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Abstract

Sixty years ago, efforts by Marcel Golay to improve the sensitivity of far infrared
spectrometry led to his discovery of pairs of complementary sequences. These
sequences are finding new application in active sensing, where the challenge is
how to see faster, to see more finely where necessary, and to see with greater
sensitivity, by being more discriminating about how we look.
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Measurement: Ancient and Modern
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Golay and Multi-Slit Spectrometry

Far Infrared Spectrometry identifies molecules by detecting the
characteristic absorption frequencies of specific chemical bounds.

Spectrometer with spinning disks
and slits encoding Walsh
functions

Spectrometer with fixed slits
encoding Golay complementary
pairs

Bridges across the infrared radio

gap – Proc. IRE.
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Obstacles to Infrared Spectrometry

Sources of interest are
typically small thus
emit and absorb weakly.

Blackbody radiation
from the environment
and the equipment itself
at room temperature is
strongly concentrated in
the infrared spectrum
and overlaps the signal
of interest.

Detectors were temperature sensors that could not by
themselves distinguish between different frequencies of infrared
radiation but merely integrated total thermal energy received.
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The Origin of Golay Complementary Pairs

PATH 1: x = + + +−+ +−+

PATH 2: y = + + +−−−+−
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Golay Complementary Sequences (Golay Pairs)

Definition: Two length L unimodular sequences x(`) and y(`)
are Golay complementary if the sum of their
autocorrelation functions satisfies

Rx(k) +Ry(k) = 2Lδk,0

for all −(L− 1) ≤ k ≤ L− 1.
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Radar Fundamentals

Illuminate a scene with a waveform and analyze the return to

Detect the presence of a target

Estimate target range from round trip delay

Estimate target velocity from Doppler effect
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Radar Imaging

Autocorrelation Function:

Rs(τ) =

∞∫
−∞

s(t)s(t− τ)dt

Ideal: Impulse-like
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Radar Imaging

Ambiguity Function:

As(τ, ν) =

∞∫
−∞

s(t)s(t− τ)e−j2πνtdt

Ideal: Thumbtack
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Ambiguity Function

Pulse Train: Sequence of waveforms separated in time

S(t) =
N−1∑
n=0

s(t−nT )

Ambiguity function of pulse train:

AS(τ, ν) =

(
N−1∑
n=0

ejn2πνT

)
︸ ︷︷ ︸As(τ, ν) + terms at mT

Doppler shifts

over PRIs
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Radar Waveforms

Phase Coded Waveforms:

s(t) =
L−1∑
`=0

x(`)rect(
t− `Tc
Tc

)

{x(`)}L−1
`=0 : length-L unimodular sequence (typically 1 and −1)

Autocorrelation Functions:

Frank Code Barker Code Golay Complementary

Codes

A. R. Calderbank Golay, Heisenberg and Weyl



Sensitivity to Doppler

Asx(τ, ν) + ej2πνTAsy(τ, ν)

“Although the autocorrelation
sidelobe level is zero, the
ambiguity function exhibits
relatively high sidelobes for
nonzero Doppler.” [Levanon,
Radar Signals, 2004, p. 264]

Why? Roughly speaking

Rx(k) +Ry(k)ejθ 6= α(θ)δk,0
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Sensitivity to Doppler

Range Sidelobe Problem: A weak target located near a strong
target can be masked by the range sidelobes of the ambiguity
function centered around the strong target.

Range-Doppler image
obtained with conventional
pulse train
x y · · · x y
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Degrees of Freedom–Time

Coordinating Waveforms in Time:

Question: Is it possible to design a Doppler resilient sequence of
Golay pairs (x0, x1), . . . , (xN−2, xN−1) to have

N−1∑
n=0

ejnθRxn(k) ≈ β(θ)δk,0; for all θ ∈ Θ

in a given Doppler interval Θ?
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Doppler Resilient Golay Pairs

Two Golay pairs (x0, x1) and (x2, x3) over 4 PRIs:

Rx0(k)+e
jθRx1(k)+e

j2θRx2(k)+e
j3θRx3(k) ≈ β(θ)δk,0, ∀θ ∈ Θ

How about around zero Doppler? Taylor Expansion

First order approximation:

0Rx0(k) +Rx1(k)︸ ︷︷ ︸+2Rx2(k) + 3Rx3(k)︸ ︷︷ ︸
1Rx1(k) 2× 2Lδk,0 + 1Rx3(k)︸ ︷︷ ︸

3× 2Lδk,0

Condition: (x1, x3) also Golay pair.

Example: x0 x1 x2 x3

x y y x
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Doppler Resilient Pulse Trains

p-Pulse Train: Transmission of a Golay pair x and y is
coordinated according to a binary sequence p = {pn},
n = 0, . . . , 2M − 1 over N = 2M PRIs:

1
2
[Rx(k) +Ry(k)]

2M−1∑
n=0

ejnθ

︸ ︷︷ ︸+
1
2
[Rx(k)−Ry(k)]

2M−1∑
n=0

(−1)pnejnθ

︸ ︷︷ ︸
Sidelobe free Range sidelobes

Key observation: Magnitudes of range sidelobes are proportional
to the magnitude of the spectrum of the sequence (−1)pn :

Sp(θ) =
2M−1∑
n=0

(−1)pnejnθ

Approach: Design p = {pn} to shape the spectrum Sp(θ).

A. R. Calderbank Golay, Heisenberg and Weyl



PTM Pulse Train: Zero-forcing Taylor Moments

Theorem: To zero-force up to M Taylor moments of the spectrum
Sp(θ) around θ = 0, coordinate the transmission of a Golay pair
(x, y) according to the length N = 2M+1 PTM sequence, with 0
locations corresponding to x and 1 locations corresponding to y.

Prouhet-Thue-Morse Sequence: The nth term in the PTM
sequence pn is the sum of the binary digits of n mod 2:

n (0)=0000 (1)=0001 (2)=0010 (3)=0011
pn 0 1 1 0

Example: Length-8 PTM Pulse Train

x y y x y x x y
0 1 1 0 1 0 0 1

A. R. Calderbank Golay, Heisenberg and Weyl



PTM Pulse Train in Action

Alternating Pulse Train PTM Pulse Train

By transmitting a Golay pair according to the PTM sequence we
can clear out the range sidelobes along modest Doppler
frequencies.

A. R. Calderbank Golay, Heisenberg and Weyl



Range Sidelobe Suppression at Higher Doppler Frequencies

Theorem: There exists a unique first-order RM codeword that
minimizes the range sidelobes in the Doppler interval [ πk

2M ,
π(k+1)

2M ].

Theorem: The k-oversampled PTM sequence of length 2Mk
produces an M th order null at θ = 2π`/k for all co-prime ` and k.

Corollary: Oversampled PTM sequence produces an (M − 1)th
order null at θ = 0 and (M − 2)th order nulls at all θ = π`/k.

Example: M = 3, k = 3 −→ {pn} = 000111111000 · · ·
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Degrees of Freedom–Polarization/Space

Polarization: Alamouti space-time block code is used to
coordinate transmission on V and H channels

Multiple Dimensions: Paraunitary filter banks introduced by
Tseng and Liu to study acoustic surface waves
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Polamouti = Polarization + Alamouti

Polamouti Transmission:

R =
(
hV V hV H
hHV hHH

)(
x −ỹ
y x̃

)
+ Noise

Unitary property: Interplay between Alamouti signal processing
and perfect autocorrelation property of Golay pairs(

x −ỹ
y x̃

)(
x̃ ỹ
−y x

)
=
(

2L 0
0 2L

)

Instantaneous Radar Polarimetry eliminates range sidelobes and
improves detection performance, without adding to signal
processing complexity
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Degrees of Freedom–Frequency

Roadblock to OFDM radar: A pair of complementary waveforms
cannot be multiplexed in frequency because of an unknown
range-dependent phase term, thereby preventing coherent
combining; this limits the applicability of any set of orthogonal
waveforms.

A. R. Calderbank Golay, Heisenberg and Weyl



Golay Pairs: Autocorrelation Properties

Rp1 (k) = −Rp2 (k), for k 6= 0

R2
p1

(k) = R2
p2

(k), for k 6= 0

Rp1 (2k) = Rp2 (2k) = 0, for k 6= 0

Rp1 (k) +Rp2 (k) = 2Lδ(k)

A. R. Calderbank Golay, Heisenberg and Weyl



Modified Golay Pairs

Design a pair of sequences such that

R2
p(k) +R2

q(k) = Cδ(k)

At least one of the squared autocorrelations must be negative
at some values of k.

Possible only if the sequence has imaginary components.

Let p1(n) and p2(n) be a Golay pair. Define

q2(n) = p2(n)ej
π
2
n −→ Rq2(k) = Rp2(k)e

j π
2
k

Then

R2
q2(k) = R2

p2(k)e
jπk =


−R2

p1(k) k odd

0 k 6= 0 even

R2
p1(k) k = 0

−→ R2
q2(k) +R2

p1(k) = 2L2δ(k)

A. R. Calderbank Golay, Heisenberg and Weyl



Modified Golay Pairs for Radar

Modified Golay pair p1 and q2 is used to phase code a pulse.

First code is transmitted at carrier frequency.

Second code is transmitted twice, offset equally above and
below the carrier.

Received signal:

y1(t) = ae−jωcds1(t− τ)

y2a(t) = ae−j(ωc+ωb)ds2(t− τ)

y2b(t) = ae−j(ωc−ωb)ds2(t− τ)

Receiver signal processing:

Γ(τ) = R2
s1y1(τ)+Rs2y2a(τ)×Rs2y2b

(τ)

A. R. Calderbank Golay, Heisenberg and Weyl



Optimizable Waveforms
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Evolution of Radar Platforms

SISO Radar:

Transmits a fixed waveform over
multiple pulse repetition intervals
(PRIs) for range-Doppler imaging.

MIMO Radar (Waveform Agile):

Capable of simultaneous
transmission of multiple waveforms
across frequency, polarization, and
space

Chesapeake Bay Radar

Radar Networks:

MIMO radar capabilities plus
multiple views

National weather radar network

A. R. Calderbank Golay, Heisenberg and Weyl



D4: The Symmetry Group of the Square

Generated by matrices x = ( 0 1
1 0 ) and z =

(
1 0
0 −1

)
xz =

(
0 −1
1 0

)
anticlockwise rotation by

π

2
z =

(
1 0
0 −1

)
reflection in the horizontal axis

D4 is the set of eight 2× 2 matrices ε D(a, b) given by

ε D(a, b) = ε ( 0 1
1 0 )a

(
1 0
0 −1

)b
where ε = ±1 and a, b = 0 or 1.

x2 = z2 = I2

zx =
(

1
−1

)
( 1

1 ) =
(

1
−1

)
xz = ( 1

1 )
(

1
−1

)
=
( −1

1

)
]

xz = −zx
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The Heisenberg-Weyl Group W (Zm
2 )

W (Zm2 ) is the m-fold Kronecker product of D4 extended by iI2m .

iλpm−1⊗ . . .⊗ p0 where pj = I2, x, z, or xz for j = 0, 1, . . . ,m− 1

There are 22m+2 elements, each represented by a pair of binary
m-tuples

a b
xz⊗ x⊗ z⊗ xz⊗ I2 ↔ D(11010,10110)

Theorem: D(a, b)D(a′, b′) = (−1)a
′.b+b′.aD(a′, b′)D(a, b)

D(a, b)2 = (−1)a.bI2m

D(01, 11) =


−

+
+

−

 , D(10, 10) =


−
−

+
+
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Fourier Analysis in the Binary World

The operators D(a, 0) are the time shifts of the binary world.

The operators D(0, b) are the frequency shifts of the binary
world.

Walsh functions are the sinusoids of the binary world–
eigenfunctions of the time shift operator.

A. R. Calderbank Golay, Heisenberg and Weyl



Chirps in the Binary World

Second order Reed-Muller codewords are the chirps of the binary
world.

Maximal
Commutative Subgroup

X - XP = d−1
P XdP

dP = diag[ivPv
T
]

Orthonormal Basis H2m - H2mdP

Example: m = 3, P =
(

1 1 0
1 0 1
0 1 0

)

H8 =
1

2
√

2



+ + + + + + + +
+ − + − + − + −
+ + − − + + − −
+ − − + + − − +
+ + + + − − − −
+ − + − − + − +
+ + − − − − + +
+ − − + − + + −


dP =



1
1

1
−1

i
i

−i
i



000
001
010
011
100
101
110
111
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Representation of Operators

Inner Products: (R,S) = Tr(R†S)

Hilbert-Schmidt or Frobenius Norm: ‖S‖ = Tr(S†S)
1
2

Orthonormal Basis: 1√
N
D(a, b), a, b ∈ Zm2 where N = 2m

Tr(D(a, b)†D(a′, b′)) = Nδa,a′δb,b′

Weyl Transform: Given an operator S write

S =
1
N

∑
a,b∈Zm

2

Tr(D(a, b)†S)D(a, b)

=
∑

a,b∈Zm
2

S(a, b)
[

1√
N
D(a, b)

]

The Weyl Tranform is the isometry

S ←→ (S(a, b)) =
(

1√
N
Tr(D(a, b)†S)

)
A. R. Calderbank Golay, Heisenberg and Weyl



From Sequences to Rank One Projection Operators

Walsh Sequence: θ† = 1
2 (+−+−) = 1

21D(00, 01)

Rank One Projection Operator: θθ† = 1
4


+ − + −
− + − +
+ − + −
− + − +


θθ† =

1

4

I4 −


1
1

1
1

 +


1

1
1

1

−


1
1

1
1




=
1

4

∑
a∈Z2

2

(−1)a.(01)D(a, 0)

Dirac Sequence: ϕ† = θ†H4 = (0100)

Rank One Projection Operator: ϕϕ† =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


ϕϕ† =

1
4

∑
b∈Z2

2

(−1)(01).bD(0, b)
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Weyl Transforms of Operators

The more symmetries of a sequence θ the smaller is the support of
Weyl transform of θθ†.

Isotropy Subgroup: Hθ = {g ∈ W (Zm2 ) |gθ = cgθ}
Theorem: Hθ is commutative and Sθ(a, b) = 0 unless D(a, b)
commutes with every D(a′, b′) in Hθ.

S∆,0: Union of supports of cyclic shift operators ∆(k, 0)

Theorem: (a, b) ∈ S∆,0 ⇐⇒ a 6= 0, bm−1 = 0 and a covers b. The
support takes the form of a pair of Sierpinski triangles.
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Connecting Periodic and Aperiodic Correlation

θ =
∑

v,vm−1=0 θvev and ϕ =
∑

v,vm−1=0 ϕvev

We may view θ, ϕ as sequences θ, ϕ of length 2m−1 or as
sequences of length 2m obtained by padding with zeros.

Proposition: θ, ϕ are Z-Golay complementary if θ, ϕ are ZN -Golay
complementary.

ZN -Golay Complementary Pairs:

θ†∆(k, 0)θ + ϕ†∆(k, 0)ϕ = 0 for k 6= 0

Tr ((Pθ + Pϕ)∆(k, 0)) = 0 for k 6= 0

Note: The orthonormal basis D(a, b) from W(Zm2 ) provides a
sparse representation of Pϕ and Pψ for many widely used
sequences ϕ, ψ.
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Weyl Transform of the Golay Property

P =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


ϕ = D(0 . . . 0, 10 . . . 0)θ

P minimizes overlap (magenta) between the support of Pθ, Pϕ
(the subgroup XP shown in red) and the support of S∆,0 (black
and blue).

D(0 . . . 0, 10 . . . 0) removes overlap between the support of
Pθ + Pϕ and the support of S∆,0:

(Sϕ + Sθ)(v, vP ) = ((−1) + 1)Sθ(v, vP ) = 0

A. R. Calderbank Golay, Heisenberg and Weyl



Information Theory and Sensing

P. M. Woodward (1953): introduced the narrowband
radar ambiguity function to describe the effect of the
transmit waveform at matched filter output.

“The reader may feel some disappointment, not
unshared by the writer, that the basic question of
what to transmit remains substantially unanswered.”

Specific Questions:

How to design measurements?

How to utilize various modes of diversity with minimal
complexity?

What are the scaling laws? rate-reliability tradeoff?

How to compress and fuse information?

How to manage sensor operations and allocate resources?
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A Final Thought
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