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A/D Conversion Metrics and Progress

» Standard Performance metric
P = 2SNR BitSf

sampling

> Captures bandwidth /resolution trade-off. Eg: AYX modulation

> [Walden (1999)] Slow rate of progress: 1.5 bit increase / 8 Years
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A/D Design Past and Future

» Traditional signal model

X)) IX(F)
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Assumption: Implied requirements:
Bandlimited signals Nyquist converter

» New signal model
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> Assumption: sparse signals under a transformation
» Use more general measurements than uniform sampling
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Nyquist Folding Analog-to-Information Receiver

G. Fudge et al.
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Sampling at zero-crossing of a phase-modulated signal

>

» Undersampling aliases “Nyquist zones” together

» Stretching/reflection of phase-modulation resolves “Nyquist zone"
>

Recovery visualized by spectrogram
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Our Approach: Chirp Sampling

» Intended application: Sparse Fourier signals in a large bandwidth

» Chirp Sample times: t, = nT + n’Te
» Converts pure tones to linear chirps

ejut N eju Tnt+jw Ten?

» Can pick T > —L— (under sampling)

» Motivations:
> Frequency estimation: improved and achievable Cramér-Rao Bound
> Recoverability conditions via compressed sensing
» Simple signal recovery algorithm



Chirps to Chirps

Positive edged zero crossings of continuous chirps = Chirp Sampling
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Use of low bandwidth chirps leads to chirp sampling in Nyquist Folding
Receiver



Rife and Boorstyn: Frequency Estimation Bounds from
Uniform Sampling
» Derived Cramér-Rao lower bound for estimating single unknown
frequency in noise
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var{®} >

for samples nT,n=0,...,. M —1
» Lower Bound Achieving Algorithm

Initial Coarse FFT Estimate Local Refinement




Estimation Bounds from Arbitrary Sample Times
For M signal samples in noise given by
Z, = bethn + W, W, NNC(03202)

Cramér-Rao lower bound on & with unknown b
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Uniform sampling: t, = nT Chirp sampling: t, = nT +n’Te
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CRLB is Achievable with good SNR



Leveraging Compressed Sensing Work

Can model chirp sampling of sinsoids using sampling matrix ¢ and
sparsifying basis F~1

J=fe ]

K
Sparse Vector

» The matrix © = ®F~! has discrete chirp signals as columns
» Similar to a re-ordering of compressed sensing “Chirp Codes"



Recovery Guarantees of Chirp Codes
Compressed Sensing: Restricted Isometry Properties of Matrices ©

(1—6m) <Eig{®f0r} <(1+6m) V column sets|[| =M
Example use: dop < 1 = all M-sparse signals s are uniquely determined
by y = ©s.

Chirps Codes: © € CP*P’ [I] _ [ d
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Chirps

S

Stochastically as good as

Deterministic Guarantee .
Gaussian Measurements

All M sparse signals are
uniquely determined when
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Recovery from Chirp Sampling
» Can leverage efficiency of FFT after simple transform, converting
chirps to tones
fln] = ylnly[n+ D]
_ |b1|ejw1D2Te+jw1DTeij1Dn + |b2|ejw2D2Te+jw2DTej2szTen
+ -+ -+ cross terms

» FFT upon f[n] gives initial estimates of w; from which we can
narrow the search

Rife Boorstyn refine- Final refinement on

Initial FFT on f[n] ment on w; from f[n]  original samples y[n]




Simulation Results

Parameter Value
M Samples 256
T Sample Rate 1/200 s

€  Relative Chirp rate 1/10
fmax Observed BW 1000 Hz

5x undersampling (complex tones)

Mean Square Signal Error
R R S - S R T

Estimation Eror with Sparsity




Summary

v

Goal: High fidelity recovery of large bandwidth signals

v

Progress on Nyquist converter A/D is slow

What we know
> Benefits of continuous time chirp sampling for single frequency
estimation
> Sparse signal recovery conditions from dictionaries of discrete chirps
(compressed sensing & chirp codes)
> Algorithm for recovery from chirp samples
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Work in progress
> Modelling chirp sampling in a compressed sensing framework
> Cross-over theory for recovery conditions of continuous time chirps



