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Perfect Ambiguity Functions and Sets of Equiangular Lines

Moyal’s Identity: ‖θ‖4 = 1
N

∑
a,b∈Zm

2
|Aθ(a, b)|2 with Aθ(0, 0) = 1

Impossible to construct an ambiguity function Aθ(a, b) that is
nonzero only at the origin (0,0).

Perfect Ambiguity Function: |Aθ(a, b)| is constant over
(a, b) 6= (0, 0)

|Aθ(a, b)| =

{
1, if (a, b) = (0, 0)

1√
N+1

, if (a, b) 6= (0, 0)

Theorem: Perfect ambiguity functions are equivalent to orbits of
equiangular lines

Proof: |(D(a, b)θ,D(a′, b′)θ)| = |(θ,D(a⊕ a′, b ⊕ b′)θ)|

=

{
1, if (a, b) = (a′, b′)

1√
N+1

, if (a, b) 6= (a′, b′)



Extremal Sets of Euclidean Lines

Lemmens and Seidel (1973): Let L be the number of equiangular lines
that can be constructed in a d-dimensional Euclidean space. Then

L ≤ 1

2
d(d + 1) in Rd and L ≤ d2 in Cd

Proof for Cd: Consider a set {sj} of unit vectors with |(sj , sk)| = α

Gram matrix G = [(sj , sk)]

Form the Hadamard or elementwise product of G and GT

G ◦ GT = α2J + (1− α2)IL

This is nonsingular, since it is the sum of a positive definite matrix and a
positive semi-definite matrix.

Matrix rank is Hadamard submultiplicative (see Horn and Johnson)

L = rank(G ◦ GT ) ≤ rank(G )rank(GT ) = d2



64 Equiangular Lines in C8

Set ξ =
√

i
8 = 1

4 + 1
4 i so that ξ + ξ̄ = 1

2 and ξ̄ − ξ = − i
2

‖ξ1− e0‖2 = | − 3

4
+

i

4
|2 + 7

1

8
=

12

8
=

3

2

Proposition: The orbit of the line 7 =
√

2
3(ξ1− e0) under W(Z3

2)

is a set of 64 equiangular lines in C8.

Proof:

7†D(a, b)7 =
2

3

�
1

8
1†D(a, b)1 + e†0 D(a, b)e0 − ξ̄1†D(a, b)e0 − ξe†0 D(a, b)1

�

=
2

3

�
δb,0 + δa,0 −

�
ξ̄ + (−1)b.aξ

��

=
1

3

(
2δb,0 + 2δa,0 − 1, if b.a = 0

i , if b.a = 1



Symplectic Symmetries

Hoggar (1998) exhibits 64 lines from a quaternionic polytope that
are the orbit of 1√

6
(1 + i , 0,−1, 1,−i ,−1, 0, 0) under W(Z3

2)

SP(6, 2)
symplectic

transformations that fix W(Z3
2)

by conjugation

� 135 equivalent sets of
equiangular lines

G

135

symmetry group of the
64 equiangular lines

� Given a non-singular matrix A, define
sA : eV → evA

W(Z3
2)

GL(Z3
2)

Define SA : ev → evA where A is nonsingular

Then SA fixes 7 =
√

2
3(ξ1− e0) and fixes W(Z3

2) by conjugation:

S−1
A D(a, 0)SA = D(aA, 0)

S−1
A D(0, b)SA = D(0, bA−T )
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Monostatic and Multistatic Radar

Monostatic Radar: transmitter and receiver are colocated

I single view of the scene
I easy for transmitter and receiver to share a

common stable clock (local oscillator) which is
required for both range and doppler
measurements

Multistatic Radar: widely dispersed antenna elements

I provides multiple views of the scene and a (wide
angle) tomographic approach to detection

I complicated by physical, mathematical and
engineering challenges of the Time of Arrival
coherent combining, and by the computation
required to integrate multiple views



Fully Polarimetric Radar System: Scattering Model

Radar is able to transmit and receive in two orthogonal
polarizations simultaneously.(

hVV hVH

hHV hHH

)
= CRX

(
σVV σVH

σHV σHH

)
CTX

σVH: scattering coefficient into vertical polarization channel from
horizontally polarized incident field

CRXCTX: polarization coupling of TX and RX antennas

6/2/2006

Physical target represented as a set
of complex weighted point scatterers

I courtesy Raytheon Missile systems



Intuition about the Scattering Matrix

(
hVV hVH

hHV hHH

) Two Idealized Models:

I entries are zero mean Gaussian iid

I entries hHV , hVH are substantially smaller than
hHH , hVV



Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex
numbers x and y are Golay complementary if the
sum of their auto-correlation functions satisfies.

corrk(x) + corrk(y) = 2Nδk,0

for k = −(N − 1), · · · , (N − 1).
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Polarization Diversity, Alamouti Signaling and Golay Pairs

Alamouti space-time block code coordinates transmission on V and
H channels – columns represent different slots in time or frequency.

R = (r1, r2) =

(
hVV hVH

hHV hHH

) (
wV −w̃H

wH w̃V

)
+ Z

Conjugate Time Reversal:

wV = wV (D) = D7 + D6 + D5 − D4 + D3 + D2 − D + 1

w̃V = w̃Y (D) = 1 + D + D2 − D3 + D4 + D5 − D6 + D7 (wV (D−1)D7)

Golay Property: wV w̃V + wH w̃H = 2dDd

Matched Filtering:

R

(
w̃V w̃H

−wH wV

)
provides an estimate of

(
hVV hVH

hHV hHH

)
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The Heisenberg-Weyl Group W(ZN)

Radar Scene: Collection of point scatterers each of which delays
the waveform by some time τ and Doppler shifts by some ν

Hilbert Space CN: Dirac basis ev , v ∈ Zm
2 labeled by N = 2m

discrete time delays or ranges

Heisenberg-Weyl Group W(ZN): ∆(k, j) =
∑

` w
j`e`+ke†`

where w = e2πi/N and addition takes place modulo N

ZN-Golay Complementary Pairs ϕ,ψ:

ϕ†∆(k, 0)ϕ+ ψ†∆(k, 0)ψ = 0 for k 6= 0

Tr((Pϕ + Pψ)∆(k, 0)) = 0 for k 6= 0

Note: The orthonormal basis D(a, b) from W(Zm
2 ) provides a sparse

representation of Pϕ,Pψ for many widely used sequences ϕ,ψ



Detection in Radar: Playing Twenty Questions with an
Unknown Operator

Waveform
Scheduling

Tx

θn+1

θn
Rx

Prediction of
Clutter Evolution

Sn =


k,j

sn(k, j)∆(k, j)

ψn = snθn + zn

ψn = Bθn [sn(k, j)] + zn

Sn+1 = ΓSn + wn

Kalman filter formalism tracks
clutter evolution

Mutual information
guides waveform
selection
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Representation of the Operators ∆(k , j)

S∆,j = support of the subspace spanned by ∆(k, j), k 6= 0

m = 3:
100

100 111000

111

000

Theorem: If j is odd then

(a, b) ∈ S∆,j if and only if a 6= 0 and bm−1 = 1

Lemma: Let ω = e2πi/N and let c(x) =
∑

i cix
i be a polynomial

with integer coefficients. Then

c(ω) = 0 if and only if ci = ci+N/2

Proof: p(x) = xN/2 + 1 is the minimal polynomial of ω
To see that p(x) is irreducible, change variables x → y + 1 and
apply the Eisenstein irreducibility criterion for the prime 2.



The Subspace S∆,j for j odd

(a, b) ∈ Sk,j j odd 〈=〉Tr(D(a, b)†∆(k, j)) 6= 0

(a, b) 6∈ S∆,j when a = 0: D(a, b) is diagonal and ∆(k, j) has zero
diagonal
Define `(i) as the column in ∆(k, j) containing ωi and note that ` is a
permutation since j is odd.

Tr(D(a, b)†∆(k, j)) =
N−1∑
i=0

ciω
i =

∑
`

(D(a, b)e`,∆(k, j)e`)

ci = e†`(i)+kD(a, b)e`(i)

bm−1 = 0: D(a, b) =

(
A

A

)
or

(
A

A

)
e†`(i)+k+N/2D(a, b)e`(i)+N/2 = e†`(i)+kD(a, b)e`(i)

Hence ci = ci+N/2 and Tr(D(a, b)†∆(k, j)) = 0



The Subspace S∆,j for j odd (contd.)

bm−1 = 1: Now D(a, b) =

(
A

−A

)
or

(
A

−A

)
ci = e†`(i)+kD(a, b)e`(i) = −ci+N/2

As k runs through ZN so does `(i) + k

Hence ci 6= 0 for some ∆(k, j) and (a, b) ∈ S∆,j

b

a

Theorem: If j = 2 (mod 4) then

(a, b) ∈ S∆,j〈=〉a 6= 0, bm−1 = 0

and either bm−2 = 1 or am−2 = 1



The Subspace S∆,j for j ≡ 2 (mod 4)

Define `(i) = {d ∈ ZN |ωi appears in column d of ∆(k, j)}
The sets `(i) consist of pairs d , d + N/2 and these pairs are disjoint

Tr(D(a, b)†∆(k, j)) =
N−1∑
i=0

ciω
i (polynomial in ω2)

ci =
∑

d∈`(i)

e†d+kD(a, b)ed

ci+N/2 =
∑

d∈`(i)

e†d+N/4+kD(a, b)ed+N/4

0, b 6∈ S∆,j: D(0, b) is diagonal and ∆(k, j) has zero diagonal

(a, b) 6∈ S∆,j if bm−1 = 1:

D(a, b) =

(
A

−A

)
or

(
A

−A

)
e†d+kD(a, b)ed + e†d+N/2+kD(a, b)ed+N/2 = 0



The Subspace S∆,j for j ≡ 2 (mod 4)

bm−1 = 0, bm−2 = 1:

−

−am−1am 2

A

A

−A

−A

−A −A

−A−A−A

A

A

A

A

A A

A

00 01 10 11

e†d+kD(a, b)ed = −c†d+N/4+kD(a, b)ed and ci = −ci+N/2

bm−1 = 0, bm−2 = 0:

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

00 10 01 11
−am−1am 2



The Subspace S∆,j for j even

am−2 = 0: e†d+kD(a, b)ed = e†d+N/4+kD(a, b)ed and
ci = ci+N/2

am−2 = 1: e†d+kD(a, b)ed = e†d+N/2+kD(a, b)ed

If ci 6= 0 then ci+N/2 = 0

Theorem: Let j = 2t j ′ where 0 < t < m and j ′ is odd. Then
(a, b) ∈ S∆,j if and only if the following hold:

1. a 6= 0

2. bm−1 = 0

3. either bm−t−1 = 1 or am−t−1 = 1

4. bm−2 . . . bm−t is covered by am−2 . . . am−t

(here x = (xi ) is covered by y = (yi ) if the support of x is
contained in the support of y : that is yi = 0 implies xi = 0)



Representation of the Shift Operators ∆(k , 0)

Theorem: (a, b) ∈ S∆,0 ⇔ a 6= 0, bm−1 = 0 and a covers b.
The support takes the form of a pair of Sirpinski triangles

m = 4: m = 5:

(a, b) 6∈ S∆,0 if bm−1 = 1:

D(a, b) =

(
A

−A

)
or

(
A

−A

)
e†d+kD(a, b)ed = −ed+N/2+kD(a, b)ed+N/2

so Tr(D(a, b)†∆(k, 0)) = 0



Z-Golay Sequences from ZN-Golay Sequences

Let θ =
∑

v ,vm−1=0 θvev and ϕ =
∑

v ,vm−1=0 ϕvev

We may view θ, ϕ as sequences θ̄, ϕ̄ of length 2m−1 or as
sequences of length 2m obtained by padding with zeros.

Proposition: θ̄, ϕ̄ are Z-Golay complementary if θ, ϕ are ZN -Golay
complementary

Proof: Look at the Weyl transform of Pθ,Pϕ and ∆(k, 0)

Pθ,Pϕ :

0

∆(k, 0):

↑
Aθ(a, b) = (θ,D(a, b)θ) = 0



Budisin Golay Sequences

Found in orthonormal bases associated with particular maximal
commutative subgroups XP – the interaction with ∆(k, 0) is
determined by pairs (v , vP) where v covers vP

m = 2 :

(
0 1
1 0

)
(v , vP) = (11, 11)

m = 3 :

0 1 0
1 0 1
0 1 0

 (v , vP) = (101, 010) or (111, 101)

m = 4 :


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 (v , vP) = (1101, 1100), (1011, 0011), (1111, 1001)

Fibonacci sequence counts the number of pairs (v , vP)

I D(v , vP) anticommutes with D(0 . . . 0, 10 . . . 0)



Picturing the Golay Property

P =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


ϕ = D(0 . . . 0, 10 . . . 0)θ

P minimizes overlap (magenta) between the support of Pθ,Pϕ (the
subgroup XP shown in red) and the support of S∆,0 (black)
D(0 . . . 0, 10 . . . 0) removes overlap between the support of
Pθ + Pϕ and the support of S∆,0

(Aϕ + Aθ)(v , vP) = ((−1) + 1)Aθ(v , vP) = 0



Symmetries of the Support of the Shift Operator

I d−1
Q D(a, b)dQ = D(a, b + aQ)

If a covers b and Q is diagonal then a covers b + aQ. Conjugation
by dQ fixes the support of the shift operators

I SA : ev → evA where A is a permutation matrix

S−1
A D(a, aP)SA = D(aA, aPA) = D(a′, a′ATPA)

Conjugation by SA fixes the support of the shift operator

FP Golay pairing determined by D(a0, b0)

FP′

(P ′ = ATPA + Q)

?
Golay pairing determined by

D(a0A
T , b0A

T + a0Q)

?



Classification of Golay Pairs in RM(2, m)

α(P): the equivalence class of all binary symmetric matrices that
can be obtained from P by simultaneous permutation of rows and
columns and by changing the diagonal

Φ: the Golay-Budisin equivalence class

Golay Property: Follows from the existence of a hyperplane
disjoint from all non-zero pairs (v , vP) where v covers vP

Theorem: Φ is the only equivalance class with the Golay property

Proof: Induction on m

It is enough to prove that Φ is the only equivalence class with the
property that every matrix in the class has rank m − 1 or m.

I if vP = wP = (v + w)P = 0 then every hyperplane contains
at least one of v ,w and v + w



Golay Quads and Beyond

P =

2
6666666666666666666666666664

0 1 0 0 0 0 0 0 1

1 0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 0 1 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 0 1 0 1 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 1 0 1

1 0 0 0 0 0 0 1 0

3
7777777777777777777777777775

If v covers vP then D(v , vP) anticom-
mutes with either D(0 . . . 0, 0 . . . 01) or
D(0 . . . 0, 10 . . . 0)

Pairs (v , vP) are disjoint from a space
of codimension 2

Golay Quads: Tr((θ1θ
†
1 + θ2θ

†
2 + θ3θ

†
3 + θ4θ

†
4)∆(k, 0)) = 0 for

k 6= 0
Golay Number: Given an orthonormal basis FP this is the
codimension of the largest subspace disjoint from all non-zero pairs
(v , vP) where v covers vP

Remark: Diagonal matrices have Golay number m



Unimodular Sequences and Orthonormal Bases

Φ =
1√
N

∑
v

λvev

Proposition: Vectors D(0, b)θ form an orthonormal basis if and
only if |λv | = 1 for all v ∈ Zm

2

Proof: Moyal’s Identity gives

|(θ, ev )|2 =
1

N
=

1

N

∑
a,b

Aθ(a, b)Aev (a, b)

Aθ(a, b):
1

Aev (a, b):
1

∗ 0

Hence Aθ(a, b) = (θ,D(0, b)θ) = 0



The Geometry of Phase Coded Waveforms with the Golay
Property

Proposition: θ and ϕ are a Golay pair if and only if

|(x , θ)|2 + |(x , ϕ)|2 =
2√
N

where x is any vector in any orthonormal basis associated with a
diagonal maximal commutative subgroup XQ

Remark: Q has Golay number m, so x is as far from Golay as is
possible.


