Symmetry and Sequence Design II: Design of Phase Coded Radar Waveforms

Robert Calderbank Princeton University Stephen Howard Defence Science & Technology

Organization Australia

Bill Moran Melbourne University

(日) (同) (日) (日)

Supported by Defense Advanced Research Projects Agency and Air Force Office of Scientific Research

Heisenberg-Weyl Groups and Radar

Perfect Ambiguity Functions and Sets of Equiangular Lines

Moyal's Identity: $\|\theta\|^4 = \frac{1}{N} \sum_{a,b \in \mathbb{Z}_2^m} |A_{\theta}(a,b)|^2$ with $A_{\theta}(0,0) = 1$ Impossible to construct an ambiguity function $A_{\theta}(a,b)$ that is nonzero only at the origin (0,0).

Perfect Ambiguity Function: $|A_{\theta}(a, b)|$ is constant over $(a, b) \neq (0, 0)$

$$|A_{ heta}(a,b)| = egin{cases} 1, & ext{if } (a,b) = (0,0) \ rac{1}{\sqrt{N+1}}, & ext{if } (a,b)
eq (0,0) \end{cases}$$

Theorem: Perfect ambiguity functions are equivalent to orbits of equiangular lines

Proof:
$$|(D(a, b)\theta, D(a', b')\theta)| = |(\theta, D(a \oplus a', b \oplus b')\theta)|$$

=
$$\begin{cases} 1, & \text{if } (a, b) = (a', b') \\ \frac{1}{\sqrt{N+1}}, & \text{if } (a, b) \neq (a', b') \end{cases}$$

Extremal Sets of Euclidean Lines

Lemmens and Seidel (1973): Let L be the number of equiangular lines that can be constructed in a d-dimensional Euclidean space. Then

$$L \leq rac{1}{2} d(d+1) ext{ in } \mathbb{R}^d ext{ and } L \leq d^2 ext{ in } \mathbb{C}^d$$

Proof for \mathbb{C}^d : Consider a set $\{s_j\}$ of unit vectors with $|(s_j, s_k)| = \alpha$ Gram matrix $G = [(s_j, s_k)]$

Form the Hadamard or elementwise product of G and G^{T}

$$G \circ G^{T} = \alpha^{2} J + (1 - \alpha^{2}) I_{L}$$

This is nonsingular, since it is the sum of a positive definite matrix and a positive semi-definite matrix.

Matrix rank is Hadamard submultiplicative (see Horn and Johnson)

$$L = \operatorname{rank}(G \circ G^{T}) \leq \operatorname{rank}(G)\operatorname{rank}(G^{T}) = d^{2}$$

64 Equiangular Lines in \mathbb{C}^8

Set
$$\xi = \sqrt{\frac{i}{8}} = \frac{1}{4} + \frac{1}{4}i$$
 so that $\xi + \overline{\xi} = \frac{1}{2}$ and $\overline{\xi} - \xi = -\frac{i}{2}$
$$\|\xi \mathbf{1} - \mathbf{e}_0\|^2 = |-\frac{3}{4} + \frac{i}{4}|^2 + 7\frac{1}{8} = \frac{12}{8} = \frac{3}{2}$$

Proposition: The orbit of the line $7 = \sqrt{\frac{2}{3}}(\xi \mathbf{1} - e_0)$ under $\mathcal{W}(\mathbb{Z}_2^3)$ is a set of 64 equiangular lines in \mathbb{C}^8 .

Proof:

$$7^{\dagger}D(a,b)7 = \frac{2}{3} \left(\frac{1}{8} \mathbf{1}^{\dagger}D(a,b)\mathbf{1} + e_{0}^{\dagger}D(a,b)e_{0} - \bar{\xi}\mathbf{1}^{\dagger}D(a,b)e_{0} - \xi e_{0}^{\dagger}D(a,b)\mathbf{1} \right)$$

$$= \frac{2}{3} \left(\delta_{b,0} + \delta_{a,0} - \left(\bar{\xi} + (-1)^{b,a} \xi \right) \right)$$

$$= \frac{1}{3} \begin{cases} 2\delta_{b,0} + 2\delta_{a,0} - 1, & \text{if } b.a = 0 \\ i, & \text{if } b.a = 1 \end{cases}$$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶

Symplectic Symmetries

Hoggar (1998) exhibits 64 lines from a quaternionic polytope that are the orbit of $\frac{1}{\sqrt{6}}(1+i,0,-1,1,-i,-1,0,0)$ under $\mathcal{W}(\mathbb{Z}_2^3)$

Define $S_A : e_v \rightarrow e_{vA}$ where A is nonsingular

Then S_A fixes $7 = \sqrt{\frac{2}{3}}(\xi \mathbf{1} - e_0)$ and fixes $\mathcal{W}(\mathbb{Z}_2^3)$ by conjugation: $S_A^{-1}D(a,0)S_A = D(aA,0)$ $S_A^{-1}D(0,b)S_A = D(0,bA^{-T})$

Heisenberg-Weyl Groups and Radar

Monostatic and Multistatic Radar

Monostatic Radar: transmitter and receiver are colocated

- single view of the scene
- easy for transmitter and receiver to share a common stable clock (local oscillator) which is required for both range and doppler measurements

Multistatic Radar: widely dispersed antenna elements

- provides multiple views of the scene and a (wide angle) tomographic approach to detection
- complicated by physical, mathematical and engineering challenges of the Time of Arrival coherent combining, and by the computation required to integrate multiple views

・ロット (雪) () () () ()

Fully Polarimetric Radar System: Scattering Model

Radar is able to transmit and receive in two orthogonal polarizations simultaneously.

$$\begin{pmatrix} h_{VV} & h_{VH} \\ h_{HV} & h_{HH} \end{pmatrix} = C_{R_X} \begin{pmatrix} \sigma_{VV} & \sigma_{VH} \\ \sigma_{HV} & \sigma_{HH} \end{pmatrix} C_{T_X}$$

 $\sigma_{\rm VH}$: scattering coefficient into vertical polarization channel from horizontally polarized incident field

 $C_{R_X}C_{T_X}$: polarization coupling of T_X and R_X antennas

Physical target represented as a set of complex weighted point scatterers

courtesy Raytheon Missile systems

Intuition about the Scattering Matrix

Two Idealized Models:

- entries are zero mean Gaussian iid
- $\begin{pmatrix} h_{VV} & h_{VH} \\ h_{HV} & h_{HH} \end{pmatrix}$ • entries h_{HV} , h_{VH} are substantially smaller than h_{HH}, h_{VV}

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$corr_k(x) + corr_k(y) = 2N\delta_{k,0}$$

3

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$corr_k(x) + corr_k(y) = 2N\delta_{k,0}$$

for $k = -(N - 1), \cdots, (N - 1).$

3

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$corr_k(x) + corr_k(y) = 2N\delta_{k,0}$$

3

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$corr_k(x) + corr_k(y) = 2N\delta_{k,0}$$

3

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$corr_k(x) + corr_k(y) = 2N\delta_{k,0}$$

3

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$corr_k(x) + corr_k(y) = 2N\delta_{k,0}$$

3

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$corr_k(x) + corr_k(y) = 2N\delta_{k,0}$$

3

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$corr_k(x) + corr_k(y) = 2N\delta_{k,0}$$

3

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$corr_k(x) + corr_k(y) = 2N\delta_{k,0}$$

3

$$corr_k(x) + corr_k(y) = 2N\delta_{k,0}$$

$$corr_k(x) + corr_k(y) = 2N\delta_{k,0}$$

$$corr_k(x) + corr_k(y) = 2N\delta_{k,0}$$

$$corr_k(x) + corr_k(y) = 2N\delta_{k,0}$$

$$corr_k(x) + corr_k(y) = 2N\delta_{k,0}$$

$$corr_k(x) + corr_k(y) = 2N\delta_{k,0}$$

Polarization Diversity, Alamouti Signaling and Golay Pairs

Alamouti space-time block code coordinates transmission on V and H channels – columns represent different slots in time or frequency.

$$R = (r_1, r_2) = \begin{pmatrix} h_{VV} & h_{VH} \\ h_{HV} & h_{HH} \end{pmatrix} \begin{pmatrix} w_V & -\tilde{w}_H \\ w_H & \tilde{w}_V \end{pmatrix} + Z$$

Conjugate Time Reversal:

$$w_V = w_V(D) = D^7 + D^6 + D^5 - D^4 + D^3 + D^2 - D + 1$$

$$\tilde{w}_V = \tilde{w}_Y(D) = 1 + D + D^2 - D^3 + D^4 + D^5 - D^6 + D^7 \qquad (w_V(D^{-1})D^7)$$

Golay Property: $w_V \tilde{w}_V + w_H \tilde{w}_H = 2dD^d$

Matched Filtering:

$$R\begin{pmatrix} \tilde{w}_V & \tilde{w}_H \\ -w_H & w_V \end{pmatrix} \text{ provides an estimate of } \begin{pmatrix} h_{VV} & h_{VH} \\ h_{HV} & h_{HH} \end{pmatrix}$$

(日) (同) (日) (日)

Heisenberg-Weyl Groups and Radar

The Heisenberg-Weyl Group $\mathcal{W}(\mathbb{Z}_N)$

Radar Scene: Collection of point scatterers each of which delays the waveform by some time τ and Doppler shifts by some ν

Hilbert Space \mathbb{C}^{N} : Dirac basis $e_{v}, v \in \mathbb{Z}_{2}^{m}$ labeled by $N = 2^{m}$ discrete time delays or ranges

Heisenberg-Weyl Group $\mathcal{W}(\mathbb{Z}_N)$: $\Delta(k,j) = \sum_{\ell} w^{j\ell} e_{\ell+k} e_{\ell}^{\dagger}$ where $w = e^{2\pi i/N}$ and addition takes place modulo N

 \mathbb{Z}_{N} -Golay Complementary Pairs $arphi, \psi$:

$$egin{aligned} & arphi^{\dagger}\Delta(k,0)arphi+\psi^{\dagger}\Delta(k,0)\psi=0 & ext{ for } k
eq 0 \ & Tr((P_{arphi}+P_{\psi})\Delta(k,0))=0 & ext{ for } k
eq 0 \end{aligned}$$

Note: The orthonormal basis D(a, b) from $\mathcal{W}(\mathbb{Z}_2^m)$ provides a sparse representation of P_{φ}, P_{ψ} for many widely used sequences φ, ψ

Detection in Radar: Playing Twenty Questions with an Unknown Operator

(日) (同) (日) (日)

Heisenberg-Weyl Groups and Radar

3

Representation of the Operators $\Delta(k,j)$

 $S_{\Delta,j}=$ support of the subspace spanned by $\Delta(k,j), k
eq 0$

Lemma: Let $\omega = e^{2\pi i/N}$ and let $c(x) = \sum_i c_i x^i$ be a polynomial with integer coefficients. Then

$$c(\omega)=0$$
 if and only if $c_i=c_{i+N/2}$

Proof: $p(x) = x^{N/2} + 1$ is the minimal polynomial of ω To see that p(x) is irreducible, change variables $x \to y + 1$ and apply the Eisenstein irreducibility criterion for the prime 2.

The Subspace $S_{\Delta,i}$ for j odd

ŀ

$$(a,b) \in S_{k,j} j \text{ odd } \langle = \rangle Tr(D(a,b)^{\dagger} \Delta(k,j)) \neq 0$$

(a, b) $\not\in S_{\Delta,i}$ when a = 0: D(a, b) is diagonal and $\Delta(k, j)$ has zero diagonal

Define $\ell(i)$ as the column in $\Delta(k,j)$ containing ω^i and note that ℓ is a permutation since j is odd.

$$Tr(D(a, b)^{\dagger}\Delta(k, j)) = \sum_{i=0}^{N-1} c_{i}\omega^{i} = \sum_{\ell} (D(a, b)e_{\ell}, \Delta(k, j)e_{\ell})$$
$$c_{i} = e_{\ell(i)+k}^{\dagger}D(a, b)e_{\ell(i)}$$
$$\mathbf{b}_{\mathbf{m}-1} = \mathbf{0}: \ D(a, b) = \left(\frac{A}{|A|}\right) \text{ or } \left(\frac{|A|}{|A|}\right)$$
$$e_{\ell(i)+k+N/2}^{\dagger}D(a, b)e_{\ell(i)+N/2} = e_{\ell(i)+k}^{\dagger}D(a, b)e_{\ell(i)}$$
$$\text{Hence } c_{i} = c_{i+N/2} \text{ and } Tr(D(a, b)^{\dagger}\Delta(k, j)) = 0$$

3

A D > A P > A B > A B >

The Subspace $S_{\Delta,j}$ for j odd (contd.)

$$\mathbf{b_{m-1}} = \mathbf{1}: \text{ Now } D(a, b) = \left(\frac{A}{|-A|}\right) \text{ or } \left(\frac{|A|}{|-A|}\right)$$
$$c_i = e_{\ell(i)+k}^{\dagger} D(a, b) e_{\ell(i)} = -c_{i+N/2}$$

As k runs through \mathbb{Z}_N so does $\ell(i) + k$

Hence $c_i \neq 0$ for some $\Delta(k, j)$ and $(a, b) \in S_{\Delta, j}$

Theorem: If $j = 2 \pmod{4}$ then $(a, b) \in S_{\Delta,j} \langle = \rangle a \neq 0, b_{m-1} = 0$ and either $b_{m-2} = 1$ or $a_{m-2} = 1$

(日) (同) (日) (日)

The Subspace $S_{\Delta,j}$ for $j \equiv 2 \pmod{4}$

Define $\ell(i) = \{ d \in \mathbb{Z}_N | \omega^i \text{ appears in column } d \text{ of } \Delta(k,j) \}$ The sets $\ell(i)$ consist of pairs d, d + N/2 and these pairs are disjoint

$$Tr(D(a, b)^{\dagger} \Delta(k, j)) = \sum_{i=0}^{N-1} c_i \omega^i \quad (\text{polynomial in } \omega^2)$$
$$c_i = \sum_{d \in \ell(i)} e_{d+k}^{\dagger} D(a, b) e_d$$
$$c_{i+N/2} = \sum_{d \in \ell(i)} e_{d+N/4+k}^{\dagger} D(a, b) e_{d+N/4}$$

0, **b** $\not\in$ **S**_{Δ ,j}: D(0, b) is diagonal and $\Delta(k, j)$ has zero diagonal (**a**, **b**) \notin **S**_{Δ ,j} if **b**_{m-1} = 1:

$$D(a,b) = \left(\frac{|A|}{|-A|}\right) \text{ or } \left(\frac{|A|}{|-A|}\right)$$
$$e_{d+k}^{\dagger} D(a,b) e_d + e_{d+N/2+k}^{\dagger} D(a,b) e_{d+N/2} = 0$$

The Subspace $S_{\Delta,j}$ for $j \equiv 2 \pmod{4}$

 $a_{m-1}a_{m-2}$

4

(日) (同) (日) (日)

The Subspace $S_{\Delta,j}$ for j even

$$\mathbf{a_{m-2}} = \mathbf{0}: \ e_{d+k}^{\dagger} D(a,b) e_d = e_{d+N/4+k}^{\dagger} D(a,b) e_d$$
 and $c_i = c_{i+N/2}$

$$\mathbf{a_{m-2} = 1:} \ e_{d+k}^{\dagger} D(a,b) e_d = e_{d+N/2+k}^{\dagger} D(a,b) e_d$$

If $c_i \neq 0$ then $c_{i+N/2} = 0$

Theorem: Let $j = 2^t j'$ where 0 < t < m and j' is odd. Then $(a, b) \in S_{\Delta, j}$ if and only if the following hold:

1.
$$a \neq 0$$

- 2. $b_{m-1} = 0$
- 3. either $b_{m-t-1} = 1$ or $a_{m-t-1} = 1$

4. $b_{m-2} \dots b_{m-t}$ is covered by $a_{m-2} \dots a_{m-t}$

(here $x = (x_i)$ is covered by $y = (y_i)$ if the support of x is contained in the support of y: that is $y_i = 0$ implies $x_i = 0$)

・ロト ・ 雪 ト ・ ヨ ト ・

Representation of the Shift Operators $\Delta(k, 0)$

Theorem: $(a, b) \in S_{\Delta,0} \Leftrightarrow a \neq 0, b_{m-1} = 0$ and a covers b. The support takes the form of a pair of Sirpinski triangles

(a, b) $\not\in S_{\Delta,0}$ if $\mathbf{b}_{m-1} = 1$: $D(a, b) = \left(\frac{A}{|-A|}\right) \text{ or } \left(\frac{|A|}{|-A|}\right)$ $e_{d+k}^{\dagger} D(a, b) e_{d} = -e_{d+N/2+k} D(a, b) e_{d+N/2}$ so $Tr(D(a, b)^{\dagger} \Delta(k, 0)) = 0$

\mathbb{Z} -Golay Sequences from \mathbb{Z}_N -Golay Sequences

Let $\theta = \sum_{v,v_{m-1}=0} \theta_v e_v$ and $\varphi = \sum_{v,v_{m-1}=0} \varphi_v e_v$ We may view θ, φ as sequences $\overline{\theta}, \overline{\varphi}$ of length 2^{m-1} or as sequences of length 2^m obtained by padding with zeros.

Proposition: $\bar{\theta}, \bar{\varphi}$ are \mathbb{Z} -Golay complementary if θ, φ are \mathbb{Z}_N -Golay complementary

Proof: Look at the Weyl transform of P_{θ} , P_{φ} and $\Delta(k, 0)$

Budisin Golay Sequences

Found in orthonormal bases associated with particular maximal commutative subgroups X_P – the interaction with $\Delta(k, 0)$ is determined by pairs (v, vP) where v covers vP

$$m = 2: \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad (v, vP) = (11, 11)$$

$$m = 3: \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad (v, vP) = (101, 010) \text{ or } (111, 101)$$

$$m = 4: \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad (v, vP) = (1101, 1100), (1011, 0011), (1111, 1001)$$

Fibonacci sequence counts the number of pairs (v, vP)

• D(v, vP) anticommutes with D(0...0, 10...0)

Picturing the Golay Property

P minimizes overlap (magenta) between the support of P_{θ} , P_{φ} (the subgroup X_P shown in red) and the support of $S_{\Delta,0}$ (black) D(0...0, 10...0) removes overlap between the support of $P_{\theta} + P_{\varphi}$ and the support of $S_{\Delta,0}$

$$(A_{\varphi} + A_{\theta})(v, vP) = ((-1) + 1)A_{\theta}(v, vP) = 0$$

・ロット 全部 マイロット

Symmetries of the Support of the Shift Operator

$$\blacktriangleright d_Q^{-1}D(a,b)d_Q = D(a,b+aQ)$$

If a covers b and Q is diagonal then a covers b + aQ. Conjugation by d_Q fixes the support of the shift operators

• $S_A: e_v \rightarrow e_{vA}$ where A is a permutation matrix

$$S_A^{-1}D(a, aP)S_A = D(aA, aPA) = D(a', a'A^T PA)$$

Conjugation by S_A fixes the support of the shift operator

A D > A D > A D > A D >

Classification of Golay Pairs in RM(2, m)

 $\alpha(P)$: the equivalence class of all binary symmetric matrices that can be obtained from P by simultaneous permutation of rows and columns and by changing the diagonal

 Φ : the Golay-Budisin equivalence class

Golay Property: Follows from the existence of a hyperplane disjoint from all non-zero pairs (v, vP) where v covers vP

Theorem: Φ is the only equivalance class with the Golay property

Proof: Induction on m

It is enough to prove that Φ is the only equivalence class with the property that every matrix in the class has rank m - 1 or m.

▶ if vP = wP = (v + w)P = 0 then every hyperplane contains at least one of v, w and v + w

- 10

Golay Quads and Beyond

	0	1	0	0	0	0	0	0	1	
	1	0	1	0	0	0	0	0	1 0	
	0	1	0	1	0	0	0	0	0	If v covers vP then $D(v, vP)$ anticom-
P =	0	0	1	0	1	0	0	0	0	mutes with either $D(00, 001)$ or $D(00, 100)$
	0	0	0	1	0	1	0	0	0	
	0	0	0 0	0	1	0	1	0	0	Pairs (v, vP) are disjoint from a space
	0	0	0	0	0	1	0	1	0	of codimension 2
	0	0	0 0	0	0	0	1	0	1	
	1	0	0	0	0	0	0	1	0	

Golay Quads: $Tr((\theta_1\theta_1^{\dagger} + \theta_2\theta_2^{\dagger} + \theta_3\theta_3^{\dagger} + \theta_4\theta_4^{\dagger})\Delta(k, 0)) = 0$ for $k \neq 0$

Golay Number: Given an orthonormal basis \mathcal{F}_P this is the codimension of the largest subspace disjoint from all non-zero pairs (v, vP) where v covers vP

Remark: Diagonal matrices have Golay number m

Unimodular Sequences and Orthonormal Bases

$$\Phi = \frac{1}{\sqrt{N}} \sum_{v} \lambda_{v} e_{v}$$

Proposition: Vectors $D(0, b)\theta$ form an orthonormal basis if and only if $|\lambda_v| = 1$ for all $v \in \mathbb{Z}_2^m$

Proof: Moyal's Identity gives

$$|(\theta, e_{\nu})|^{2} = \frac{1}{N} = \frac{1}{N} \sum_{a,b} \overline{A_{\theta}(a,b)} A_{e_{\nu}}(a,b)$$
$$A_{\theta}(a,b): \qquad \boxed{1} \qquad A_{e_{\nu}}(a,b): \qquad \boxed{*} \qquad 0$$

Hence $A_{\theta}(a, b) = (\theta, D(0, b)\theta) = 0$

A D > A P > A B > A B >

The Geometry of Phase Coded Waveforms with the Golay Property

Proposition: θ and φ are a Golay pair if and only if

$$|(x,\theta)|^{2} + |(x,\varphi)|^{2} = \frac{2}{\sqrt{N}}$$

where x is any vector in any orthonormal basis associated with a diagonal maximal commutative subgroup X_Q

Remark: Q has Golay number m, so x is as far from Golay as is possible.

・ ロ ト ・ 留 ト ・ 画 ト ・ 画 ト