
Radar Signal Processing

Sensitivity of Golay Pairs to Doppler
Doppler Resilient Golay Pairs

Prouhet-Thue-Morse Pulse Train

Radar Signal Processing



Sensitivity of Golay Pairs to Doppler

Pulse train of Golay pairs (x0, x1), . . . , (xN−2, xN−1):

Correlator output in the presence of Doppler shift:

G(k, θ) =
N−1∑
n=0

ejnθCxn(k)

where θ = −ωT is the relative Doppler shift over a PRI, and
Doppler shift at the chip rate is ignored.

We call G(k, θ) the “composite ambiguity function”.

Doppler shift perturbs the perfect auto-correlation property
and creates range sidelobes:

N−1∑
n=0

ejnθCxn(k)6=NLδk,0
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Sensitivity to Doppler

“Although the autocorrelation sidelobe level is zero, the ambiguity
function exhibits relatively high sidelobes for nonzero Doppler.”
[Levanon, Radar Signals, 2004, p. 264]

Range Sidelobes Problem: A weak target located near a strong
target can be masked by the range sidelobes of the ambiguity
function centered around the strong target.

Range-Doppler image
obtained with conventional
pulse train
x y · · · x y
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Doppler Resilient Golay Pairs

Question: Is it possible to design a Doppler resilient sequence
of Golay pairs (x0, x1), . . . , (xN−2, xN−1) so that for a
reasonable range of Doppler shifts

G(k, θ) =
N−1∑
n=0

ejnθCxn(k) ≈ NLδk,0

Design the Golay pairs so that the composite ambiguity
function has a high-order null along θ = 0.

Without resilience With resilience
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Doppler Resilient Golay Pairs

Approach: Select the Golay pairs (x0, x1), . . . , (xN−2, xN−1)
so that in the Taylor expansion of G(k, θ) around θ = 0 all
terms up to a certain order, say M , vanish at all nonzero
delays (become impulses).

Taylor expansion of G(k, θ) around θ = 0:

G(k, θ) =
∞∑
m=0

Dm(k)(jθ)m,

Dm(k) =
N−1∑
n=0

nmCxn(k), for m = 0, 1, 2, 3, . . .

Objective: Design (x0, x1), . . . , (xN−2, xN−1) so that Dm(k),
m = 1, . . . ,M vanish at all nonzero delays.
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Doppler Resilient Golay Pairs: 1st Order

Transmit 2 Golay pairs (x0, x1) and (x2, x3) over 4 PRIs.

Making D1(k) vanish:

D1(k) = 0Cx0(k) + Cx1(k)︸ ︷︷ ︸ + 2Cx2(k) + 3Cx3(k)︸ ︷︷ ︸
1Cx1(k) 2× 2Lδk,0 + 1Cx3(k)︸ ︷︷ ︸

3× 2Lδk,0

Condition: Golay pairs (x0, x1) and (x2, x3) must be selected
such that (x1, x3) is also a Golay pair.

Example: x0 x1 x2 x3

x y y x

where (x, y) is an arbitrary Golay pair.
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Doppler Resilient Golay Pairs: 1st & 2nd Order

Transmit 4 Golay pairs (x0, x1), . . . , (x6, x7) over 8 PRIs.

Making D1(k) vanish:

0Cx0 (k) + 1Cx1 (k)︸ ︷︷ ︸ + 2Cx2 (k) + 3Cx3 (k)︸ ︷︷ ︸ + 4Cx4 (k) + 5Cx5 (k)︸ ︷︷ ︸ + 6Cx6 (k) + 7Cx7 (k)︸ ︷︷ ︸
2× 2Lδk,0 + 4× 2Lδk,0 + 6× 2Lδk,0+

[(1− 0) = 1]Cx1 (k) [(3− 2) = 1]Cx3 (k)︸ ︷︷ ︸ [(5− 4) = 1]Cx5 (k) [(7− 6) = 1]Cx7 (k)︸ ︷︷ ︸
3× 2Lδk,0 11× 2Lδk,0

Condition: Golay pairs must be selected such that (x1, x3)
and (x5, x7) are also Golay pairs.
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Doppler Resilient Golay Pairs: 1st & 2nd Order

Making D2(k) vanish:

0
2
Cx0 (k) + 1

2
Cx1 (k)︸ ︷︷ ︸ + 2

2
Cx2 (k) + 3

2
Cx3 (k)︸ ︷︷ ︸ + 4

2
Cx4 (k) + 5

2
Cx5 (k)︸ ︷︷ ︸ + 6

2
Cx6 (k) + 7

2
Cx7 (k)︸ ︷︷ ︸

4× 2Lδk,0 + 16× 2Lδk,0 + 36× 2Lδk,0+

[(1
2 − 0

2
) = 1]Cx1 (k) [(3

2 − 2
2
) = 5]Cx3 (k)︸ ︷︷ ︸ [(5

2 − 4
2
) = 9]Cx5 (k) [(7

2 − 6
2
) = 13]Cx7 (k)︸ ︷︷ ︸

5× 2Lδk,0 + 61× 2Lδk,0+

[(3
2 − 2

2 − 1
2

+ 0
2
) = 4]Cx3 (k) [(7

2 − 6
2 − 5

2
+ 4

2
) = 4]Cx7 (k)︸ ︷︷ ︸

[(02 + 12 + 22 + . . . + 72) = 70]× 2Lδk,0

Condition: Golay pairs must be selected such that (x1, x3),
(x5, x7), and (x3, x7) are also Golay pairs.

Example:
x0 x1 x2 x3 x4 x5 x6 x7

x y y x y x x y
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Prouhet-Thue-Morse (PTM) Sequence

Is there a Pattern? Yes, it’s the Prouhet-Thue-Morse
sequence!

1st order: PTM sequence of length 4 = 21+1

x0 x1 x2 x3

x y y x

0 1 1 0

2nd order: PTM sequence of length 8 = 22+1

x0 x1 x2 x3 x4 x5 x6 x7

x y y x y x x y

0 1 1 0 1 0 0 1
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PTM Pulse Train: Up to Order M

Prouhet-Thue-Morse Sequence: The nth term in the PTM
sequence pn is the sum of the binary digits of n mod 2:

n (0)=0000 (1)=0001 (2)=0010 (3)=0011
pn 0 1 1 0

Theorem: To zero-force up to M Taylor moments, coordinate
the transmission of a Golay pair (x, y) according to the length
N = 2M+1 PTM sequence, with 0 locations corresponding to
x and 1 locations corresponding to y.

The result is the PTM pulse train, which is resilient to modest
Dopplers.
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Length-256 PTM Pulse Train: Zero-Forcing 7 Moments

Conventional Doppler Resilient

Parameters: f0 = 17 GHz and T = 0.5 µsec, Tc = 100 nsec.
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PTM Pulse Train in Action

Conventional (Alternating) Doppler Resilient (PTM)

By transmitting a Golay pair according to the PTM sequence we
can clear out the range sidelobes along modest Doppler shifts.
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Why PTM Sequence?

Look at the calculations for zero-forcing the 1st and 2nd order
moments.

Key is partitioning of S = {0, 1, . . . , 7} into disjoint subsets
S0 = {0, 3, 5, 6} and S1 = {1, 2, 4, 7} that satisfy

(0m+3m+5m+6m)−(1m+2m+4m+7m) = 0, for m = 1, 2.

Prouhet’s Problem: Let S = {0, 1, . . . , N − 1}. Given M , is it
possible to partition S into two disjoint subsets S0 and S1

such that ∑
r∈S0

rm =
∑
q∈S1

qm

for all 0 ≤ m ≤M?

Solution: Possible when N = 2M+1. The partitions are
identified by the PTM sequence.
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