Symmetry and Sequence Design II: Design of Phase Coded Radar Waveforms

Robert Calderbank
Princeton University

Stephen Howard
Defence Science \& Technology
Organization Australia

DARPA
Supported by Defense Advanced Research Projects Agency and Air Force Office of Scientific Research

Heisenberg-Weyl Groups and Radar

One Dimensional Heisenberg-Weyl Group (Radar)	Multi-dimensional Heisenberg-Weyl Group (Not Radar)
One Dimensional Finite Heisenberg-Weyl Group over \mathbb{Z}_{N} (Discrete Radar)	Multi-dimensional finite Heisenberg-Weyl Group over \mathbb{Z}_{N} (Not Radar)
One Dimensional Finite Heisenberg-Weyl Group over \mathbb{Z}_{2} (Qubit)	Multi-dimensional finite Heisenberg-Weyl Group over \mathbb{Z}_{2} (QECC, phase coded radar waveforms)

Perfect Ambiguity Functions and Sets of Equiangular Lines

Moyal's Identity: $\|\theta\|^{4}=\frac{1}{N} \sum_{a, b \in \mathbb{Z}_{2}^{m}}\left|A_{\theta}(a, b)\right|^{2}$ with $A_{\theta}(0,0)=1$ Impossible to construct an ambiguity function $A_{\theta}(a, b)$ that is nonzero only at the origin $(0,0)$.

Perfect Ambiguity Function: $\left|A_{\theta}(a, b)\right|$ is constant over $(a, b) \neq(0,0)$

$$
\left|A_{\theta}(a, b)\right|= \begin{cases}1, & \text { if }(a, b)=(0,0) \\ \frac{1}{\sqrt{N+1}}, & \text { if }(a, b) \neq(0,0)\end{cases}
$$

Theorem: Perfect ambiguity functions are equivalent to orbits of equiangular lines

Proof: $\quad\left|\left(D(a, b) \theta, D\left(a^{\prime}, b^{\prime}\right) \theta\right)\right|=\left|\left(\theta, D\left(a \oplus a^{\prime}, b \oplus b^{\prime}\right) \theta\right)\right|$

$$
= \begin{cases}1, & \text { if }(a, b)=\left(a^{\prime}, b^{\prime}\right) \\ \frac{1}{\sqrt{N+1}}, & \text { if }(a, b) \neq\left(a^{\prime}, b^{\prime}\right)\end{cases}
$$

Extremal Sets of Euclidean Lines

Lemmens and Seidel (1973): Let L be the number of equiangular lines that can be constructed in a d-dimensional Euclidean space. Then

$$
L \leq \frac{1}{2} d(d+1) \text { in } \mathbb{R}^{d} \text { and } L \leq d^{2} \text { in } \mathbb{C}^{d}
$$

Proof for $\mathbb{C}^{\text {d }}$: Consider a set $\left\{s_{j}\right\}$ of unit vectors with $\left|\left(s_{j}, s_{k}\right)\right|=\alpha$
Gram matrix $G=\left[\left(s_{j}, s_{k}\right)\right]$
Form the Hadamard or elementwise product of G and G^{T}

$$
G \circ G^{T}=\alpha^{2} J+\left(1-\alpha^{2}\right) I_{L}
$$

This is nonsingular, since it is the sum of a positive definite matrix and a positive semi-definite matrix.

Matrix rank is Hadamard submultiplicative (see Horn and Johnson)

$$
L=\operatorname{rank}\left(G \circ G^{T}\right) \leq \operatorname{rank}(G) \operatorname{rank}\left(G^{T}\right)=d^{2}
$$

64 Equiangular Lines in \mathbb{C}^{8}

Set $\xi=\sqrt{\frac{i}{8}}=\frac{1}{4}+\frac{1}{4} i$ so that $\xi+\bar{\xi}=\frac{1}{2}$ and $\bar{\xi}-\xi=-\frac{i}{2}$

$$
\left\|\xi \mathbf{1}-e_{0}\right\|^{2}=\left|-\frac{3}{4}+\frac{i}{4}\right|^{2}+7 \frac{1}{8}=\frac{12}{8}=\frac{3}{2}
$$

Proposition: The orbit of the line $7=\sqrt{\frac{2}{3}}\left(\xi \mathbf{1}-e_{0}\right)$ under $\mathcal{W}\left(\mathbb{Z}_{2}^{3}\right)$ is a set of 64 equiangular lines in \mathbb{C}^{8}.

Proof:

$$
\begin{aligned}
7^{\dagger} D(a, b) 7 & =\frac{2}{3}\left(\frac{1}{8} 1^{\dagger} D(a, b) \mathbf{1}+e_{0}^{\dagger} D(a, b) e_{0}-\bar{\xi}^{\dagger} D(a, b) e_{0}-\xi e_{0}^{\dagger} D(a, b) \mathbf{1}\right) \\
& =\frac{2}{3}\left(\delta_{b, 0}+\delta_{a, 0}-\left(\bar{\xi}+(-1)^{b \cdot a} \xi\right)\right) \\
& =\frac{1}{3} \begin{cases}2 \delta_{b, 0}+2 \delta_{a, 0}-1, & \text { if b.a }=0 \\
i, & \text { if } b . a=1\end{cases}
\end{aligned}
$$

Symplectic Symmetries

Hoggar (1998) exhibits 64 lines from a quaternionic polytope that are the orbit of $\frac{1}{\sqrt{6}}(1+i, 0,-1,1,-i,-1,0,0)$ under $\mathcal{W}\left(\mathbb{Z}_{2}^{3}\right)$

Given a non-singular matrix A, define

$$
s_{A}: e_{V} \rightarrow e_{V A}
$$

$$
\mathcal{W}\left(\mathbb{Z}_{2}^{3}\right)
$$

Define $S_{A}: e_{V} \rightarrow e_{v A}$ where A is nonsingular
Then S_{A} fixes $7=\sqrt{\frac{2}{3}}\left(\xi \mathbf{1}-e_{0}\right)$ and fixes $\mathcal{W}\left(\mathbb{Z}_{2}^{3}\right)$ by conjugation:

$$
\begin{aligned}
& S_{A}^{-1} D(a, 0) S_{A}=D(a A, 0) \\
& S_{A}^{-1} D(0, b) S_{A}=D\left(0, b A^{-T}\right)
\end{aligned}
$$

Heisenberg-Weyl Groups and Radar

One Dimensional Heisenberg-Weyl Group (Radar)	Multi-dimensional Heisenberg-Weyl Group (Not Radar)
One Dimensional Finite Heisenberg-Weyl Group over \mathbb{Z}_{N} (Discrete Radar)	Multi-dimensional finite Heisenberg-Weyl Group over \mathbb{Z}_{N} (Not Radar)
One Dimensional Finite Heisenberg-Weyl Group over \mathbb{Z}_{2} (Qubit)	Multi-dimensional finite Heisenberg-Weyl Group over \mathbb{Z}_{2} (QECC, phase coded radar waveforms)

Monostatic and Multistatic Radar

Monostatic Radar: transmitter and receiver are colocated

- single view of the scene
- easy for transmitter and receiver to share a common stable clock (local oscillator) which is required for both range and doppler measurements
Multistatic Radar: widely dispersed antenna elements
- provides multiple views of the scene and a (wide angle) tomographic approach to detection
- complicated by physical, mathematical and engineering challenges of the Time of Arrival coherent combining, and by the computation required to integrate multiple views

Fully Polarimetric Radar System: Scattering Model

Radar is able to transmit and receive in two orthogonal polarizations simultaneously.

$$
\left(\begin{array}{ll}
h_{V V} & h_{V H} \\
h_{H V} & h_{H H}
\end{array}\right)=C_{R_{X}}\left(\begin{array}{ll}
\sigma_{V V} & \sigma_{V H} \\
\sigma_{H V} & \sigma_{H H}
\end{array}\right) C_{T_{X}}
$$

σ_{VH} : scattering coefficient into vertical polarization channel from horizontally polarized incident field
$\mathbf{C}_{\mathbf{R}_{\mathrm{x}}} \mathbf{C}_{\mathbf{T}_{\mathrm{x}}}$: polarization coupling of T_{X} and R_{X} antennas

Physical target represented as a set of complex weighted point scatterers

- courtesy Raytheon Missile systems

Intuition about the Scattering Matrix

Two Idealized Models:

```
\(\left(\begin{array}{ll}h_{V V} & h_{V H} \\ h_{H V} & h_{H H}\end{array}\right)\)
- entries are zero mean Gaussian iid
- entries \(h_{H V}, h_{V H}\) are substantially smaller than \(h_{H H}, h_{V V}\)
```


Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$
\operatorname{corr}_{k}(x)+\operatorname{corr}_{k}(y)=2 N \delta_{k, 0}
$$

for $k=-(N-1), \cdots,(N-1)$.

Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$
\operatorname{corr}_{k}(x)+\operatorname{corr}_{k}(y)=2 N \delta_{k, 0}
$$

for $k=-(N-1), \cdots,(N-1)$.

1	1	1	-1	1	1	-1	1						

| 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | | | | | |

1	0											

\square

Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$
\operatorname{corr}_{k}(x)+\operatorname{corr}_{k}(y)=2 N \delta_{k, 0}
$$

for $k=-(N-1), \cdots,(N-1)$.

			1	1	-1	1	1	-1	1
1			1	1					

| 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | | | | |

Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$
\operatorname{corr}_{k}(x)+\operatorname{corr}_{k}(y)=2 N \delta_{k, 0}
$$

for $k=-(N-1), \cdots,(N-1)$.

1	1	1	1	-1	1	1	-1	1			
1	1	1	-1	1	1	-1	1				

Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$
\operatorname{corr}_{k}(x)+\operatorname{corr}_{k}(y)=2 N \delta_{k, 0}
$$

for $k=-(N-1), \cdots,(N-1)$.

			1	1	-1	1	1	-	1	
1			1	1	-1	1				

Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$
\operatorname{corr}_{k}(x)+\operatorname{corr}_{k}(y)=2 N \delta_{k, 0}
$$

for $k=-(N-1), \cdots,(N-1)$.

		1	1	1	-1	1	1	-1	1
1	1	1	-1	1	1	-1	1		

	1	1	1	-1	-1	-1	1	-1	
1	1	1	-1	-1	-1	1	-1		

Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$
\operatorname{corr}_{k}(x)+\operatorname{corr}_{k}(y)=2 N \delta_{k, 0}
$$

for $k=-(N-1), \cdots,(N-1)$.

$$
\begin{array}{|c|c|c|c|c|c|c|c|}
\cline { 2 - 7 } & 1 & 1 & 1 & -1 & 1 & 1 & -1 \\
\hline
\end{array}
$$

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 1 & -1 & -1 & -1 & 1 & -1 \\
\hline 1 & 1 & 1 & -1 & -1 & -1 & 1 & -1 & \\
\hline
\end{array}
$$

Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$
\operatorname{corr}_{k}(x)+\operatorname{corr}_{k}(y)=2 N \delta_{k, 0}
$$

for $k=-(N-1), \cdots,(N-1)$.

Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$
\operatorname{corr}_{k}(x)+\operatorname{corr}_{k}(y)=2 N \delta_{k, 0}
$$

for $k=-(N-1), \cdots,(N-1)$.

Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$
\operatorname{corr}_{k}(x)+\operatorname{corr}_{k}(y)=2 N \delta_{k, 0}
$$

$$
\text { for } k=-(N-1), \cdots,(N-1)
$$

1	1	1	-1	-1	-1	1	-1		
		1	1	1	-1	-1	-1	1	-1

Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$
\operatorname{corr}_{k}(x)+\operatorname{corr}_{k}(y)=2 N \delta_{k, 0}
$$

for $k=-(N-1), \cdots,(N-1)$.

	1	1 -	-1	1	1		-1	1					1	1	-1	-1	-1	1	-				
			1	1	1	1	-1	1	1	-1					1	1	1	-1	-	1			-1

Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$
\operatorname{corr}_{k}(x)+\operatorname{corr}_{k}(y)=2 N \delta_{k, 0}
$$

for $k=-(N-1), \cdots,(N-1)$.

Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$
\operatorname{corr}_{k}(x)+\operatorname{corr}_{k}(y)=2 N \delta_{k, 0}
$$

$$
\text { for } k=-(N-1), \cdots,(N-1)
$$

Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$
\operatorname{corr}_{k}(x)+\operatorname{corr}_{k}(y)=2 N \delta_{k, 0}
$$

for $k=-(N-1), \cdots,(N-1)$.

Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex numbers x and y are Golay complementary if the sum of their auto-correlation functions satisfies.

$$
\operatorname{corr}_{k}(x)+\operatorname{corr}_{k}(y)=2 N \delta_{k, 0}
$$

$$
\text { for } k=-(N-1), \cdots,(N-1)
$$

Polarization Diversity, Alamouti Signaling and Golay Pairs

Alamouti space-time block code coordinates transmission on V and H channels - columns represent different slots in time or frequency.

$$
R=\left(r_{1}, r_{2}\right)=\left(\begin{array}{ll}
h_{V V} & h_{V H} \\
h_{H V} & h_{H H}
\end{array}\right)\left(\begin{array}{cc}
w_{V} & -\tilde{w}_{H} \\
w_{H} & \tilde{w}_{V}
\end{array}\right)+Z
$$

Conjugate Time Reversal:

$$
\begin{aligned}
& w_{V}=w_{V}(D)=D^{7}+D^{6}+D^{5}-D^{4}+D^{3}+D^{2}-D+1 \\
& \tilde{w}_{V}=\tilde{w}_{Y}(D)=1+D+D^{2}-D^{3}+D^{4}+D^{5}-D^{6}+D^{7} \quad\left(w_{V}\left(D^{-1}\right) D^{7}\right)
\end{aligned}
$$

Golay Property: $w_{V} \tilde{w}_{V}+w_{H} \tilde{w}_{H}=2 d D^{d}$

Matched Filtering:

$$
R\left(\begin{array}{cc}
\tilde{w}_{V} & \tilde{w}_{H} \\
-w_{H} & w_{V}
\end{array}\right) \text { provides an estimate of }\left(\begin{array}{ll}
h_{V V} & h_{V H} \\
h_{H V} & h_{H H}
\end{array}\right)
$$

Heisenberg-Weyl Groups and Radar

One Dimensional Heisenberg-Weyl Group (Radar)	Multi-dimensional Heisenberg-Weyl Group (Not Radar)
One Dimensional Finite Heisenberg-Weyl Group over \mathbb{Z}_{N} (Discrete Radar)	Multi-dimensional finite Heisenberg-Weyl Group over \mathbb{Z}_{N} (Not Radar)
One Dimensional Finite Heisenberg-Weyl Group over \mathbb{Z}_{2} (Qubit)	Multi-dimensional finite Heisenberg-Weyl Group over \mathbb{Z}_{2} (QECC, phase coded radar waveforms)

The Heisenberg-Weyl Group $\mathcal{W}\left(\mathbb{Z}_{N}\right)$

Radar Scene: Collection of point scatterers each of which delays the waveform by some time τ and Doppler shifts by some ν

Hilbert Space \mathbb{C}^{N} : Dirac basis $e_{v}, v \in \mathbb{Z}_{2}^{m}$ labeled by $N=2^{m}$ discrete time delays or ranges

Heisenberg-Weyl Group $\mathcal{W}\left(\mathbb{Z}_{\mathbf{N}}\right): \Delta(k, j)=\sum_{\ell} w^{j \ell} e_{\ell+k} e_{\ell}^{\dagger}$ where $w=e^{2 \pi i / N}$ and addition takes place modulo N $\mathbb{Z}_{\mathbf{N}}$-Golay Complementary Pairs φ, ψ :

$$
\begin{array}{cc}
\varphi^{\dagger} \Delta(k, 0) \varphi+\psi^{\dagger} \Delta(k, 0) \psi=0 & \text { for } k \neq 0 \\
\operatorname{Tr}\left(\left(P_{\varphi}+P_{\psi}\right) \Delta(k, 0)\right)=0 & \text { for } k \neq 0
\end{array}
$$

Note: The orthonormal basis $D(a, b)$ from $\mathcal{W}\left(\mathbb{Z}_{2}^{m}\right)$ provides a sparse representation of P_{φ}, P_{ψ} for many widely used sequences φ, ψ

Detection in Radar: Playing Twenty Questions with an Unknown Operator

Heisenberg-Weyl Groups and Radar

Representation of the Operators $\Delta(k, j)$

$S_{\Delta, j}=$ support of the subspace spanned by $\Delta(k, j), k \neq 0$

$\mathbf{m = 3 :} \underbrace{100}_{000}$| Theorem: If j is odd then |
| :--- |
| $(a, b) \in S_{\Delta, j}$ if and only if $a \neq 0$ and $b_{m-1}=1$ |

Lemma: Let $\omega=e^{2 \pi i / N}$ and let $c(x)=\sum_{i} c_{i} x^{i}$ be a polynomial with integer coefficients. Then

$$
c(\omega)=0 \text { if and only if } c_{i}=c_{i+N / 2}
$$

Proof: $p(x)=x^{N / 2}+1$ is the minimal polynomial of ω
To see that $p(x)$ is irreducible, change variables $x \rightarrow y+1$ and apply the Eisenstein irreducibility criterion for the prime 2.

The Subspace $S_{\Delta, j}$ for j odd

$$
(a, b) \in S_{k, j} j \text { odd }\langle=\rangle \operatorname{Tr}\left(D(a, b)^{\dagger} \Delta(k, j)\right) \neq 0
$$

$\mathbf{(a , b)} \notin \mathbf{S}_{\Delta, \mathrm{j}}$ when $\mathbf{a}=\mathbf{0}: D(a, b)$ is diagonal and $\Delta(k, j)$ has zero diagonal
Define $\ell(i)$ as the column in $\Delta(k, j)$ containing ω^{i} and note that ℓ is a permutation since j is odd.

$$
\begin{gathered}
\operatorname{Tr}\left(D(a, b)^{\dagger} \Delta(k, j)\right)=\sum_{i=0}^{N-1} c_{i} \omega^{i}=\sum_{\ell}\left(D(a, b) e_{\ell}, \Delta(k, j) e_{\ell}\right) \\
c_{i}=e_{\ell(i)+k}^{\dagger} D(a, b) e_{\ell(i)} \\
\mathbf{b}_{\mathbf{m}-\mathbf{1}}=\mathbf{0}: D(a, b)=\binom{A \mid}{\hline A} \text { or }\binom{A}{\hline A \mid} \\
e_{\ell(i)+k+N / 2}^{\dagger} D(a, b) e_{\ell(i)+N / 2}=e_{\ell(i)+k}^{\dagger} D(a, b) e_{\ell(i)}
\end{gathered}
$$

Hence $c_{i}=c_{i+N / 2}$ and $\operatorname{Tr}\left(D(a, b)^{\dagger} \Delta(k, j)\right)=0$

The Subspace $S_{\Delta, j}$ for j odd (contd.)

$$
\begin{gathered}
\mathbf{b}_{\mathbf{m}-\mathbf{1}}=1: \text { Now } D(a, b)=\left(\begin{array}{l|l}
A & \\
\hline & -A
\end{array}\right) \text { or }\left(\begin{array}{l}
\\
\hline-A \mid
\end{array}\right) \\
c_{i}=e_{\ell(i)+k}^{\dagger} D(a, b) e_{\ell(i)}=-c_{i+N / 2}
\end{gathered}
$$

As k runs through \mathbb{Z}_{N} so does $\ell(i)+k$
Hence $c_{i} \neq 0$ for some $\Delta(k, j)$ and $(a, b) \in S_{\Delta, j}$

Theorem: If $j=2(\bmod 4)$ then

$$
\begin{aligned}
& (a, b) \in S_{\Delta, j}\langle=\rangle a \neq 0, b_{m-1}=0 \\
& \text { and either } b_{m-2}=1 \text { or } a_{m-2}=1
\end{aligned}
$$

The Subspace $S_{\Delta, j}$ for $j \equiv 2(\bmod 4)$

Define $\ell(i)=\left\{d \in \mathbb{Z}_{N} \mid \omega^{i}\right.$ appears in column d of $\left.\Delta(k, j)\right\}$
The sets $\ell(i)$ consist of pairs $d, d+N / 2$ and these pairs are disjoint

$$
\begin{aligned}
\operatorname{Tr}\left(D(a, b)^{\dagger} \Delta(k, j)\right) & =\sum_{i=0}^{N-1} c_{i} \omega^{i} \quad\left(\text { polynomial in } \omega^{2}\right) \\
c_{i} & =\sum_{d \in \ell(i)} e_{d+k}^{\dagger} D(a, b) e_{d} \\
c_{i+N / 2} & =\sum_{d \in \ell(i)} e_{d+N / 4+k}^{\dagger} D(a, b) e_{d+N / 4}
\end{aligned}
$$

$\mathbf{0}, \mathbf{b} \notin \mathbf{S}_{\mathbf{\Delta}, \mathrm{j}}: D(0, b)$ is diagonal and $\Delta(k, j)$ has zero diagonal
$(a, b) \notin S_{\Delta, j}$ if $b_{m-1}=1$:

$$
\begin{gathered}
D(a, b)=\left(\begin{array}{l|l}
A & \\
\hline & -A
\end{array}\right) \text { or }\left(\begin{array}{l|l}
& A \\
\hline-A &
\end{array}\right) \\
e_{d+k}^{\dagger} D(a, b) e_{d}+e_{d+N / 2+k}^{\dagger} D(a, b) e_{d+N / 2}=0
\end{gathered}
$$

The Subspace $S_{\Delta, j}$ for $j \equiv 2(\bmod 4)$
$b_{\mathbf{m}-1}=0, b_{\mathbf{m}-\mathbf{2}}=1:$

$e_{d+k}^{\dagger} D(a, b) e_{d}=-c_{d+N / 4+k}^{\dagger} D(a, b) e_{d}$ and $c_{i}=-c_{i+N / 2}$
$\mathbf{b}_{\mathbf{m}-\mathbf{1}}=\mathbf{0}, \mathbf{b}_{\mathbf{m}-\mathbf{2}}=\mathbf{0}$:

A			
	A		
		A	
			A

		A			A		
			A	A			
A							A
	A					A	

The Subspace $S_{\Delta, j}$ for j even

$$
\begin{aligned}
\mathbf{a}_{\mathbf{m}-2}=\mathbf{0}: & e_{d+k}^{\dagger} D(a, b) e_{d}=e_{d+N / 4+k}^{\dagger} D(a, b) e_{d} \text { and } \\
& c_{i}=c_{i+N / 2} \\
\mathbf{a}_{\mathbf{m}-2}=\mathbf{1}: & e_{d+k}^{\dagger} D(a, b) e_{d}=e_{d+N / 2+k}^{\dagger} D(a, b) e_{d} \\
& \text { If } c_{i} \neq 0 \text { then } c_{i+N / 2}=0
\end{aligned}
$$

Theorem: Let $j=2^{t} j^{\prime}$ where $0<t<m$ and j^{\prime} is odd. Then $(a, b) \in S_{\Delta, j}$ if and only if the following hold:

1. $a \neq 0$
2. $b_{m-1}=0$
3. either $b_{m-t-1}=1$ or $a_{m-t-1}=1$
4. $b_{m-2} \ldots b_{m-t}$ is covered by $a_{m-2} \ldots a_{m-t}$
(here $x=\left(x_{i}\right)$ is covered by $y=\left(y_{i}\right)$ if the support of x is contained in the support of y : that is $y_{i}=0$ implies $x_{i}=0$)

Representation of the Shift Operators $\Delta(k, 0)$

Theorem: $(a, b) \in S_{\Delta, 0} \Leftrightarrow a \neq 0, b_{m-1}=0$ and a covers b. The support takes the form of a pair of Sirpinski triangles

$(a, b) \notin S_{\Delta, 0}$ if $b_{m-1}=1$:

$$
\begin{gathered}
D(a, b)=\left(\begin{array}{l|l}
A & \\
\hline & -A
\end{array}\right) \text { or }\left(\begin{array}{l|l}
& A \\
\hline-A &
\end{array}\right) \\
e_{d+k}^{\dagger} D(a, b) e_{d}=-e_{d+N / 2+k} D(a, b) e_{d+N / 2} \\
\text { so } \operatorname{Tr}\left(D(a, b)^{\dagger} \Delta(k, 0)\right)=0
\end{gathered}
$$

\mathbb{Z}-Golay Sequences from \mathbb{Z}_{N}-Golay Sequences

Let $\theta=\sum_{v, v_{m-1}=0} \theta_{v} e_{v}$ and $\varphi=\sum_{v, v_{m-1}=0} \varphi_{v} e_{v}$
We may view θ, φ as sequences $\bar{\theta}, \bar{\varphi}$ of length 2^{m-1} or as sequences of length 2^{m} obtained by padding with zeros.

Proposition: $\bar{\theta}, \bar{\varphi}$ are \mathbb{Z}-Golay complementary if θ, φ are \mathbb{Z}_{N}-Golay complementary

Proof: Look at the Weyl transform of P_{θ}, P_{φ} and $\Delta(k, 0)$

Budisin Golay Sequences

Found in orthonormal bases associated with particular maximal commutative subgroups X_{P} - the interaction with $\Delta(k, 0)$ is determined by pairs $(v, v P)$ where v covers $v P$

$$
\begin{array}{ll}
m=2:\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & (v, v P)=(11,11) \\
m=3:\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) & (v, v P)=(101,010) \text { or }(111,101) \\
m=4:\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \\
0 & 1
\end{array} 0
$$

Fibonacci sequence counts the number of pairs $(v, v P)$

- $D(v, v P)$ anticommutes with $D(0 \ldots 0,10 \ldots 0)$

Picturing the Golay Property

$$
\begin{gathered}
P=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \\
\varphi=D(0 \ldots 0,10 \ldots 0) \theta
\end{gathered}
$$

P minimizes overlap (magenta) between the support of P_{θ}, P_{φ} (the subgroup X_{P} shown in red) and the support of $S_{\Delta, 0}$ (black) $D(0 \ldots 0,10 \ldots 0)$ removes overlap between the support of $P_{\theta}+P_{\varphi}$ and the support of $S_{\Delta, 0}$

$$
\left(A_{\varphi}+A_{\theta}\right)(v, v P)=((-1)+1) A_{\theta}(v, v P)=0
$$

Symmetries of the Support of the Shift Operator

- $d_{Q}^{-1} D(a, b) d_{Q}=D(a, b+a Q)$

If a covers b and Q is diagonal then a covers $b+a Q$. Conjugation by d_{Q} fixes the support of the shift operators

- $S_{A}: e_{V} \rightarrow e_{V A}$ where A is a permutation matrix

$$
S_{A}^{-1} D(a, a P) S_{A}=D(a A, a P A)=D\left(a^{\prime}, a^{\prime} A^{\top} P A\right)
$$

Conjugation by S_{A} fixes the support of the shift operator

Classification of Golay Pairs in $R M(2, m)$

$\alpha(P)$: the equivalence class of all binary symmetric matrices that can be obtained from P by simultaneous permutation of rows and columns and by changing the diagonal
Φ : the Golay-Budisin equivalence class
Golay Property: Follows from the existence of a hyperplane disjoint from all non-zero pairs $(v, v P)$ where v covers $v P$

Theorem: Φ is the only equivalance class with the Golay property
Proof: Induction on m
It is enough to prove that Φ is the only equivalence class with the property that every matrix in the class has rank $m-1$ or m.

- if $v P=w P=(v+w) P=0$ then every hyperplane contains at least one of v, w and $v+w$

Golay Quads and Beyond

$$
P=\left[\begin{array}{lllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

If v covers $v P$ then $D(v, v P)$ anticommutes with either $D(0 \ldots 0,0 \ldots 01)$ or $D(0 \ldots 0,10 \ldots 0)$

Pairs $(v, v P)$ are disjoint from a space of codimension 2

Golay Quads: $\operatorname{Tr}\left(\left(\theta_{1} \theta_{1}^{\dagger}+\theta_{2} \theta_{2}^{\dagger}+\theta_{3} \theta_{3}^{\dagger}+\theta_{4} \theta_{4}^{\dagger}\right) \Delta(k, 0)\right)=0$ for $k \neq 0$
Golay Number: Given an orthonormal basis \mathcal{F}_{P} this is the codimension of the largest subspace disjoint from all non-zero pairs $(v, v P)$ where v covers $v P$

Remark: Diagonal matrices have Golay number m

Unimodular Sequences and Orthonormal Bases

$$
\Phi=\frac{1}{\sqrt{N}} \sum_{v} \lambda_{v} e_{v}
$$

Proposition: Vectors $D(0, b) \theta$ form an orthonormal basis if and only if $\left|\lambda_{v}\right|=1$ for all $v \in \mathbb{Z}_{2}^{m}$

Proof: Moyal's Identity gives

$$
\begin{aligned}
& \left|\left(\theta, e_{v}\right)\right|^{2}=\frac{1}{N}=\frac{1}{N} \sum_{a, b} \overline{A_{\theta}(a, b)} A_{e_{v}}(a, b) \\
& A_{\theta}(a, b): \begin{array}{|c}
\\
1
\end{array} \quad A_{e_{v}}(a, b): \begin{array}{|c|c|}
* & 0 \\
1 & \\
\end{array}
\end{aligned}
$$

Hence $A_{\theta}(a, b)=(\theta, D(0, b) \theta)=0$

The Geometry of Phase Coded Waveforms with the Golay Property

Proposition: θ and φ are a Golay pair if and only if

$$
|(x, \theta)|^{2}+|(x, \varphi)|^{2}=\frac{2}{\sqrt{N}}
$$

where x is any vector in any orthonormal basis associated with a diagonal maximal commutative subgroup X_{Q}

Remark: Q has Golay number m, so x is as far from Golay as is possible.

