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D4: The Symmetry Group of the Square

Generated by matrices x = ( 0 1
1 0 ) and z =

(
1 0
0 −1

)
xz =

(
0 −1
1 0

)
anticlockwise rotation by

π

2
z =

(
1 0
0 −1

)
reflection in the horizontal axis

D4 is the set of eight 2× 2 matrices ε D(a, b) given by

ε D(a, b) = ε ( 0 1
1 0 )

a ( 1 0
0 −1

)b
where ε = ±1 and a, b = 0 or 1.

x2 = z2 = I2

zx =
(

1
−1

)
( 1

1 ) =
(

1
−1

)
xz = ( 1

1 )
(

1
−1

)
=
( −1

1

)
]

xz = −zx



The Hadamard Transform

H2 = 1√
2

(
+ +
+ −

)
reflects the lattice of subgroups across the central

axis of symmetry

D4

〈±x〉 〈xz〉 〈±z〉

〈x〉 〈−x〉 〈−I2〉 〈−z〉 〈z〉

〈I2〉

H2
2 = I2 and H−1

2 = H2

H2xH2 = z

H2zH2 = x

H2[εx
azb]H2 = ε(H2x

aH2)(H2z
bH2) = εzaxb = (−1)abxbza

H2[εD(a, b)]H2 = (−1)abεD(b, a)



Kronecker Products of Matrices

Given a p × p matrix X = [xij ] and a q × q matrix Y = [Yij ], the
Kronecker products X ⊗ Y is defined by

X ⊗ Y =

x11Y . . . x1pY
...

...
xp1Y . . . xppY


Proposition: (X ⊗ Y )(X ′ ⊗ Y ′) = (XX ′)⊗ (YY ′) and in general
(X1 ⊗ . . .⊗ Xm)(Y1 ⊗ . . .⊗ Ym) = X1Y1 ⊗ . . .⊗ XmYm(

x11Y x12Y
x21Y x22Y

)(
x ′11Y

′ x ′12Y
′

x ′21Y
′ x ′22Y

′

)
=

(
•
↑

)
x11x

′
11YY ′ + x12x

′
21YY ′ = (XX ′)11YY ′

Walsh-Hadamard Matrix: H2m = H2 ⊗ . . .⊗ H2 (m copies)



The Heisenberg-Weyl Group W (Zm
2 )

W (Zm
2 ) is the m-fold Kronecker product of D4 extended by iI2m .

iλpm−1 ⊗ . . .⊗ p0 where pj = I2, x , z , or xz for j = 0, 1, . . . ,m− 1

There are 22m+2 elements, each represented by a pair of binary
m-tuples

a b
xz ⊗ x ⊗ z ⊗ xz ⊗ I2 ↔ D(11010,10110)

Example: The Quaternion group Q8 = {±1,±i ,±j ,±k} as a
subgroup of W

(
Z2

2

)
i : −

�+
−
�
⊗
� −

+

�
=

0
BB@

+
−

−
+

1
CCA, j :

� −
+

�
⊗
�

+
+

�
=

0
BB@

−
−

+
+

1
CCA

and k :
�

+
+

�
⊗
� −

+

�
=

0
BB@

−
+

−
+

1
CCA.



Walsh Functions

HT
2m = HT

2 ⊗ . . .⊗ HT
2 = H2m

Walsh functions of length 2m are the rows (columns) of H2m and
their negatives.

Part of the Grand Canyon on Mars.
This photograph was transmitted by the
Mariner 9 spacecraft on January 19th,
1972 – gray levels are mapped to Walsh
functions of length 32.

The closest Walsh function c to the received vector r is the one
that maximizes the inner product (r , c):

‖r − c‖2 = ‖r‖2 + ‖c‖2 − 2(r , c).



Fast Hadamard Transform

Exhaustive search requires about 2m × 2m = 22m additions and
subtractions to find the closest Walsh function to the received
vector r .

Fast Hadamard Transform only requires about m2m operations

Example (m = 3):

H8 = (I2 ⊗ I2 ⊗ H2) (I2 ⊗ H2 ⊗ I2) (H2 ⊗ I2 ⊗ I2)
H3,0 H3,1 H3,2

H8 =

2
6666666664

+ +
+ −

+ +
+ −

+ +
+ −

+ +
+ −

3
7777777775

2
6666666664

+ +
+ +

+ −
+ −

+ +
+ +

+ −
+ −

3
7777777775

2
6666666664

+ +
+ +

+ +
+ +

+ −
+ −

+ −
+ −

3
7777777775

2m operations 2m operations 2m operations



Fast Hadamard Transform: Circuit Level Description

The component R produces outputs (x + y , x − y) from inputs
(x , y). The component | · | produces |x | from input x and stores
the sign.

Received
Vector

r

The eight outputs of the third stage are the eight inner products of
the vector r with the rows of H8.



Multiplication in the Heisenberg-Weyl Group W (Zm
2 )

Theorem: W (Zm
2 ) is a group of order 22m+2

1. [εD(a, b)][ε′D(a′, b′)] = εε′(−1)a
′.bD(a⊕ a′, b ⊕ b′)

2. [εD(a, b)][ε′D(a′, b′)] = (−1)a
′.b+b′.a[ε′D(a′, b′)][εD(a, b)]

3. Elements D(a, b) with a.b = 1 have order 4 and elements
D(a, b) with a.b = 0 have order 2 (other than the identity
D(0, 0)).

Proof: Look at the i th component

xai zbi xa′i zb′i = (−1)bia
′
i xai+a′i zbi+b′i

xa′i zb′i xai zbi = (−1)aib
′
i xai+a′i zbi+b′i

and so

xa′i zb′i xai zbi = (−1)bia
′
i +aib

′
i xai zbi xa′i zb′i



The Hadamard Transform and the Heisenberg-Weyl Group

H2m [εD(a, b)]H2m = εH2mD(a, 0)H2mH2mD(0, b)H2m

= ε

(
m−1⊗
i=0

zai

)(
m−1⊗
i=0

xbi

)

= ε
m−1⊗
i=0

zai xbi

= ε
m−1⊗
i=0

(−1)aibi xbi zai

= ε(−1)a.bD(b, a)

Example: H2mD(b, 0)H2m = D(0, b)

D(b, 0)H2m = H2mD(0, b)
↑ ↑

interchanges 1st

and bth rows

multiplies 1st row by the
diagonal matrix D(0, b)



Properties of Walsh Functions

Label rows and columns of H4

b

00
01
10
11

1

2


+ + + +
+ − + −
+ + − −
+ − − +

 ←− the v th entry of the (01)th

Walsh function is 1
2(−1)(01).v

Theorem: (1) The Walsh functions form an orthonormal basis of
eigenvectors for each matrix in the commutative subgroup
X = {εD(a, 0)}

(2) The v th entry of the Walsh function 2−m/21D(0, b) is
2−m/2(−1)b.v

Proof: The v th entry of 1D(0, b) is the first entry of
[1D(0, b)]D(v , 0)

[1D(0, b)]D(v , 0) = (−1)b.v1D(v , 0)D(0, b) = (−1)b.v1D(0, b)



First Order Reed Muller Codes and Walsh Functions

Walsh functions are obtained by exponentiating codewords in the
first order Reed Muller code.

Example (m = 3) RM(1, 3)

(γ, b)
0
BB@

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

1
CCA

v

= (. . . . .b.v + γ. . . . .)
|

(−1)γ(−1)b.v = ε(−1)b.v

Symmetry: Focus on orthonormal bases of eigenvectors for
maximal commutative subgroups.

Maximal
Commutative Subgroup

X = {εD(a, 0)} �H2m - Z = {εD(0, b)}

Orthonormal Basis
Walsh

Sequences
� H2m - Dirac

Sequences



Local Decoding of RM(1, m)

(γ, b)
0
BB@

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

1
CCA

=
�
|{z} | |{z} | |{z} | |{z}

�
each pair of entries

sums to b0

ej : binary vector with a 1 in position i and zeros elsewhere

Local Decoding Algorithm: Input is unknown Walsh Function
1D(0, b)

Round i , i = 0, 1, . . . ,m − 1: select an entry v at random and
compare with the entry v ⊕ ei : the difference is (−1)bi

Round m: measure any entry to determine the sign γ

We are exploiting how information bits map to codewords



Sequence Design for Wireless Communication:
CDMA Downlink

Binary data ai (n) = ±1 is transmitted to the i th subscriber in time
slot n using a Walsh sequence wi (t), t = 0, 1, . . . , 63 (RM(1, 6))

ai (n)wi (t) t = 0, 1, . . . , 63

Signals from different subscribers combine to give

r(t) = ai (n)wi (t) +
∑
j 6=i

aj(n)wj(t) t = 0, 1, . . . , 63

The i th receiver computes

zi (n) =
∑

t

r(t)wi (t)

and in the absence of noise

zi (n) = ai (n) +
∑
j 6=i

aj(n) ((wi (t)) , (wj(t)))



Quantum Mechanics

Classical Bits: only take values 0 and 1

Quantum Bits or Qubits: employ superposition of base states e0 and e1

A qubit is a 2-dim. Hilbert space and a quantum state is a vector

αe0 + βe1, where |α|2 + |β|2 = 1

m qubits are represented by the tensor product of the individual 2-dim.
Hilbert spaces. ∑

v∈Zm
2

αvev , where
∑
v∈Zm

2

|αv |2 = 1

Measurement: When a measurement is made with respect to the basis
ev , v ∈ Zm

2 , the probability that the system is found in state ev is |αv |2

Quantum Computing: Effectiveness derives from quantum

superposition which allows exponentially many instances to be processed

at the same time.



Decoherence

No quantum system can be perfectly isolated from the rest of the
world and this interaction with the environment causes
decoherence.

Error Process: represented mathematically in terms of Pauli
matrices

I x = ( 0 1
1 0 ) bit or flip error in an individual qubit

I z =
(

1 0
0 −1

)
phase error

I y = ixz =
(

0 −i
i 0

)
flip-phase error

Note: This is the error model for the quantum completely
depolarizing channel – a quantum analog for the classical binary
symmetric channel.

I2, x , z and y form an orthonormal basis for the space of linear
operators on C2 wrt the trace inner product – every possible error
can be expressed as a linear combination of I2, x , z and y .



The Heisenberg-Weyl Group W (Zm
2 ) and

Quantum Error Correction

W (Zm
2 ) is known to mathematicians as an extraspecial 2-group and to

physicists as a Pauli group.

iλpm−1 ⊗ . . .⊗ p0 where λ ∈ Z4 and pj = I2, x , z or xz

iλD(a, b) where a, b ∈ Zm
2

Commutativity: D(a, b) commutes with D(a′, b′) if and only if
a′.b + b′.a = 0

Assumption: The group W (Zm
2 ) provides a discrete error model for a

quantum analog of the classical binary symmetric channel. Any code that
corrects these types of quantum errors will be able to correct errors in
arbitrary models assuming that the errors are not correlated and the error
rate is small.

m-dim. commutative subgroup: common eigenspaces are 1-dim and
form an orthonormal basis.

k-dim. commutative subgroup: common eigenspaces are 2m−k dim.



Stabilizer Codes for Quantum Error Correction

Example: [[5, 1, 3]] Quantum Error Correcting Code
1 1 0 0 0 0 0 1 0 1
0 1 1 0 0 1 0 0 1 0
0 0 1 1 0 0 1 0 0 1
0 0 0 1 1 1 0 1 0 0


a b

– the rows of this matrix and
iI32 generate a commutative
subgroup G of size 64

– 16 common eigenspaces
each 2-dim.

W(Z5
2)

16

y
G⊥

4

y
G

Stabilizer Code: the 2-dim eigenspace V fixed by G –
view this as a single protected qubit

G is normal inW(Z5
2) so errors inW(Z5

2) permute the 16
common eigenspaces of G

There are 15 = 5× 3 single qubit errors and each moves
V to a different eigenspace

Syndrome Detection: Measure the eigenspace (syndrome) without

getting any information about the quantum state. Correct single qubit

errors by applying the appropriate “coset leader.”



Representation of Operators

Inner Products: (R,S) = Tr(R†S)

Hilbert-Schmidt or Frobenius Norm: ‖S‖ = Tr(S†S)
1
2

Orthonormal Basis: 1√
N

D(a, b), a, b ∈ Zm
2 where N = 2m

Tr(D(a, b)†D(a′, b′)) = Nδa,a′δb,b′

Weyl Transform: Given an operator S write

S =
1

N

∑
a,b∈Zm

2

Tr(D(a, b)†S)D(a, b)

=
∑

a,b∈Zm
2

S(a, b)

[
1√
N

D(a, b)

]

The Weyl Tranform is the isometry

S ←→ (S(a, b)) =

(
1√
N

Tr(D(a, b)†S)

)



From Sequences to Rank One Projection Operators
Walsh sequence: θ† = 1

2 (+−+−) = 1
21D(00, 01)

Rank One Projection Operator: θθ† = 1
4


+ − + −
− + − +
+ − + −
− + − +



θθ† =
1

4

2
664I4 −

2
664

1
1

1
1

3
775+

2
664

1
1

1
1

3
775−

2
664

1
1

1
1

3
775

3
775

=
1

4

X

a∈Z2
2

(−1)a.(01)D(a, 0)

Dirac sequence: ϕ† = θ†H4 = (0100)

Rank One Projection Operator: ϕϕ† =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


ϕϕ† =

1

4

∑
b∈Z2

2

(−1)(01).bD(0, b)



Ambiguity Functions and Moyal’s Identity

Let θ be a sequence and Pθ = θθ† the corresponding projection operator

Ambiguity Function: Aθ(a, b) = Tr(D(a, b)Pθ) = (θ, D(a, b)θ)
More correct to think of Aθ(a, b) as the ambiguity function of Pθ rather
than θ.

Pθ = θθ† =
1

N

∑
a,b∈Zm

2

Aθ(a, b)D(a, b)

Moyal’s Identity: follows from a simple property of projection operators:

Tr(PθPϕ) = Tr(θθ†ϕϕ†) = |(θ, ϕ)|2

The Weyl Transform then gives

|(θ, ϕ)|2 =
1

N

∑
a,b∈Zm

2

Aθ(a, b)Aϕ(a, b)

and setting θ = ϕ gives

‖θ‖4 =
1

N

∑
a,b∈Zm

2

‖Aθ(a, b)|2



Action of the Hadamard Transform on Ambiguity
Functions

Example: θ† = 1
2(+−+−)

Ambiguity Function Weyl Transform

Aθ(a, b) =

00 1001
a

11




11
10
01

b

+ − + − 00




Sθ(a, b) = 1

2




+ − + −





Example: ϕ† = θ†H4 = (0100)

Aϕ(a, b) = −
+

+
−





 Sϕ(a, b) = 1
2 −

+

+
−







Action of the Hadamard Transform H = H2m

Tr(D(a, b)Hθθ†H) = Tr(HD(a, b)Hθθ†)

= (−1)a.bTr(D(b, a)θθ†)



More Symmetry gives an Ambiguity Function
with Smaller Support

Isotropy Subgroup: Hθ = {g ∈ W (Zm
2 ) |gθ = cgθ}

Hθ is commutative

ca′,b′ca,bθ = D(a′, b′)D(a, b)θ

= (−1)a
′.b+a.b′

D(a, b)D(a′, b′)θ

= (−1)a
′.b+a.b′

ca′,b′ca,bθ

Aθ(a, b) = 0 unless D(a, b) commutes with every D(a′, b′) in Hθ

Aθ(a, b) = (D(a′, b′)θ, D(a, b)D(a′, b′)θ) = (θ, D(a′, b′)†D(a, b)D(a′, b′)θ)

Hence Aθ(a, b) = (−1)a.b′+a′.bAθ(a, b)

Note: Aθ is unimodular on Hθ

Aθ(a, b)2 = θ†D(a, b)θθ†D(a, b)θ = c2
a,b = (−1)a.b



Generating Maximal Commutative Subgroups of W (Zm
2 )

Consider subgroups containing iIN , and call subgroups W1,W2 disjoint if
W1 ∩W2 = 〈iIN〉

Theorem:

1. Any maximal commutative subgroup disjoint from Z takes the form

XP = {iλD(a, aP)|a ∈ Zm
2 and λ ∈ Z4}

for some binary symmetric matrix P.

2. XP and XQ are disjoint if and only if P − Q is nonsingular

Symplectic Group Sp(2m, 2): all unitary matrices that fix W (Zm
2 ) by

conjugation.

XX
d

S (2m,2)

)

P

p

2
m

P

W(

I includes the Hadamard transform H2m

I acts transitively on disjoint pairs of maximal
commutative subgroups

I tool for designing ambiguity functions



Mutually Unbiased Bases

CDMA Wireless Communication: Capacity translates to increasing the
number of spreading sequences. Write a new sequence v with ‖v‖2 = 1
in terms of the Walsh basis wi

v =
∑N−1

i=0
εiwi

Since
∑N−1

i=0 |εi |2 = 1, the average interference is 1
N .

Theorem: Let A,B be disjoint maxl. comm. subgroups and let FA,FB

be the corresponding orthonormal bases of eigenvectors. If θ ∈ FA and
ϕ ∈ FB then

|(θ, ϕ)| = 1√
N

Proof (1): Moyal’s Identity gives

|(θ, ϕ)|2 =
1

N

∑
a,b∈Zm

2

Aθ(a, b)Aϕ(a, b) =
1

N

Proof (2): By transitivity of Sp(2m, 2) we may assume X = A and

Z = B



Generating Orthonormal Bases of CN

Remark: One basis for each coset of RM(1,m + 1) in RM(2,m + 1)

Maximal
Commutative Subgroup

X - XP = d−1
P XdP

dP = diag[ivPvT

]

Orthonormal Basis H2m - H2mdP

Example: m = 3,P =
(

1 1 0
1 0 1
0 1 0

)

H8 =
1

2
√

2

2
6666666664

+ + + + + + + +
+ − + − + − + −
+ + − − + + − −
+ − − + + − − +
+ + + + − − − −
+ − + − − + − +
+ + − − − − + +
+ − − + − + + −

3
7777777775

dP =

2
6666666664

1
1

1
−1

i
i

−i
i

3
7777777775

000
001
010
011
100
101
110
111



The Geometry of Spreading Sequences

Question: How many vectors can be added to the Walsh basis
subject to the condition |(v , v ′)|2 = 0 or 1

N for all vectors v , v ′.

Answer: The extremal ensemble is the union of N + 1 mutually
unbiased bases in CN

Example (m = 3): Linear space of 8 binary symmetric matrices
with the property that all pairwise differences are nonsingular.(

0 0 0
0 0 0
0 0 0

) (
0 1 0
1 0 0
0 0 1

) (
1 0 0
0 0 1
0 1 1

) (
1 0 1
0 1 0
1 0 0

)
(

1 1 0
1 0 1
0 1 0

) (
1 1 1
1 1 0
1 0 1

) (
0 0 1
0 1 1
1 1 1

) (
0 1 1
1 1 1
1 1 0

)
Remark: The extremal ensemble is associated with a Z4-linear
Kerdock code



The Supports of the Associated Ambiguity Functions

000   001   010   011   100   101   110   111

111

110

101

100

011

010

001

000

RM(1,4)

000   001   010   011   100   101   110   111

111

110

101

100

011

010

001

000

P001

000   001   010   011   100   101   110   111

111

110

101

100

011

010

001

000

P010

000   001   010   011   100   101   110   111

111

110

101

100

011

010

001

000

P011

000   001   010   011   100   101   110   111

111

110

101

100

011

010

001

000

P100

000   001   010   011   100   101   110   111

111

110

101

100

011

010

001

000

P101

000   001   010   011   100   101   110   111

111

110

101

100

011

010

001

000

Z

000   001   010   011   100   101   110   111

111

110

101

100

011

010

001

000

P110

000   001   010   011   100   101   110   111

111

110

101

100

011

010

001

000

P111


