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Introduction

What is Compressive Sensing?

@ When sample by sample measurement is expensive and
redundant:

—
o Compressive Sensing: e v)

@ Transform to low dimensional
measurement domain Maraeibate

Xatr

‘Compressed,

image dats sentva RF
o

@ Machine Learning:

@ Filtering in the measurement
domain
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Take-Home Message

Compressed Sensing is a Credit Card!

We want one with no hidden charges

Robert Calderbank et al. Fast Sensing Matrices and Applications



Geometry of Sparse Reconstruction

o Restricted Isometry Property (RIP): An N x C matrix A
satisfies (k, €)-RIP if for any k-sparse signal x:

(1 =a)lzlz < [[Az]2 < (1 + €)||z[l2-

@ Theorem [Candes, Tao2006]:
If the entries of \/NA are iid sampled from
2 N(0,1) Gaussian
@ U(—1,1) Bernoulli
distribution, and N = Q (klog(£)), then with probability 1 — e,
A has (k, €)-RIP.

@ Reconstruction Algorithm [Candes, Tao 2006 and Donoho 2006]:
If A satisfies (3k, €)-RIP for € < 0.4, then given any k-sparse
solution @ to Ax = b, the linear program

minimize ||z||; such that Az =b

recovers x successfully, and is robust to noise.
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Expander Based Random Sensing

A: Adjacency matrix of a (2k,¢)

expander graph ® G
- No 2k-sparse vector in the null o # NoGap
space of A ® ey
. N\ : (1-2¢)d
- 2
Theorem [Jafarpour, Xu, Hassibi, %a=%+g @ d“"\k\;\l\\ ’ e
Calderbank 2008]: If € < /4, then for any ¢ 9 witﬁfamzr;p
k-sparse solution & to Az = b, the solution . . o
can be recovered successfully in at most 2k O ]
rounds. [
. e c
Gap: g, = b — Az ® ™ L
RHS proxy for difference between x, and x. L
C

ALGORITHM. Greedy reduction of gap.
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Two recent results
Performance Bounds for Expander Sensing with Poisson Noise

Let A: adjacency matrix of an expander graph

x*: sparse

Noisy compressed sensing measurements y in Poisson model
% = arg min Zjvzl ((Az); — y;log(Ax);) + ypen(z)
Optimization over the simplex (positive values)

pen: a well chosen penalty function.

e 6 66 6 o o o

Then z ~ z*

Two recent results



k-Sparse Reconstruction with Random Sensing Matrices

Approach Measurements | Complexity Noise RIP
N Resilience
Basis Pursuit klog (%) c? Yes Yes
(BP) [CRT]
Orthogonal Matching klog®(C) k*1og®(C) No Yes
Pursuit (OMP) [GSTV]
Group Testing [CM] klog™(C) klog™(C) No No
GRreedy ETpande]r klog (<) Clog (%) No RIP-1
ecovery[JXHC
Expanders (BP) [BGIKS] klog (%) c? Yes RIP-1
E;pansie(l'ElltA/l;t)cPEin]g klog (%) Clog (£) Yes RIP-1
ursuit IR
CoSaMP [NT] klog (%) Cklog (%) Yes Yes
SSMP [DM] klog (£) Cklog (£) Yes Yes
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Random Signals or Random Filters?

@ Random Sensing

@ Outside the mainstream of signal processing: Worst Case
Signal Processing

Q Less efficient recovery time

@ No explicit constructions

@ Larger storage

@ Looser recovery bounds

@ Deterministic Sensing

Q Aligned with the mainstream of signal processing : Average
Case Signal Processing

Q More efficient recovery time

@ Explicit constructions

@ Efficient storage

@ Tighter recovery bounds
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k-Sparse Reconstruction with Deterministic Sensing

Matrices

Approach Measurements Complexity Noise RIP
N Resilience
LDPC Codes [BBS] klogC ClogC Yes No
Reed-Solomon k k* No No
codes [AT]
Embedding /> spaces k(log C)~ Cc? No No
into ¢1 (BP) [GLR]
Extractors [Ind] kCeW kC°W 1og(C) No No
Discrete chirps [AHSC] NG kN log N Yes StRIP
Delsarte-Goethals oV & EN log®> N Yes StRIP
codes [CHS]
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StRIP is Simple to Design

A: N x C matrix satisfying
@ columns form a group under pointwise multiplication
@ rows are orthogonal and all row sums are zero

«: k-sparse signal where positions of the k nonzero entries are equiprobable

THEOREM: Given d with 1 > § > C 1, then with high probability

(1 =0)lallz < [|Aallz < (1 +6)[el2
PROOF: Linearity of expectation

o E[[|Aalf] = [laf?
o VAR[||4a|?] = 0as N — oo
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Two recent results
Unigeness of sprase representation and /1 receovery

o McDiarmid’s inequality: Given a function f for which

vxla"' ’:Ukax;:
‘f(xh y Lyt e 733k)_f($2'7"‘ 7x;?"' ,{L'k)| < ¢,
and given X1, --- , X} independent random variables. Then

5.2
Prif(Xi, -, Xk) > E[f(X1, -, Xk)] + 7] SexP(gZz)‘

o Relaxed assumption:

< N2,

Vig: |1 ¢ @ -1 @)

o Then:

@ Uniqueness of sparse representation

Q /1 recovery of complex Steinhaus (random phase arbitrary
magnitude) signals.

Two recent results



Kerdock Sets

Kerdock set K,,: 2™ binary symmetric m X m matrices

Tensor C(z,y,a) : Fam x Fom x Fom — Fy given by

Tr[zya] = (zo, ..., Tm_1)P"(a)(yo,. . Ym—1)T

THEOREM: The difference of any two matrices P°(a) in K, is nonsingular
PROOF: Non-degeneracy of the trace

Example: m = 3, primitive irreducible polynomial g(z) = 2® + 2 + 1

1 0 0 0 0 1 0 1 0
P%00)y=(0o o 1],P%010)=(0 1 o),P%001)={1 0 1
0 1 0 1 0 1 0 1 1
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Delsarte-Goethals Sets

Tensor Ct(z,y,a) : Fam X Fom x Fom — Fy given by
C'(x,y,a) = Tr[(zy® + 2% y)a]

- (1'07 e ;Im—l)Pt(a)(y()v cee 7ym—1)T

Delsarte-Goethals Set DG(m,r): 2"TD™ binary symmetric m x m matrices

DG(m,r) = {ZPt(atﬂao, ..., 0y € Fgm}
t=0

Framework for exploiting prior information about the signal

THEOREM: The difference of any two matrices in DG(m,r) has rank at
least m — 2r

PROOF: Non-degeneracy of the trace
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Incorporating Prior Information
Via the Delsarte-Goethals Sets

@ The Delsarte-Goethals structure imparts an order of
preference on the columns of a Reed-Muller sensing matrix

K,, = DG(m,0) C DG(m,1) C --- C DG (m mT_1>

Better inner products «— Worse inner products

o If a prior distribution on the positions of the sparse
components is known, the DG structure provides a means to
assign the best columns to the components most likely present
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Reed-Muller Sensing Matrices

A= [qﬁp’b(x)] : Pe DG(m,r), beZY

A has N = 2™ rows and C = 20+2™ columns

¢P,b(z) _ iwt(dp)+2wt(b)iaszT+2be

@ Union of 200D orthonormal basis I'p

@ Coherence between bases I'p and 'y determined by
R =rank(P + Q)

THEOREM: Any vector in I'p has inner product 2=%/2 with 2% vectors
in I'g and is orthogonal to the remaining vectors

PROOF: Exponential sums or properties of the symplectic group
Sp(2m, 2)
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Quadratic Reconstruction Algorithm

k
1 LT 1 . Pib, SN NITIRY
Fer@)f) = 7 3 laPD" 4 ) agme™ S (ata)gfth (o
j=1 J#t
% Zle |ozj|2(—1)apf””T: Concentrates energy at k Walsh-Hadamard tones.
L Z?Zl loj|*: Signal energy in the Walsh-Hadamard tones

The second term distributes energy uniformly across all N tones — the [t
Fourier coefficient is

1 B T P, -
L, = 575 2o @ (1) 70 (@ + a)6P P (x)

J#t v

THEOREM: limy oo E[N?(TLP] = 37, |aj]?[oy|?
- 2
Note: £ = (.0 1@+ a)T(@)2) ]
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Quadratic Reconstruction Algorithm

Example: N =210 and C = 2%

Hadamard transform of y(a)y(a+e)

, i i | 2 ! y Hadamard transform of y(a)y(a+e)

osf 1 osf 1
i ot Pl e AL Ll
osf 1
iy . , . . . . , \ .
0 100 200 300 400 500 600 700 800 900 1000

re-ordered Hadamard transform of y(ay(a+e+e,)

4 T T [ a
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B
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_oaf 1

sum of magnitudes of above
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o8l ]
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Fundamental Limits

Information Theoretic Rule of Thumb: Number of measurements NV
required by Basis Pursuit satisfies

N > klog, <1+ %)

RM(2,m): C = 2% k=20 Kerdock Sensing: C' =229 k =70
N = 1024 versus 1014 N = 1024 versus 971

450

# Successful Runs

19 20 21 22 23 L L L L L L
k (# components) 10 20 30 40 50 60 70 80
K (# components)
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Deterministic Compressive Sampling of Images

Preliminary Results with Medical Images

o Still images with controlled sparsity are reconstructed with
good fidelity using compressive sensing with chirp matrices:

o Original 128 x 128 image

o Sparsified image

@ Daubechies-4 wavelet expansion
@ 10% of coefficients (1636) retained

o Image reconstructed with
deterministic algorithm from 4099
chirp measurements

@ About 4:1 compression

9@ Essentially lossless reconstruction
of sparsified image
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Low Power Spread Spectrum Communication

9@ Deutsche Telekom: Energy cost of operations greater than people
cost

o Orthogonal CDMA: RM(1,m)

1 Walsh function «+ 1 bit to 1 user

o Compressive CDMA: RM(2,m)

1 column <+ 1 bitto (ZL) users
d = ¢>P@- b;
m .
— (2) bits to 1 user 2m><2< 2
m=10:

5
X = Z VWi,
i=1

@ W; = power of signal intended for it" annulus

Robert Calderbank et al. Fast Sensing Matrices and Applications



Preliminary Assessment of Energy Savings

T ortogonl Covn : | @ Orthogonal CDMA: Many
Compressive sensing based COMA Seq uences NO I nterfe rence
Low signal processing

z . complexity

; o Compressive CDMA: Few

£ ot °s Sequences, Interference,

; Factorof2gain = More complex signal
processing

0.5 1 15 2
Normalized power

m=10, k=5 : MATLAB implementation of k-sparse signal
reconstruction ~ 1/20 seconds
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Using Chirps for A/D Conversion

o Application: Sparse signals of tones over large band

X1

‘H |-

o ldea: Non-uniform sampling to convert pure tones to chirps

o Leverage RIP results from compressed sensing measurements

s

s
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Motivation: A/D Metrics and Progress

o Standard Performance metric
SNR Bit:
P=2 I sfsampling

o Captures bandwidth/resolution trade-off. Eg: AY modulation

o [Walden (1999)] Slow rate of progress: 1.5 bit increase / 8

Years
22 I T [ 7i,,
20 | [SNRimprovementis ~1.5bitin8years| " ige7 186
18 Audy:mma( 1995 w1994
B NaDars - 01993 x1992
16 < ) ox 41991 1990
14 . Y B S— %1989 w1988 [
% 12 - | e | w1987
- e a—
4 B \\ e -:}‘NF Rwgling, Soft. [Radio
3 ) —
& : ] ™Y
s SAN \ . RARNVAN
o]\ A ASSNAN
A4 e \V
. : Successive Apprbx Sp;}w ind o .
Sro—— ubrangjng
2 \ . 1989
o ! ‘
1E+4 1E+5 1E+6 1E+7 1E+8 1E49 1E+10

Sample Rate (Samples/s)
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Motivation: Nyquist Folding Analog-to-Information

Receiver [G. Fudge et al|

x(1)

Wideband Interpolation y(t)> ADC
Filter H(e) Fa) (@5,)
+

RFSampleClock | & | — .~ . .}

> t t—t : Information
zcr{s1n(wslt+9(t))} p p()= Z‘D( k) Recovery

o Sampling at zero-crossing of a phase-modulated signal

@ Undersampling aliases “Nyquist zones" together

o Stretching/reflection of phase-modulation resolves “Nyquist
zone"

o Recovery visualized by spectrogram

—{r — |~

_._.,,.
AR ERNE RN
<

he Bl
4 60 2 4 6
Time, usec Time, usec
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Chirp Sampling

o Chirp Sample times: t,, = nT + n’Te
o Converts pure tones to linear chirps

ejwt _ eijn+ijen2

o Can pick T'> ——— (under sampling)

o Discretized Model:
o Pick P,Q with @ prime, P < Q
o Sample times t,, = AQn + BPn? for A,B € Z
n=01,...,P—1

; _k_ - Ak i Bk 2
62773 th _ 6271']?1’7,6271'] o "
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Recovery Conditions via Compressed Sensing

@ Properties of ©

s Columns form a group
@ Rows are a tight frame

@ Bound on column sum / inner-product

27rJP"e%JQ < CP"% S~1

for constant C' independent of P, Q.
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Rife and Boorstyn Style Estimation Bounds

For P signal samples in noise given by
Z, = bel¥tn + W, W, ~ Ne(0,20%)

Cramér-Rao lower bound on @ with unknown b

@2
var{®w e ar oy
~ [b2(S2 — S3/P)
where
P—1 P—1
S1=2 tn » S=)
n=0 n=0
Uniform sampling: ¢, = nT Chirp sampling: ¢, = nT + n?Te
2 12 2 1
var{w} > R var{®w} > 7

|b]2 T2P(P? — 1)
CRLB is Achievable with good SNR
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Recovery from Chirp Sampling

@ Can leverage efficiency of FFT after simple transform, converting
chirps to tones

fln] = gnly[n + D]
_ |b1|ejw1D2Te+jw1DTej2w1DTen + |b2|ejw2D2Te+jw2DTej2szTen
+ - -+ + cross terms
o FFT upon f[n] gives initial estimates of w; from which we can

narrow the search

Initial FFT on f[n] Rife Boorstyn refine- Final refinement on
nrtia on Jin ment on w; from f[n] original samples y[n]
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Simulation Results

Estimation Error with Sparsity

Parameter Value .

P Samples 256 i:

T Sample Rate 1/200 s £,

€  Relative Chirp rate 1/10 i

frmax Observed BW 1000 Hz 2
5x undersampling (complex tones) N LR S R
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Passive Network Monitoring

Current methods

o fine grained analysis at a
single node or flow

@ collection of coarse statistics
network wide
Limitations
o fail to leverage diverse

detailed data from multiple
vantage points

@ too complex to extract

Passive hop counts observed at multiple k led f .
momformg sites nowle ge rom massive

high-dimensional datasets
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Challenge: Missing data

Recovery of low rank matrices: Keshavan, Montanari & Oh'09
M - n x m random matrix with rank r

M = UV where U, V are independent random matrices with i.i.d. entries

M can be recovered up to precision § from a random subset of C(r,d)n
observations. This can be accomplished efficiently via stochastic local
search.

Verification of low rank: Rigidity Theory of matrices A. Singer

M is rank 7, for example M;; =< c¢;,¢; > ¢; €R”

Given m entries, realization is rigid in r dimensions (completable) if for all
observed (i, )

<c,v >+ <c,v>=0 = dim(null(C)) <r(r—1)/2
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onitoring Infrastructure

Content Distribution Network running on Planetlab

Monitors
5 13 10
2 |8 7
request 4 |4 12
redirection

client proxy
access

End Hosts

"~_ web object
request " 7

13/10|5
101116

Monitors: Subset of Planetlab P nodes End Hosts: Clients ¢, Sources S
Remaining Planetlab P nodes
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Compressive Learning

1820% 1200

Is it possible to find needles in
compressively sampled
haystack?

- If features can be learned in

nidata domain, can they also be
~ Jlearned in the measurement
domain?

Curse of

Dimensionality
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Near Optimal Linear Classifier

Sridharan08 Best
l, Classifier Data
sy Domain
(h)

[€152009]

The error of SYM in the

measurement domain is

RIP with high probability close

Vad to the error of the best

linear classifier in the data
domain

SOl o e e e it

‘.“{

Sridharan08

v

Measurement
Domain
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Adaptive Compressed Sensing: Block Diagram

Signal

Measurement
Vector

— Measurement

[, Bayesian
— Filter Belief
State 1

POMDP Scheduler

A

Measurement
Vector
Library

[Castro, Haup, Nowak: AISTAT 09]: Distilled Sensing:
Selective Sampling for Sparse Signal Recovery.

Robert Calderbank et al. Fast Sensing Matrices and Applications





