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D4: The Symmetry Group of the Square

Generated by matrices x = ( 0 1
1 0 ) and z =

(
1 0
0 −1

)
xz =

(
0 −1
1 0

)
anticlockwise rotation by

π

2
z =

(
1 0
0 −1

)
reflection in the horizontal axis

D4 is the set of eight 2× 2 matrices ε D(a, b) given by

ε D(a, b) = ε ( 0 1
1 0 )

a (
1 0
0 −1

)b
where ε = ±1 and a, b = 0 or 1.

x2 = z2 = I2

zx =
(

1
−1

)
( 1

1 ) =
(

1
−1

)
xz = ( 1

1 )
(

1
−1

)
=

( −1
1

)
]

xz = −zx



The Hadamard Transform

H2 = 1√
2

(
+ +
+ −

)
reflects the lattice of subgroups across the central

axis of symmetry

D4

〈±x〉 〈xz〉 〈±z〉

〈x〉 〈−x〉 〈−I2〉 〈−z〉 〈z〉

〈I2〉

H2
2 = I2 and H−1

2 = H2

H2xH2 = z

H2zH2 = x

H2[εx
azb]H2 = ε(H2x

aH2)(H2z
bH2) = εzaxb = (−1)abxbza

H2[εD(a, b)]H2 = (−1)abεD(b, a)



The Heisenberg-Weyl Group W (Zm
2 )

W (Zm
2 ) is the m-fold Kronecker product of D4 extended by iI2m .

iλpm−1 ⊗ . . .⊗ p0 where pj = I2, x , z , or xz for j = 0, 1, . . . ,m− 1

There are 22m+2 elements, each represented by a pair of binary
m-tuples

a b
xz ⊗ x ⊗ z ⊗ xz ⊗ I2 ↔ D(11010,10110)

The operators D(a, 0) are the time shifts of the binary world.

The operators D(0, b) are the frequency shifts of the binary world.



Walsh Functions

HT
2m = HT

2 ⊗ . . .⊗ HT
2 = H2m

Walsh functions of length 2m are the rows (columns) of H2m and
their negatives.

Part of the Grand Canyon on Mars.
This photograph was transmitted by the
Mariner 9 spacecraft on January 19th,
1972 – gray levels are mapped to Walsh
functions of length 32.

Walsh functions are the sinusoids of the binary world –
eigenfunctions of the time-shift operators D(a, 0).



First Order Reed Muller Codes and Walsh Functions

Walsh functions are obtained by exponentiating codewords in the
first order Reed Muller code.

Example (m = 3) RM(1, 3)

(γ, b)


1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1


v

= (. . . . .b.v + γ. . . . .)
|

(−1)γ(−1)b.v = ε(−1)b.v

Symmetry: Focus on orthonormal bases of eigenvectors for
maximal commutative subgroups.

Maximal
Commutative Subgroup

X = {εD(a, 0)} �H2m - Z = {εD(0, b)}

Orthonormal Basis
Walsh

Sequences
� H2m - Dirac

Sequences



Nonlinear Decoding of RM(1, m)

(γ, b)


1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1


=

(
︸︷︷︸ | ︸︷︷︸ | ︸︷︷︸ | ︸︷︷︸

)
each pair of entries

sums to b0

ej : binary vector with a 1 in position j and zeros elsewhere

Input: [(−1)b.x ]x∈Zm
2

Time Shift: [(−1)b.(x+ej )]x∈Zm
2

Sample by Sample Multiply:(
(−1)b.ej , . . . , (−1)b.ej

)
↑ codeword in RM(0,m).



Generating Orthonormal Bases of CN

Remark: One basis for each coset of RM(1,m + 1) in RM(2,m + 1)

Maximal
Commutative Subgroup

X - XP = d−1
P XdP

dP = diag[ivPvT

]

Orthonormal Basis H2m - H2mdP

Example: m = 3,P =
(

1 1 0
1 0 1
0 1 0

)

H8 =
1

2
√

2



+ + + + + + + +
+ − + − + − + −
+ + − − + + − −
+ − − + + − − +
+ + + + − − − −
+ − + − − + − +
+ + − − − − + +
+ − − + − + + −


dP =



1
1

1
−1

i
i
−i

i



000
001
010
011
100
101
110
111



Second Order Reed-Muller Functions

I Second Order Reed-Muller Functions: For b ∈ Zm
2 and binary

symmetric matrix P

φP,b(a) = i (2b+Pa)T a

= ia
T Pa(−1)b

T a

These are the chirps of the binary world.
I For each P we have an ON basis of 2m vectors. There are

2m(m+1)/2 such matrices P.
I Matrices P with zero diagonal give real (±1) vectors. There

are 2m(m−1)/2 such matrices.
I Fix vector ψ in the ON basis corresponding to P and let φ

vary over the ON basis corresponding to Q, then if
` = rank(P − Q), (Phases ±1 and ±i occur equally often)

|(ψ, φ)| =

{
1√
2`
, 2` times,

0, 2m − 2` times.



Distribution of Inner Products

Value Proportion

−1/2h v2h2
2h−1/2m(m+1)/2

0 1 − 2
∑

h v2h2
2h−1/2m(m+1)/2

1/2h v2h2
2h−1/2m(m+1)/2

for h = 1, · · · , [m/2].
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Value of Inner Product

vr is the number of zero diagonal m ×m binary symmetric
matrices with rank r is given by

v2h = 2h(h−1) (2
m − 1)(2m−1 − 1) . . . (2m−2h+1 − 1)

(22h − 1)(22h−2 − 1) . . . (22 − 1)

and v2h+1 = 0.



Nonlinear Decoding: Second Order Reed Muller Codes

The method of chirp detection:

Initial codeword:
[
ixAxT +2bxT

]
x∈Zm

2

Time-shift by v :

Shift codeword:
[
i (x+v)A(x+v)T +2b(x+v)T

]
x∈Zm

2

Sample by sample multiply:

ivAvT +2bvT
[
(−1)vAxT

]
x∈Zm

2

↑ first order Reed Muller codeword.



Compressed Sensing

I Compressive sensing: Apply an n × N matrix to a sparse
vector x ∈ RN to get n measurements

y = Φx

I Restricted Isometry Property (RIP): A matrix is said to have
the RIP of order k if Φ acts as a near isometry on all k sparse
vectors.

I Reconstruction: Finding x from the measured or observed
data y = Φx requires a search over F(y). The successful
decoders take advantage of the geometry of F(y). The most
prominent example, called Basis Pursuit (BP) decodes y by
taking the vector x∗ ∈ F(y) with smallest `1 norm.



Some Philosophy

I Lesson from coding theory: MacKay makes the point that in
coding theory distance is not everything and he argues that
the minimum distance of a code is not of fundamental
importance to the goal of achieving reliable communication
over noisy channels. Reliable communication is achieved by
focusing on typical rather than worst case performance, and
this involves constraining the spectrum of all possible
distances rather than simply the minimum distance.

I RIP guarantees worst case performance, and in this sense it
plays the same role as minimum distance in coding theory.

I Approach: Construct a compressive sensing matrix Φ that
comes by design with a very fast reconstruction algorithm.
This matrix may not be RIP uniformly with respect to all
k-sparse vectors, but that acts as a near isometry on k-sparse
vectors with very high probability.



Reed-Muller Compressed Sensing Matrix

I Matrix Φ with 2m rows (measurements) and columns which
are all real 2nd-order Reed-Muller functions.

I Columns are labeled by a zero diagonal m ×m binary
symmetric matrix P and a binary vector b.

I There are 2m(m+1)/2 columns!

I The set of columns forms a tight frame since it consists of
2m(m−1)/2 ON bases.



Distribution of Condition Numbers m = 6
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Distribution of Condition Numbers (2)
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Distribution of condition numbers for k-Gram matrices of Gaussian
random (∼ N (0, 1)) and Reed-Muller compressed sensing matrices
for m = 6 with k = 10 and k = 56



Fast Reconstruction Algorithm

I Suppose x is a k-sparse vector. The reconstruction problem
takes the form

y = Φx =
k∑

j=1

ckφPj ,bj

I The Second-Order Reed-Muller codes have the property

φP,b(a)φP,b(a + e) = (−1)b
T e(−1)e

T Pa

i.e., shift and multiply gives a Walsh function. We can identify
a 2nd-order RM function with m fast Hadamard transforms

I Approach: Compute

y(a)y(a + e) =
k∑

j=1

c2
kφPj ,bj

(a)φPj ,bj
(a + e) + Chirps,

then take Hadamard transform and search.



Fast Reconstruction Algorithm (2)

I Example n = 210 and N = 255
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Fast Reconstruction Algorithm (3)

I Example n = 210 and N = 255
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Fast Reconstruction Algorithm (4)

I Number of measurements rule of thumb for Basis Pursuit

n > k log2

(
1 +

N

k

)
I k = 20 and N = 255 implies n > 1014 (we have n = 1024)

k = 7 and N = 236 implies n > 232 (we have n = 256)
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Discussion

I In terms of accuracy of reconstruction the number of common
columns of the P matrices should be kept to a minimum.

I As the ΦRM matrices have an abundance of columns, we can
afford to place conditions of the P matrices.

I Placing restriction on the rank of the differences of the P
matrices, that is, taking all P ∈ DG2h, the performance of the
algorithm is increases as the number of columns in Φ
decreases.

I A detailed analysis of the algorithm and the proof that the
matrix ΦRM acts as a near isometry on k-sparse vectors with
very high probability will be given elsewhere.


