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A/D Conversion Metrics and Progress

◮ Standard Performance metric

P = 2SNR Bitsfsampling

◮ Captures bandwidth/resolution trade-off. Eg: ∆Σ modulation

◮ [Walden (1999)] Slow rate of progress: 1.5 bit increase / 8 Years
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A/D Design Past and Future

◮ Traditional signal model

f

|X (f )|

Assumption:
Bandlimited signals

→ f

|X (f )|

Implied requirements:
Nyquist converter

◮ New signal model
|X (f )|

f

◮ Assumption: sparse signals under a transformation
◮ Use more general measurements than uniform sampling



Nyquist Folding Analog-to-Information Receiver
G. Fudge et al.

◮ Sampling at zero-crossing of a phase-modulated signal

◮ Undersampling aliases “Nyquist zones” together

◮ Stretching/reflection of phase-modulation resolves “Nyquist zone”

◮ Recovery visualized by spectrogram



Our Approach: Chirp Sampling

◮ Intended application: Sparse Fourier signals in a large bandwidth

◮ Chirp Sample times: tn = nT + n2T ǫ
◮ Converts pure tones to linear chirps

e
jωt

→ e
jωTn+jωTǫn2

◮ Can pick T >
1

bandwidth
(under sampling)

◮ Motivations:
◮ Frequency estimation: improved and achievable Cramér-Rao Bound
◮ Recoverability conditions via compressed sensing
◮ Simple signal recovery algorithm



Chirps to Chirps

Positive edged zero crossings of continuous chirps ⇒ Chirp Sampling
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Use of low bandwidth chirps leads to chirp sampling in Nyquist Folding
Receiver



Rife and Boorstyn: Frequency Estimation Bounds from
Uniform Sampling

◮ Derived Cramér-Rao lower bound for estimating single unknown
frequency in noise

var{ω̂} ≥
1

SNR

12

T 2M(M2 − 1)

for samples nT , n = 0, . . . ,M − 1

◮ Lower Bound Achieving Algorithm

Initial Coarse FFT Estimate
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Estimation Bounds from Arbitrary Sample Times

For M signal samples in noise given by

Zn = be jωtn + Wn Wn ∼ NC (0, 2σ2)

Cramér-Rao lower bound on ω̂ with unknown b

var{ω̂} ≥
σ2

|b|2(Q − P2/M)

where

P =

M−1
∑

n=0

tn , Q =

M−1
∑

n=0

t2
n

Uniform sampling: tn = nT

var{ω̂} ≥
σ2

|b|2
12

T 2M(M2 − 1)

Chirp sampling: tn = nT + n2T ǫ

var{ω̂} ≥
σ2

|b|2
1

T 2O(ǫ2M5)
CRLB is Achievable with good SNR



Leveraging Compressed Sensing Work

Can model chirp sampling of sinsoids using sampling matrix Φ and
sparsifying basis F−1
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◮ The matrix Θ = ΦF−1 has discrete chirp signals as columns

◮ Similar to a re-ordering of compressed sensing “Chirp Codes”



Recovery Guarantees of Chirp Codes
Compressed Sensing: Restricted Isometry Properties of Matrices Θ

(1 − δM) ≤ Eig{ΘH
Γ ΘΓ} ≤ (1 + δM) ∀ column sets |Γ| = M

Example use: δ2M < 1 ⇒ all M-sparse signals s are uniquely determined
by y = Θs.

Chirps Codes: Θ ∈ C
p×p2

Deterministic Guarantee
Stochastically as good as
Gaussian Measurements

All M sparse signals are
uniquely determined when

M <

√
P + 1
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Recovery from Chirp Sampling
◮ Can leverage efficiency of FFT after simple transform, converting

chirps to tones

f [n] = ȳ [n]y [n + D]

= |b1|e
jω1D

2Tǫ+jω1DT e j2ω1Dn + |b2|e
jω2D

2Tǫ+jω2DT e j2ω2DTǫn

+ · · · + cross terms

◮ FFT upon f [n] gives initial estimates of ωi from which we can
narrow the search

Initial FFT on f [n]
Rife Boorstyn refine-
ment on ωi from f [n]

Final refinement on
original samples y [n]
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Simulation Results

Parameter Value
M Samples 256
T Sample Rate 1/200 s
ǫ Relative Chirp rate 1/10

fmax Observed BW 1000 Hz
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Summary

◮ Goal: High fidelity recovery of large bandwidth signals

◮ Progress on Nyquist converter A/D is slow

◮ What we know
◮ Benefits of continuous time chirp sampling for single frequency

estimation
◮ Sparse signal recovery conditions from dictionaries of discrete chirps

(compressed sensing & chirp codes)
◮ Algorithm for recovery from chirp samples

◮ Work in progress
◮ Modelling chirp sampling in a compressed sensing framework
◮ Cross-over theory for recovery conditions of continuous time chirps


