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Fully Polarimetric Radar

Fully polarimetric radar systems: Able to transmit and receive
in two orthogonal polarizations simultaneously

Scattering matrix:(
hV V hV H
hHV hHH

) hV H is scattering coefficient into verti-
cal polarization channel from horizontally
polarized incident field.
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Fully Polarimetric Radar: Scattering Matrix

Raytheon XPatch simulation of polarization scattering matrix
for a missile approaching a large complex target

Is it possible to make polarization scattering matrix available
on a pulse by pulse basis at a computational cost comparable
to single-channel matched filtering?
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Golay Pairs for Radar Polarimetry: Polamouti

Alamouti space-time block code is used to coordinate transmission
on V and H channels

Columns represent different time slots:

R =
(
hV V hV H
hHV hHH

)(
x −ỹ
y x̃

)
+ Z

Idealized model: zero mean Gaussian iid

target covariance matrix Λ = 2σ2I(2×2)

noise is zero-mean AWGN with power 2N0

Unitary property: Interplay between Alamouti signal
processing and perfect autocoorelation property of Golay pairs(

x −ỹ
y x̃

)(
x̃ ỹ
−y x

)
=
(

2Lδk,0 0
0 2Lδk,0

)
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Target Detection

Gaussian hypothesis test:

x, y: unit energy pulses

Et: total transmit energy across two polarization
channels

q = vec R

(
x̃ ỹ
−y x

)
=

{
2
√
Et/4h+ n : H1

n : H0

H1: hypothesis that target is present

Note: E[nnH ] = 2N0I

Baseline: Target detection for single channel radar, with total
transmit energy Et
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Probability of False Alarm and Probability of Detection

Energy Detector: (
‖q‖2 ∼ χ2

8

)H1

≷
H0

γ

Probability of False Alarm PF :

PF = Pr(‖q‖2 > γ|H0) = Φ
(

γ
2N0

)
where Φ(x) =

(
1 + x+ x2

2! + x3

3!

)
e−x

Probability of Detection PD:

PD = Pr(‖q‖2 > γ|H1) = Φ
(

γ

2σ2Et + 2N0

)
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Comparison to Single-Channel Radar

Van Trees (Chapter 9): ROC curve for single channel radar

PF = PS+1
D

where S = σ2Et/N0 is the
SNR at the receiver

S′ =
SNR required by conventional radar to match
probability of detection PD for a given probabil-
ity of false alarm PF

=
log
[
Φ
(

γ
2N0

)/
Φ
(

γ
2N0(S+1)

)]
log Φ

(
γ

2N0(S+1)

)
where Φ(x) =

(
1 + x+ x2

2! + x3

3!

)
e−x

Figure of Merit = S′/S (dB)
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Performance Improvement Is Significant

Enables radar polarimetry on a pulse by pulse basis.

Range extension and better target discrimination.
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Extra SNR required for a

singly-polarized system to get

the same probability of detection

as the Polamouti system.

Raytheon XPatch simulation

shows that gains predicted by

the simple model are preserved

for a large complex target after

pulse integration.
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Extension to 4-by-4 case

Alamouti block code is used to coordinate transmission of
Golay pairs across polarizations and antennas:

W4×4 =

(
W2×2 −W̃2×2

W2×2 W̃2×2

)

where W2×2 is a Polamouti matrix.

Unitary property:

W4×4W̃4×4 = (4Lδk,0)I4×4
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Performance Improvement Is Significant

Extra SNR required for the
single-channel to get the same
PF and PD as Pol. Div. and
Pol. & Space Div. systems

Comparison of ROC curves for
single-channel, polarization
diversity, and multi-antenna
polarization diversity systems
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Doppler Effect on Polamouti

Doppler effect over N = 4 PRIs:

(
x0 −x̃1e

jθ x2e
j2θ −x̃3e

j3θ

x1 x̃0e
jθ x3e

j2θ x̃2e
j3θ

) x̃0 x̃1

−x1 x0

x̃2 x̃3

−x3 x2

 6= (4Lδk,0 0
0 4Lδk,0

)

Question: How to zero-force the low-order terms of the Taylor
expansions of the diagonal and off-diagonal terms?

Diagonal term is the same as the composite ambiguity
function of Golay pairs (x0, x1) and (x2, x3).

PTM sequence? Yes!
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Doppler Resilient Polamouti

Theorem: To zero-force up to M − 1 Taylor moments of the
diagonal and off-diagonal terms, coordinate the transmission
of the Alamouti matrices

X0 =
(
x −ỹ
y x̃

)
and X1 =

(
−ỹ −x
x̃ −y

)
according to the length N = 2M PTM sequence, where 0
locations correspond to X0 and 1 locations correspond to X1.

Example: Zero-forcing three moments

X0 X1 X1 X0 X1 X0 X0 X1

Over-sampled PTM and Reed-Müller extension are possible.

Extension to 4 by 4 cases are also possible.
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Doppler Resilient Polamouti: Numerical Results

Zero-forcing 3 moments (diagonal term):

Alternating (conventional) Doppler resilient

θ = 0.025 rad θ = 0.05 rad θ = 0.075 rad

24 dB gain 28 dB gain 29 dB gain
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Doppler Resilient Polamouti: Numerical Results

Zero-forcing 3 moments (off-diagonal term):

Alternating (conventional) Doppler resilient

θ = 0.025 rad θ = 0.05 rad θ = 0.075 rad

24 dB gain 12 dB gain 5 dB gain
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