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Introduction
What is Compressive Sensing?

When sample by sample measurement is expensive and
redundant:

Compressive Sensing:
Transform to low dimensional
measurement domain

Machine Learning:
Filtering in the measurement
domain
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Take-Home Message

Compressed Sensing is a Credit Card!

We want one with no hidden charges

Robert Calderbank et al. Fast Sensing Matrices and Applications



Geometry of Sparse Reconstruction

Restricted Isometry Property (RIP): An N × C matrix A
satisfies (k, ǫ)-RIP if for any k-sparse signal x:

(1− ǫ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ǫ)‖x‖2.

Theorem [Candes,Tao2006]:
If the entries of

√
NA are iid sampled from

N(0, 1) Gaussian
U(−1, 1) Bernoulli

distribution, and N = Ω
(

k log(C
k )

)

, then with probability 1− e−cN ,
A has (k, ǫ)-RIP.

Reconstruction Algorithm [Candes,Tao 2006 and Donoho 2006]:
If A satisfies (3k, ǫ)-RIP for ǫ ≤ 0.4, then given any k-sparse
solution x to Ax = b, the linear program

minimize ‖z‖1 such that Az = b

recovers x successfully, and is robust to noise.

Robert Calderbank et al. Fast Sensing Matrices and Applications



Expander Based Random Sensing

A: Adjacency matrix of a (2k, ǫ)
expander graph

- No 2k-sparse vector in the null
space of A

Theorem [Jafarpour, Xu, Hassibi,

Calderbank 2008]: If ǫ ≤ 1/4, then for any
k-sparse solution x to Ax = b, the solution
can be recovered successfully in at most 2k
rounds.

Gap: gt = b − Axt

RHS proxy for difference between xt and x.

ALGORITHM. Greedy reduction of gap.
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Two recent results
Performance Bounds for Expander Sensing with Poisson Noise

Let A: adjacency matrix of an expander graph

x∗: sparse

Noisy compressed sensing measurements y in Poisson model

x̂ = arg min
∑N

j=1 ((Ax)j − yj log(Ax)j) + γpen(x)
Optimization over the simplex (positive values)

pen: a well chosen penalty function.

Then x̂ ≈ x∗

Two recent results



k-Sparse Reconstruction with Random Sensing Matrices

Approach Measurements Complexity Noise RIP
N Resilience

Basis Pursuit k log
`

C
k

´

C3 Yes Yes
(BP) [CRT]

Orthogonal Matching k logα(C) k2 logα(C) No Yes
Pursuit (OMP) [GSTV]

Group Testing [CM] k logα(C) k logα(C) No No

Greedy Expander k log
`

C
k

´

C log
`

C
k

´

No RIP-1
Recovery[JXHC]

Expanders (BP) [BGIKS] k log
`

C
k

´

C3 Yes RIP-1

Expander Matching k log
`

C
k

´

C log
`

C
k

´

Yes RIP-1
Pursuit(EMP) [IR]

CoSaMP [NT] k log
`

C
k

´

Ck log
`

C
k

´

Yes Yes

SSMP [DM] k log
`

C
k

´

Ck log
`

C
k

´

Yes Yes
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Random Signals or Random Filters?

Random Sensing
1 Outside the mainstream of signal processing: Worst Case

Signal Processing
2 Less efficient recovery time
3 No explicit constructions
4 Larger storage
5 Looser recovery bounds

Deterministic Sensing
1 Aligned with the mainstream of signal processing : Average

Case Signal Processing
2 More efficient recovery time
3 Explicit constructions
4 Efficient storage
5 Tighter recovery bounds
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k-Sparse Reconstruction with Deterministic Sensing

Matrices

Approach Measurements Complexity Noise RIP
N Resilience

LDPC Codes [BBS] k log C C log C Yes No

Reed-Solomon k k2 No No
codes [AT]

Embedding ℓ2 spaces k(log C)α C3 No No
into ℓ1 (BP) [GLR]

Extractors [Ind] kCo(1) kCo(1) log(C) No No

Discrete chirps [AHSC]
√

C kN log N Yes StRIP

Delsarte-Goethals 2
√

log C kN log2 N Yes StRIP
codes [CHS]
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StRIP is Simple to Design

A: N × C matrix satisfying

columns form a group under pointwise multiplication

rows are orthogonal and all row sums are zero

α: k-sparse signal where positions of the k nonzero entries are equiprobable

Theorem: Given δ with 1 > δ > k−1
C−1 , then with high probability

(1− δ)‖α‖2 ≤ ‖Aα‖2 ≤ (1 + δ)‖α‖2

Proof: Linearity of expectation

E
[

‖Aα‖2
]

≈ ‖α‖2

VAR
[

‖Aα‖2
]

→ 0 as N →∞
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Two recent results
Uniqeness of sprase representation and `1 receovery

McDiarmid’s inequality: Given a function f for which
∀ x1, · · · , xk, x′i :∣∣f(xi, · · · , xi, · · · , xk)− f(xi, · · · , x′i, · · · , xk)

∣∣ ≤ ci,
and given X1, · · · , Xk independent random variables. Then

Pr [f(X1, · · · , Xk) ≥ E[f(X1, · · · , Xk)] + η] ≤ exp
(
−2η2∑
c2i

)
.

Relaxed assumption:

∀ i, j :

∣∣∣∣∣|∑
x

ϕi(x)|2 − |
∑
x

ϕj(x)|2
∣∣∣∣∣ ≤ N2−η,

Then:
1 Uniqueness of sparse representation
2 `1 recovery of complex Steinhaus (random phase arbitrary

magnitude) signals.

Two recent results



Kerdock Sets

Kerdock set Km: 2m binary symmetric m×m matrices

Tensor C0(x, y, a) : F2m × F2m × F2m → F2 given by

Tr[xya] = (x0, . . . , xm−1)P
0(a)(y0, . . . , ym−1)

T

Theorem: The difference of any two matrices P 0(a) in Km is nonsingular

Proof: Non-degeneracy of the trace

Example: m = 3, primitive irreducible polynomial g(x) = x3 + x + 1

P
0
(100) =

0

@

1 0 0
0 0 1
0 1 0

1

A , P
0
(010) =

0

@

0 0 1
0 1 0
1 0 1

1

A , P
0
(001) =

0

@

0 1 0
1 0 1
0 1 1

1

A
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Delsarte-Goethals Sets

Tensor Ct(x, y, a) : F2m × F2m × F2m → F2 given by

Ct(x, y, a) = Tr[(xy2t

+ x2t

y)a]

= (x0, . . . , xm−1)P
t(a)(y0, . . . , ym−1)

T

Delsarte-Goethals Set DG(m, r): 2(r+1)m binary symmetric m×m matrices

DG(m, r) =

{

r
∑

t=0

P t(at)|a0, . . . , ar ∈ F2m

}

Framework for exploiting prior information about the signal

Theorem: The difference of any two matrices in DG(m, r) has rank at
least m− 2r

Proof: Non-degeneracy of the trace
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Incorporating Prior Information
Via the Delsarte-Goethals Sets

The Delsarte-Goethals structure imparts an order of
preference on the columns of a Reed-Muller sensing matrix

Km = DG(m, 0) ⊂ DG(m, 1) ⊂ · · · ⊂ DG

(

m,
m− 1

2

)

Better inner products←→Worse inner products
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If a prior distribution on the positions of the sparse
components is known, the DG structure provides a means to
assign the best columns to the components most likely present
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Reed-Muller Sensing Matrices

A =
[

φP,b(x)
]

: P ∈ DG(m, r), b ∈ Z
m
2

A has N = 2m rows and C = 2(r+2)m columns

φP,b(x) = iwt(dp)+2wt(b)ixPxT +2bxT

Union of 2(r+1)m orthonormal basis ΓP

Coherence between bases ΓP and ΓQ determined by
R = rank(P + Q)

Theorem: Any vector in ΓP has inner product 2−R/2 with 2R vectors
in ΓQ and is orthogonal to the remaining vectors

Proof: Exponential sums or properties of the symplectic group

Sp(2m, 2)
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Quadratic Reconstruction Algorithm

f(x+a)f(x) =
1

N

k
∑

j=1

|αj |2(−1)aPjxT

+
1

N

∑

j 6=t

αjαtφ
Pj ,bj (x+a)φPt,bt(x)

1
N

∑k
j=1 |αj |2(−1)aPjxT

: Concentrates energy at k Walsh-Hadamard tones.

1
N

∑k
j=1 |αj |4: Signal energy in the Walsh-Hadamard tones

The second term distributes energy uniformly across all N tones – the lth

Fourier coefficient is

Γl
a =

1

N3/2

∑

j 6=t

αjαt

∑

x

(−1)lxT

φPj ,bj (x + a)φPt,bt(x)

Theorem: limN→∞ E[N2|Γl
a|2] =

∑

j 6=t |αj |2|αt|2

[Note: ‖f‖4 =
(

∑

x,a |f(x + a)f(x)|2
)2

]
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Quadratic Reconstruction Algorithm

Example: N = 210 and C = 255
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Fundamental Limits

Information Theoretic Rule of Thumb: Number of measurements N
required by Basis Pursuit satisfies

N > k log2

(

1 +
C

k

)

RM(2,m) : C = 255, k = 20
N = 1024 versus 1014

Kerdock Sensing: C = 220, k = 70
N = 1024 versus 971
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500

K (# components)
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Deterministic Compressive Sampling of Images
Preliminary Results with Medical Images

Still images with controlled sparsity are reconstructed with
good fidelity using compressive sensing with chirp matrices:

Original 128× 128 image

Sparsified image

Daubechies-4 wavelet expansion
10% of coefficients (1636) retained

Image reconstructed with
deterministic algorithm from 4099
chirp measurements

About 4:1 compression
Essentially lossless reconstruction
of sparsified image
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Low Power Spread Spectrum Communication

Deutsche Telekom: Energy cost of operations greater than people
cost

Orthogonal CDMA: RM(1,m)

1 Walsh function ↔ 1 bit to 1 user

Compressive CDMA: RM(2,m)

1 column ↔ 1 bit to

(

m
2

)

users

↔
(

m
2

)

bits to 1 user

Φ =



 φPi,bi





2m×2

 

m + 1
2

!

m=10:

X =
5

∑

i=1

√

WiφPi,bi

Wi = power of signal intended for ith annulus
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Preliminary Assessment of Energy Savings
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Orthogonal CDMA
Compressive sensing based CDMA

Factor of 2 gain

Orthogonal CDMA: Many
Sequences, No Interference,
Low signal processing
complexity

Compressive CDMA: Few
Sequences, Interference,
More complex signal
processing

m=10, k=5 : MATLAB implementation of k-sparse signal
reconstruction ≈ 1/20 seconds
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Using Chirps for A/D Conversion

Application: Sparse signals of tones over large band
|X(f)|

f

Idea: Non-uniform sampling to convert pure tones to chirps

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

→
0 2 4 6 8 10 12 14 16 18 20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Leverage RIP results from compressed sensing measurements
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Motivation: A/D Metrics and Progress

Standard Performance metric

P = 2SNR Bitsfsampling

Captures bandwidth/resolution trade-off. Eg: ∆Σ modulation

[Walden (1999)] Slow rate of progress: 1.5 bit increase / 8
Years

Pipeline/
SubrangingIntegrating

Σ−∆

Successive Approx

Flash

Audio, Voiceband

Data Acquisition

IF Sampling, Soft. Radio
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Motivation: Nyquist Folding Analog-to-Information

Receiver [G. Fudge et al.]

Sampling at zero-crossing of a phase-modulated signal
Undersampling aliases “Nyquist zones” together
Stretching/reflection of phase-modulation resolves “Nyquist
zone”
Recovery visualized by spectrogram
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Chirp Sampling

Chirp Sample times: tn = nT + n2Tǫ

Converts pure tones to linear chirps

ejωt → ejωTn+jωTǫn2

Can pick T > 1
bandwidth (under sampling)

Discretized Model:

Pick P,Q with Q prime, P / Q
Sample times tn = AQn + BPn2 for A,B ∈ Z

n = 0, 1, . . . , P − 1

e2πj k
P Q

t → e2πj Ak
P

ne2πj Bk
Q

n2

Robert Calderbank et al. Fast Sensing Matrices and Applications



Recovery Conditions via Compressed Sensing

Properties of Θ

Columns form a group
Rows are a tight frame

Bound on column sum / inner-product

∣

∣

∣

∣

∣

P−1
∑

n=0

e2πj α
P

ne
2πj

β

Q
n2

∣

∣

∣

∣

∣

≤ CP 1−
δ
2 δ ≈ 1

for constant C independent of P, Q.
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Rife and Boorstyn Style Estimation Bounds

For P signal samples in noise given by

Zn = bejωtn + Wn Wn ∼ NC(0, 2σ2)

Cramér-Rao lower bound on ω̂ with unknown b

var{ω̂} ≥ σ2

|b|2(S2 − S2
1/P )

where

S1 =

P−1
∑

n=0

tn , S2 =

P−1
∑

n=0

t2n

Uniform sampling: tn = nT

var{ω̂} ≥ σ2

|b|2
12

T 2P (P 2 − 1)

Chirp sampling: tn = nT + n2Tǫ

var{ω̂} ≥ σ2

|b|2
1

T 2O(ǫ2P 5)
CRLB is Achievable with good SNR
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Recovery from Chirp Sampling

Can leverage efficiency of FFT after simple transform, converting
chirps to tones

f [n] = ȳ[n]y[n + D]

= |b1|ejω1D2Tǫ+jω1DT ej2ω1DTǫn + |b2|ejω2D2Tǫ+jω2DT ej2ω2DTǫn

+ · · ·+ cross terms

FFT upon f [n] gives initial estimates of ωi from which we can
narrow the search

Initial FFT on f [n]
Rife Boorstyn refine-
ment on ωi from f [n]

Final refinement on
original samples y[n]
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Simulation Results

Parameter Value
P Samples 256
T Sample Rate 1/200 s
ǫ Relative Chirp rate 1/10

fmax Observed BW 1000 Hz
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Passive Network Monitoring

Current methods

fine grained analysis at a
single node or flow

collection of coarse statistics
network wide

Limitations

fail to leverage diverse
detailed data from multiple
vantage points

too complex to extract
knowledge from massive
high-dimensional datasets
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Challenge: Missing data

Recovery of low rank matrices: Keshavan, Montanari & Oh’09

M - n×m random matrix with rank r

M = UV where U , V are independent random matrices with i.i.d. entries

M can be recovered up to precision δ from a random subset of C(r, δ)n
observations. This can be accomplished efficiently via stochastic local
search.

Verification of low rank: Rigidity Theory of matrices A. Singer

M is rank r, for example Mij =< ci, cj > ci ∈ R
r

Given m entries, realization is rigid in r dimensions (completable) if for all
observed (i, j)

< ci, vj > + < cj , vi >= 0 ≡ dim(null(C)) ≤ r(r − 1)/2
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Monitoring Infrastructure

Content Distribution Network running on Planetlab
Monitors

E
n
d
 H

o
s
ts

Monitors: Subset of Planetlab P nodes End Hosts: Clients c, Sources S
Remaining Planetlab P nodes
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Compressive Learning

Is it possible to find needles in
compressively sampled
haystack?

If features can be learned in
data domain, can they also be
learned in the measurement
domain?
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Near Optimal Linear Classifier
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Adaptive Compressed Sensing: Block Diagram

[Castro, Haup, Nowak: AISTAT 09]: Distilled Sensing:
Selective Sampling for Sparse Signal Recovery.
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