}, \bar{\varphi}$ of length 2^{m-1} or as sequences of length 2^{m} obtained by padding with zeros.
Proposition: $\bar{\theta}, \bar{\varphi}$ are \mathbb{Z}-Golay complementary if θ, φ are \mathbb{Z}_{N}-Golay complementary.
$\mathbb{Z}_{N^{-}}$Golay Complementary Pairs:

$$
\begin{gathered}
\theta^{\dagger} \Delta(k, 0) \theta+\varphi^{\dagger} \Delta(k, 0) \varphi=0 \quad \text { for } k \neq 0 \\
\operatorname{Tr}\left(\left(P_{\theta}+P_{\varphi}\right) \Delta(k, 0)\right)=0 \quad \text { for } k \neq 0
\end{gathered}
$$

Note: The orthonormal basis $D(a, b)$ from $\mathcal{W}\left(\mathbb{Z}_{2}^{m}\right)$ provides a sparse representation of P_{φ} and P_{ψ} for many widely used sequences φ, ψ.

Weyl Transform of the Golay Property

$$
\begin{array}{r}
P=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \\
\varphi=D(0 \ldots 0,10 \ldots 0) \theta
\end{array}
$$

P minimizes overlap (magenta) between the support of P_{θ}, P_{φ} (the subgroup X_{P} shown in red) and the support of $S_{\Delta, 0}$ (black and blue).
$D(0 \ldots 0,10 \ldots 0)$ removes overlap between the support of $P_{\theta}+P_{\varphi}$ and the support of $S_{\Delta, 0}$:

$$
\left(S_{\varphi}+S_{\theta}\right)(v, v P)=((-1)+1) S_{\theta}(v, v P)=0
$$

Information Theory and Sensing

P. M. Woodward (1953): introduced the narrowband radar ambiguity function to describe the effect of the transmit waveform at matched filter output.
"The reader may feel some disappointment, not unshared by the writer, that the basic question of what to transmit remains substantially unanswered."

Specific Questions:

- How to design measurements?
- How to utilize various modes of diversity with minimal complexity?
- What are the scaling laws? rate-reliability tradeoff?
- How to compress and fuse information?
- How to manage sensor operations and allocate resources?

A Final Thought

Classical Coding Theory

Fourier
Analysis

