Obtenga $\rho^A = \text{Tr}_{B} \left[ \delta^{AB} \right]$ y $\sigma^B = \text{Tr}_{A} \left[ \delta^{AB} \right]$ para los siguientes estados.
% Definimos las funciones auxiliares traceA y traceB:
function [sigma] = traceA(delta) % traces out part A of a bipartite system
sigma = [delta(1,1)+delta(3,3) delta(1,2)+delta(3,4); ...
delta(2,1)+delta(4,3) delta(2,2)+delta(4,4)];
end
function [rho] = traceB(delta) % traces out part B of a bipartite system
rho = [delta(1,1)+delta(2,2) delta(1,3)+delta(2,4); ...
delta(3,1)+delta(4,2) delta(3,3)+delta(4,4)];
end
\begin{align*} \delta^{AB} = \dfrac{1}{4} \left[\begin{smallmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{smallmatrix}\right] \end{align*}
\begin{align*} \delta^{AB} = \dfrac{1}{2} \left[\begin{smallmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 \end{smallmatrix}\right] \end{align*}
\begin{align*} \delta^{AB} = \dfrac{1}{2} \left[\begin{smallmatrix} 1 & 0 & 0 & 1\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 1 \end{smallmatrix}\right] \end{align*}
Compare y explique los resultados obtenidos.