Obtenga $\rho^A = \text{Tr}_{B} \left[ \delta^{AB} \right]$ y $\sigma^B = \text{Tr}_{A} \left[ \delta^{AB} \right]$ para los siguientes estados.
import numpy as np
# Definimos las funciones auxiliares traceA y traceB:
def traceA(delta): # traces out part A of a bipartite system
sigma = np.array([[delta[0, 0] + delta[2, 2], delta[0, 1] + delta[2, 3]],
[delta[1, 0] + delta[3, 2], delta[1, 1] + delta[3, 3]]])
return sigma
def traceB(delta): # traces out part B of a bipartite system
rho = np.array([[delta[0, 0] + delta[1, 1], delta[0, 2] + delta[1, 3]],
[delta[2, 0] + delta[3, 1], delta[2, 2] + delta[3, 3]]])
return rho
\begin{align*} \delta^{AB} = \dfrac{1}{4} \left[\begin{smallmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{smallmatrix}\right] \end{align*}
\begin{align*} \delta^{AB} = \dfrac{1}{2} \left[\begin{smallmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 \end{smallmatrix}\right] \end{align*}
\begin{align*} \delta^{AB} = \dfrac{1}{2} \left[\begin{smallmatrix} 1 & 0 & 0 & 1\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 1 \end{smallmatrix}\right] \end{align*}
Compare y explique los resultados obtenidos.