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Perfect Ambiguity Functions and Sets of Equiangular Lines

Moyal’s Identity: [|0[* = & Za,bezg' |Ag(a, b)|? with Ay(0,0) =1
Impossible to construct an ambiguity function Ay(a, b) that is
nonzero only at the origin (0,0).

Perfect Ambiguity Function: |Ay(a, b)| is constant over

(a, b) # (0,0)

1 if (a,b) = (0,0)
[Ag(a, b)| = {w\}Tl if (a, b) # (0,0)

Theorem: Perfect ambiguity functions are equivalent to orbits of
equiangular lines

Proof: |(D(a,b)d,D(a',b)0)| = |(0,D(a® &', b b')0)|
1, if (a,b) = (', b)
B I\}+1’ if (a,b) # (4, b))




Extremal Sets of Euclidean Lines

Lemmens and Seidel (1973): Let L be the number of equiangular lines
that can be constructed in a d-dimensional Euclidean space. Then

L< %d(d+1) inRY and L <d?inC?

Proof for C%: Consider a set {s;} of unit vectors with |(s;, sk)| = «
Gram matrix G = [(sj, sk)]
Form the Hadamard or elementwise product of G and G"

GoG' =a?J+(1-a?)

This is nonsingular, since it is the sum of a positive definite matrix and a
positive semi-definite matrix.

Matrix rank is Hadamard submultiplicative (see Horn and Johnson)

L =rank(G o GT) < rank(G)rank(GT) = d?




64 Equiangular Lines in C8

Setf:\/g:%—l—%isothatf‘i‘g:*andg g__i

3 i 1 12 3
le1-lp=1-3+;P+75=% =>
Proposition: The orbit of the line 7 = \/g(gl — ep) under W(Z3)

is a set of 64 equiangular lines in C8.

Proof:

7'D(a, b)7 = (11TD(3, b)1 + el D(a, b)ey — £11D(a, b)ey — £l D(a, b)l)

(5bo+5ao— (f—i—( 1)ba ))

20p0 + 2020 —1, ifb.a=0
i if ba=1

OJ\I—\ (JJH\J OJH\.)




Symplectic Symmetries

Hoggar (1998) exhibits 64 lines from a quaternionic polytope that

are the orbit of %(1 +1i,0,—1,1,—i,—1,0,0) under W(Z3)

symplectic
Sp(6,2) transformations that fix W(Z3)
by conjugation
135 equivalent sets of

135 | < . .
equiangular lines

symmetry group of the
64 equiangular lines

G

Given a non-singular matrix A, define

GL(Z3) | =
(Z2) SA ey — ea

W(Z3)
Define 54 : e, — e 5 where A is nonsingular
Then 54 fixes 7 = \@(51 — ep) and fixes W(Z3) by conjugation:
S2'D(a,0)Sa = D(aA,0)
SAtD(0,b)Sa = D(0,bA™T)
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Monostatic and Multistatic Radar

Monostatic Radar:

>
>

Multistatic Radar:
>

transmitter and receiver are colocated

single view of the scene

easy for transmitter and receiver to share a
common stable clock (local oscillator) which is
required for both range and doppler
measurements

widely dispersed antenna elements

provides multiple views of the scene and a (wide
angle) tomographic approach to detection
complicated by physical, mathematical and
engineering challenges of the Time of Arrival
coherent combining, and by the computation
required to integrate multiple views




Fully Polarimetric Radar System: Scattering Model

Radar is able to transmit and receive in two orthogonal
polarizations simultaneously.

hvw  hvm\ _ ow  OvH
- CRX CTX
huv  hun OHV OHH
oyH: scattering coefficient into vertical polarization channel from

horizontally polarized incident field

Cry C1y: polarization coupling of Tx and Rx antennas

Physical target represented as a set
of complex weighted point scatterers

» courtesy Raytheon Missile systems




Intuition about the Scattering Matrix
Two ldealized Models:
hw  hyy > entries are zero mean Gaussian iid
(th hHH) > entries hyy, hyy are substantially smaller than
hur, hvy

Ti2Az0,EI21,f35.0 GHz

40

RCS dBsm




Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex
numbers x and y are Golay complementary if the
sum of their auto-correlation functions satisfies.

corri(x) + corri(y) = 2Nék o

for k= —(N—-1),---,(N—1).

1]1)1)-1)1]1)-1)1 1111 (-1{-1|{-1{1 (-1
1]1)1)-1]1]1(-11 1]1])1)-1]-1]-1}1|-1

1 =1l




Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex
numbers x and y are Golay complementary if the
sum of their auto-correlation functions satisfies.

corri(x) + corri(y) = 2Nék o

for k= —(N—-1),---,(N—1).
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Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex
numbers x and y are Golay complementary if the
sum of their auto-correlation functions satisfies.

corri(x) + corri(y) = 2Nék o
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Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex
numbers x and y are Golay complementary if the
sum of their auto-correlation functions satisfies.

corri(x) + corri(y) = 2Nék o

for k= —(N—-1),---,(N—1).
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Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex
numbers x and y are Golay complementary if the
sum of their auto-correlation functions satisfies.

corri(x) + corri(y) = 2Nék o

for k= —(N—-1),---,(N—1).
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Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex
numbers x and y are Golay complementary if the
sum of their auto-correlation functions satisfies.

corri(x) + corri(y) = 2Nék o

for k= —(N—-1),---,(N—1).

1]1)1)-1]1]1)-1)1 1]1)1(-1{-1{-1{1|-1
1]1]1(-1j1]1|-1|1 1]1)1)-1]-1|-1j1|-1
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Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex
numbers x and y are Golay complementary if the
sum of their auto-correlation functions satisfies.

corri(x) + corri(y) = 2Nék o

for k= —(N—-1),---,(N—1).

1]1)1)-1]1]1)-1]1 1]1)1(-1{-1{-1{1 -1
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Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex
numbers x and y are Golay complementary if the
sum of their auto-correlation functions satisfies.

corri(x) + corri(y) = 2Nék o

for k= —(N—-1),---,(N—1).

1/0/1/0/3/0/-1/8 -10]-1]10|-3|0]1)8

_|_

0/0/0/0|0|0]|0|16




Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex
numbers x and y are Golay complementary if the
sum of their auto-correlation functions satisfies.

corri(x) + corri(y) = 2Nék o

for k= —(N—-1),---,(N—1).

1/1)1-1j1]1]-1]1 1011 -1j-1]-1{1|-1
1]1)1)-1j1]1)-1]1 1]1])1)-1j-1|-1{1|-1
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_|_

0/0/0/0/0/0]0|16/0




Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex
numbers x and y are Golay complementary if the
sum of their auto-correlation functions satisfies.

corri(x) + corri(y) = 2Nék o

for k= —(N —1),-- (N —1).
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Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex
numbers x and y are Golay complementary if the
sum of their auto-correlation functions satisfies.

corri(x) + corri(y) = 2Nék o
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Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex
numbers x and y are Golay complementary if the
sum of their auto-correlation functions satisfies.

corri(x) + corri(y) = 2Nék o

for k= —(N —1),-- (N —1).
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Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex
numbers x and y are Golay complementary if the
sum of their auto-correlation functions satisfies.

corri(x) + corri(y) = 2Nék o

for k= —(N —1),-- (N —1).
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Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex
numbers x and y are Golay complementary if the
sum of their auto-correlation functions satisfies.

corri(x) + corri(y) = 2Nék o

for k= —(N —1),-- (N —1).
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1({1)1f-1)1(1]-1f1 1(1)1)-1f-1]-1f{1]|-1

1]0]1)0]|3]0|-1{8|-1{0|3|0[1]0 -1)10]-1]10]-3|0]1)8]1)0|-3]0|-1]0

_|_

0/0/0/0/0/0/0|16/0/0/0/0]0]|O0




Golay Complementary Sequences

Definition: Two length N unimodular sequences of complex
numbers x and y are Golay complementary if the
sum of their auto-correlation functions satisfies.

corri(x) + corri(y) = 2Nék o

for k= —(N —1),-- (N —1).

1(1)1-1)1)1(-1)1 1(1)1(-1)-1f-1]1 (-1
1(1)1f-1)1f1]-1f1 1(1)1)-1f-1]-1f{1]|-1
1/0/1/0/3/0/-18/-10/3/0/1/0/1 -1/0|-1{0|-3|0|1|8|1]|0|-3]0|-1{0|-1

0/0/0/0/0/0|0|16/0/0|/0|0/0]0]|O




Polarization Diversity, Alamouti Signaling and Golay Pairs

Alamouti space-time block code coordinates transmission on V and
H channels — columns represent different slots in time or frequency.

R=(n,n)= (hvv hVH> <WV _WH> +Z

huv  hun) \wn Wy
Conjugate Time Reversal:

wy =wy(D)=D"+D%+D°—-D*+D3+D*-D+1
Wy =Wy (D)=1+D+D>*~D*+D*+D* - DS+ D"  (wy(D"1)D")

Golay Property: wy iy + wyiy = 2dD¢

Matched Filtering;:

R( v WH> provides an estimate of <hVV hVH)
—wH  wy hav  huu
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The Heisenberg-Weyl Group W(Zy)

Radar Scene: Collection of point scatterers each of which delays
the waveform by some time 7 and Doppler shifts by some v

Hilbert Space CN: Dirac basis e,, v € 7.5 labeled by N = 2™
discrete time delays or ranges

Heisenberg-Weyl Group W(Zn): A(k,j) =), Wj€€£+k€g
where w = e2™/N and addition takes place modulo N

Zn-Golay Complementary Pairs o, 1:

o A(k,0)p +TA(k,0)p =0  for k #0
Tr((Py, + Py)A(k,0)) =0 for k #0

Note: The orthonormal basis D(a, b) from W(Z3") provides a sparse
representation of P, Py for many widely used sequences ¢, 9




Detection in Radar: Playing Twenty Questions with an

Unknown Operator
Mutual information

guides waveform
I(selection
Waveform )
Scheduling )
9n+1
On . Prediction of
Tx T Rx . Clutter Evolution
Sn —an A(k./ Sn+1 =TS, + w,
S 5,,9 + z, Kalman filter formalism tracks

b = By [sn(k, j)] + 2 clutter evolution
n — aen\ K, n
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Y
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Heisenberg-Weyl Groups and Radar
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Representation of the Operators A(k, )

Sa.j = support of the subspace spanned by A(k,j), k #0

111
Theorem: If j is odd then
_ 3. 100
m=23 (a,b) € Saj if and only if a # 0 and bp_1 =1
000

000 100 111
Lemma: Let w = e*™/N and let ¢(x) = 3, ¢;x' be a polynomial

with integer coefficients. Then
c(w) =0 if and only if ¢; = cj i n/2
Proof: p(x) = xN/2 4 1 is the minimal polynomial of w

To see that p(x) is irreducible, change variables x — y + 1 and
apply the Eisenstein irreducibility criterion for the prime 2.




The Subspace Sa j for j odd
(a,b) € Sk j odd (=) Tr(D(a, b)T A(k,j)) # 0
(a,b) & Sa; when a = 0: D(a, b) is diagonal and A(k, ) has zero
diagonal

Define £(i) as the column in A(k,j) containing w’ and note that ¢ is a
permutation since j is odd.

Tr(D(a, b)'A(k,j)) = ZC:w = (D(a, b)es, Ak, j)er)

4
G = eeT(,-HkD(a, b)er()

b1 = 05 D(a.0) = (A0 ) o (412

eliyrans2D(a b)ewiyinyz = el D(a, b)ex)

Hence ¢; = ¢iyn 2 and Tr(D(a, b)TA(k,j)) =0




The Subspace Sp j for j odd (contd.)

bm_1 = 1: NowD(a,b):<A_A>or<_AA>

G = e}(i)+kD(aa b)ef(i) = _Ci+N/2

As k runs through Zy so does (i) + k
Hence ¢; # 0 for some A(k,j) and (a, b) € Saj

Theorem: If j =2 (mod 4) then

b (a, b) € SA,J'<:>3750, bp-1=0

and either b,_o =1orapm_—o=1




The Subspace S j for j =2 (mod 4)

Define £(i) = {d € Zy|w' appears in column d of A(k, )}
The sets £(i) consist of pairs d,d + N/2 and these pairs are disjoint

Tr(D(a, b)T A(k,j)) = Z Ciw (polynomial in w?)
G = Z ed+k (a,b)e
del(i)
Ci+N/2 = Z e3+N/4+kD(a, b)ed+,\,/4
del(i)

0,b & Sa,i: D(0, b) is diagonal and A(k, j) has zero diagonal
(a,b) Q' SA’J' if bm—l =1:

o= (Ah) « (o)

e:§+kD(a, b)eq + ej”r,\l/z_H(D(a7 b)egins2 =0




The Subspace S j for j =2 (mod 4)

bn—1=0,bp_2=1:

A —A A A
—A A —A —A
A —A A A
—A A —A —A
00 01 A 12m2 10 11
eijD(a, bleq = _Cch+/v/4+kD(a’ b)eg and ¢; = —cjyn/2
bnm—1=0,byp_2 =0:
A A A A
A A A A
A A A A
A A A A
00 10 01 11

am—1am-2




The Subspace Sp j for j even

am—2 = 0: eL+kD(a, b)eq = eL+N/4+kD(a7 b)ey and
Ci = CitNy/2

am_2 = 1: eijD(a, b)eq = eL+N/2+k

If Cji 75 0 then Ci+N/2 =0

D(a, b)ey

Theorem: Let j = 2!/’ where 0 < t < m and j' is odd. Then
(a, b) € Saj if and only if the following hold:

1. a#0

2. bp1=0

3. either by_y—1=1lorapm_+1=1

4. bpy_o...by_t is covered by am—2...am—t

(here x = (x;) is covered by y = (y;) if the support of x is
contained in the support of y: that is y; = 0 implies x; = 0)




Representation of the Shift Operators A(k,0)

Theorem: (a, b) € Sp0 < a# 0, by—1 =0 and a covers b.
The support takes the form of a pair of Sirpinski triangles

(a,b) & Sap ifby_1 =1:

oo (410) « (f*)

eL+kD(a, b)eq = —eqin/24kD(a, b)eqin 2
so Tr(D(a, b)TA(k,0)) =0




7.-Golay Sequences from Zy-Golay Sequences

Let 0 = vamilzo f,e, and p = Zwmilzo Oy ey
We may view 6, ¢ as sequences 0, & of length 2™~ ! or as
sequences of length 2™ obtained by padding with zeros.

Proposition: 8, @ are Z-Golay complementary if 6, ¢ are Zy-Golay
complementary

Proof: Look at the Weyl transform of Py, P, and A(k,0)

Py, P, : A(k,0): ="

7

Ag(a, b) = (8, D(a, b)8) = 0




Budisin Golay Sequences

Found in orthonormal bases associated with particular maximal
commutative subgroups Xp — the interaction with A(k,0) is
determined by pairs (v, vP) where v covers vP

m:2:((1)

OO RO OW

(1)) (v, vP) = (11,11)

10

01 (v, vP) = (101,010) or (111,101)

10

100

010

. o 1| (v.vP)=(1101,1100),(1011,0011), (1111,1001)
010

Fibonacci sequence counts the number of pairs (v, vP)

» D(v,vP) anticommutes with D(0...0,10...0)




Picturing the Golay Property

0100
1010

P=1o 1 01
0010
©=D(0...0,10...0)0

P minimizes overlap (magenta) between the support of Py, P, (the
subgroup Xp shown in red) and the support of Sa o (black)
D(0...0,10...0) removes overlap between the support of

Py + P, and the support of Sa o

(Ag + Ag)(v, vP) = ((~1) + 1) Ag(v, vP) = 0




Symmetries of the Support of the Shift Operator

> dg'D(a, b)dg = D(a, b + aQ)

If a covers b and @ is diagonal then a covers b+ aQ. Conjugation
by dg fixes the support of the shift operators

> Sp: e, — e Where A s a permutation matrix
SytD(a,aP)Sa = D(aA, aPA) = D(a',a' AT PA)

Conjugation by S4 fixes the support of the shift operator

Fp Golay pairing determined by D(ag, by)
Fp Golay pairing determined by

(PP=ATPA+ Q) D(a0AT, boAT 4+ 20Q)




Classification of Golay Pairs in RM(2, m)

a(P): the equivalence class of all binary symmetric matrices that
can be obtained from P by simultaneous permutation of rows and
columns and by changing the diagonal

®: the Golay-Budisin equivalence class

Golay Property: Follows from the existence of a hyperplane
disjoint from all non-zero pairs (v, vP) where v covers vP

Theorem: © is the only equivalance class with the Golay property
Proof: Induction on m

It is enough to prove that ¢ is the only equivalence class with the
property that every matrix in the class has rank m —1 or m.

» if vP = wP = (v + w)P = 0 then every hyperplane contains
at least one of v,w and v+ w




Golay Quads and Beyond

o 1 0o 1 0 o o o o| IfvcoversvP then D(v,vP) anticom-
0o 0 1 0 1 o o o o | muteswitheither D(0...0,0...01)or
D(0...0,10...0)

Pairs (v, vP) are disjoint from a space
00 0 0 0 1 0 1 01 ofcodimension 2
0 0 0 0 0 0 1 0 1

L1 0o 0 O O 0 o0 1 ©

Golay Quads: Tr((016] + 6205 + 0305 + 0461)A(k,0)) = 0 for
k#0

Golay Number: Given an orthonormal basis Fp this is the

codimension of the largest subspace disjoint from all non-zero pairs

(v, vP) where v covers vP

Remark: Diagonal matrices have Golay number m




Unimodular Sequences and Orthonormal Bases

1
= ﬁ Z)\Vev

Proposition: Vectors D(0, b)# form an orthonormal basis if and
only if [A,| =1 for all v e ZJ

Proof: Moyal's Identity gives

(0.0)P = 1= 1 3" A3 B)Ae,(a,b)
a,b

Ao(a, b): Ae(a,b): |*] 0

[y
[y

Hence Ag(a, b) = (0, D(0, b)8) =0




The Geometry of Phase Coded Waveforms with the Golay
Property

Proposition: 6 and ¢ are a Golay pair if and only if

2

X, N2+ |(x,0)> = —=

[(x,0)I° + |(x, ©)] TN

where x is any vector in any orthonormal basis associated with a
diagonal maximal commutative subgroup Xg

Remark: @ has Golay number m, so x is as far from Golay as is
possible.




