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Doppler Resilient Pulse Trains

p-Pulse Train: Transmission of a Golay pair x and y is
coordinated according to a unimodular sequence p = {pn},
n = 0, . . . , 2M − 1 over N = 2M PRIs.

At nth PRI: 1
2(1 + (−1)pn)x+ 1

2(1− (−1)pn)y

Composite ambiguity function:

G(k, θ) =
1

2
[Cx(k) + Cy(k)]

2M−1∑
n=0

e
jnθ

︸ ︷︷ ︸
+

1

2
[Cx(k)− Cy(k)]

2M−1∑
n=0

(−1)
pne

jnθ

︸ ︷︷ ︸
Sidelobe free Range sidelobes

Key observation: Magnitude of range sidelobes are
proportional to the magnitude of the spectrum of the
sequence (−1)pn :

Sp(θ) =
2M−1∑
n=0

(−1)pnejnθ

Approach: Design p = {pn} to shape the spectrum Sp(θ).
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PTM Pulse Train

The PTM pulse train clears out the range sidelobes in a
Doppler interval around the zero-Doppler axis.

Length-2M PTM sequence zero forces low-order terms of the
Taylor expansion of Sp(θ) around θ = 0:

S
(m)
p (0) = 0, m = 1, . . . ,M − 1

Theorem: The PTM pulse train of length 2M has the
following composite ambiguity function:

G(k, θ) = ej(2
M−1−1)θ sin(2Mθ/2)

sin(θ/2)
Lδk,0 +

1
2

(
M−1∏
m=0

(1− ej2
mθ)

)
[Cx(k)− Cy(k)]

= ej(2
M−1−1)θ sin(2Mθ/2)

sin(θ/2)
Lδk,0

+
1
2

[(−j)M2M(M−1)/2θM +O(θM+1)][Cx(k)− Cy(k)]
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PTM Pulse Train

Proof:

Sp(θ) =
2M−1∑
n=0

(−1)pnejnθ

=
1∑

n0=0

· · ·
1∑

nM−1=0

(−1)n0+...+nM−1ej(n02
0+n12

1+...+nM−12
M−1)θ

=
M−1∏
m=0

(1− ej2
mθ) =

M−1∏
m=0

Λm(θ)

where Λm(θ) = 1− ej2mθ. Since Λm(0) = 0, we have

S(`)
p (0) = 0, if ` < M,

and

S(M)
p (0) = M !

M−1∏
m=0

Λ(1)
m (0) = (−j)M2M(M−1)/2M !
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Sidelobe Suppression at Higher Doppler Frequencies

Question: Can we clear out range sidelobes in other Doppler
intervals?

Theorem: The k-oversampled PTM sequence of length 2Mk
produces an M th order null at θ = 2π`/k for all co-prime ` and k.

Corollary: Oversampled PTM produces an (M − 1)th order null at
θ = 0 and (M − h− 1)th order nulls at all θ = 2π`/2hk.

Example: M = 3, k = 3 −→ {pn} = 000111111000 · · ·
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Reed-Müller Pulse Trains

First order Reed-Müller code RM(1,M) consists of 2M code
words of the form

rb(n) =
2M−1∑
m=0

bmnm for n = 0, · · · , 2M − 1

where nm denotes the mth binary digit of n.

Walsh functions are the exponentiated Reed-Müller codes

wb(n) = (−1)rb(n), for n = 0, · · · , 2M − 1

The length-2M PTM sequence is equal to rb(n) with
b = (1, 1, . . . , 1), and (−1)rb(n) is its corresponding Walsh
function.
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Reed-Müller Pulse Trains

Theorem: For a Reed-Müller code pn = rb(n) of length 2M

the magnitude spectrum |Sp(θ)| is given by

|Sp(θ)| =

∣∣∣∣∣∣
2M−1∑
n=0

(−1)rb(n)ejnθ

∣∣∣∣∣∣
= 2M

M−1∏
m=0
bm=0

| cos(2m−1θ)|
M−1∏
m=0
bm=1

| sin(2m−1θ)|

where bm, m = 0, . . . ,M − 1 is the mth entry in the binary
M -tuple b.

Proof: Homework

Question: Given a Doppler interval, which first-order RM (or
Walsh function) minimizes |Sp(θ)|?
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Reed-Müller Pulse Trains

|Sp(θ)| is 2π−periodic. Only need to look at 0 ≤ θ ≤ 2π.

|Sp(θ)| = 2M
M−1∏
m=0
bm=0

| cos(2m−1θ)|
M−1∏
m=0
bm=1

| sin(2m−1θ)|

Theorem: Among first order Reed-Müller codes of length 2M

there is a single code which minimizes |Sp(θ)| across the
entire Doppler interval [πk/2M , π(k + 1)/2M ], where k is an
integer.

This allows us to clear out the range sidelobes along a
particular Doppler bin.
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Reed-Müller Pulse Trains

Proof:

|Sp(θ)| = 2M
M−1∏
m=0
bm=0

| cos(2m−1θ)|
M−1∏
m=0
bm=1

| sin(2m−1θ)|

= 2M
M−1∏
m=0

| cos(2m−1θ +
π

2
bm)|

Minimize one by one to find the optimal RM code:

bm =

{
1, 2mθ ∈ [0, π2 ] ∪ [3π2 , 2π] mod(2π)

0, otherwise

For all θ inside a given Doppler interval [πk/2M , π(k + 1)/2M ] the
minimizers bm, m = 0, 1, . . . ,M − 1 stay unchanged.
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Reed-Müller Pulse Train in Action

Suppose we want to minimize sidelobes in the region of
θ = 0.25 using an RM pulse train of length 256.

This means minimizing |Sp(θ)| in the interval
[20π/256, 21π/256].

The right sequence is rb(n), with b being the binary
representation of 135.
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Clearing Doppler Sidelobes

Time-Domain PAM:

z(t) =
M−1∑
m=0

ams(t−mTc)

Impulse in Delay:

χz(τ, ν) =

∞∫
−∞

z(t)z(t− τ)e−jνt

≈ δ(τ)α(ν), ∀ν ∈ ∆ν

Frequency-Domain PAM:

z(ω) =
M−1∑
m=0

ams(ω −mWc)

Impulse in Doppler:

χz(ν, τ) =

∞∫
−∞

z(ω)z(ω − ν)e−jτω

≈ δ(ν)α(τ), ∀τ ∈ ∆τ
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PTM Sequencing Across Frequency

Time-domain OFDM ⇐⇒ Frequency-domain PAM

Z(t) =
(
M−1∑
m=0

ame
−jmωct

)
S(t) ⇐⇒ z(ω) =

M−1∑
m=0

ams(ω −mWc)
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Clearing in a Desired Range/Doppler Interval

Sequencing in Time:

Stacking in Frequency:

Game: Shaping the spectrum of the coordinating sequence
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