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Abstract—A MIMO diversity scheme that utilizes varying
amounts of channel state information (CSI) for mobile usersis
presented. CSI at the transmitter is obtained through a time-
duplexed feedback channel, and thus by varying the periodicity
of feedback intervals, an optimal balance is struck between
obtaining accurate CSI and minimizing the overhead of uplink
transmission. The optimal feedback amount is shown to have
a strong dependence on the user’s average SNR and Doppler
spread. The proposed solution optimally switches between beam-
forming and Orthogonal Space-Time Block Coding and has
negligible loss of performance with respect to more complex
optimal schemes.

Index Terms—MIMO diversity, channel state information,
fixed rate, feedback

I. I NTRODUCTION

Current and future wireless technologies are required to
support high-data rate applications with stringent Quality of
Service (QoS) constraints. Applications such as VoIP and
streaming audio/video require a reliable connection that expe-
riences limited outage. In Metropolitan Area Networks (MAN)
such as WiMAX, users are expected to have widely vary-
ing channel conditions and mobilities that cause deep fades
and make reliable transmission difficult. Diversity techniques
combat fading by having redundant information sent in time,
frequency, and/or spatial dimensions.

Different diversity techniques have been proposed for poit-
to-point MIMO communications [1]–[3]. If perfect Channel
State Information at the Transmitter (CSIT) is present, the
optimal transmit scheme to minimize probability of error is
to apply beamforming in the input singular vector associated
to the largest singular value of the channel [4]. If CSIT is
unknown, an Orthogonal Space-Time Block Coding (OSTBC)
scheme can be employed [5]. In [6] Jöngren proposed a
scheme that computes the optimal linear combination between
beamforming and OSTBC based on the quality of the channel
estimate. While an optimal scheme, for a fast moving channel
this scheme would become prohibitively complex since for
each transmitted symbol a convex optimization problem must
be solved. As intuition suggests, with additional information,
beamforming outperforms OSTBC by achieving an array gain,
but requires a costly feedback mechanism to obtain channel
knowledge [7].
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The value of limited feedback in point-to-point MIMO
systems has been widely studied in the literature [8]–[10],
generally this work assumes that the feedback is obtained
through a finite-rate independent channel. In this paper we
characterize the value of limited feedback in a point-to-point
MIMO system where a Base Station (BS) is transmitting a
fixed rate to a user with varying mobility, e.g. stationary,
pedestrian, vehicular. The transmit objective is to minimize
the probability of error through either a closed-loop scheme
such as beamforming, or an open-loop scheme like OSTBC.
For the closed-loop scheme, CSIT is obtained through a time-
duplexed feedback channel.

In this work two main ideas are presented:
1) An analytical bound on the optimal rate of CSI updates

is found for a mobile user with a fixed rate constraint. This
analysis shows how the optimal rate of CSI updates will have
a strong dependence on the mobility profile of the user and
on its SNR.

2) A scheme is proposed that attains nearly identical error
performance to an optimal scheme [6] with reduced com-
plexity. The proposed scheme chooses either beamforming or
OSTBC based on mobility and average SNR, while optimally
varying CSIT updates. Through a mix of simulation and
analysis, we show both schemes offer the same performance.

The organization of the paper is as follows: Section II
formalizes the system model for the proposed scenario, in
Section III we present a theoretical analysis of OSTBC and
beamforming, and derive a bound on the optimal amount of
feedback, in Section IV we propose a simple transmission
scheme derived from Section III. Finally, in Section V we
present simulation results supporting the validity of the model
assumed.

II. SYSTEM MODEL

Consider a point-to-point MIMO system as shown in Figure
1, where the transmitter and receiver haveMT and MR

antennas, respectively. The channel matrixH has dimension
MR × MT . The individual complex channel gainshij follow
a zero-mean complex Gaussian distribution with varianceσ2

h.
The data symbolsS are coded via an OSTBC encoder, and the
coded symbols are given asC of sizeMT ×R, whereR is the
time duration of one block. The coded symbols pass through a
linear transformationW [6] and are sent through the channel
H. At the receiver, the received symbols are corrupted with



Fig. 1. Point-to-point MIMO system.

noiseN of sizeMR×R. The noise is assumed to be i.i.d. zero-
mean complex Gaussian noise with covariance matrixσ2

N IMR
.

With this model, the received signalY has dimensionMR×R
and is given by

Y = HWC + N (1)

The received signal is decoded with an optimal Maximum-
Likelihood (ML) detector. CSI is assumed to be known per-
fectly at the receiver, and fed back via a TDD scheme to
the transmitter. Thus, the total transmission time is divided
between an uplink period of lengthtUL and a downlink period
tDL . We define the feedback fractionβ as the fraction of UL
transmission time to the total transmission time:

β =
tUL

tUL + tDL
. (2)

In our model, CSI is perfectly described inα bits by
quantizing each complex termhij to α/(MT MR) bits and
fed back to the transmitter at a constant rateRUL , thus
tUL = α/RUL is constant.

The downlink has to support a fixed average rateRDL

regardless of the channel time used for the uplink. This can be
achieved by coding/constellation adaptation on the downlink
transmission. For simplicity we will assume uncoded QAM
transmission, though the results can be extrapolated to coded
systems. If we defineN0 as the nominal constellation size
required to meet the rate requirementRDL when β = 0, i.e.
when there is no UL feedback, then, for0 < β < 1, the
increased QAM constellation sizeN required to compensate
for the lost DL time during feedback isN = N

1/(1−β)
0 . Ad-

ditionally for a QAM constellation we have that the minimum
distance between transmitted symbols is

d2
min =

3

N − 1
=

3

N
1/(1−β)
0 − 1

. (3)

The transmitter has a delayed estimate of the channel that
decorrelates from the true channel value. For the channel
variation in time we will consider Jakes model [11], that is,
the channel correlation function is given by the zero-order
Bessel function of the first kindρ(τ) = Jo(2πfDτ) where
fD is the doppler spread of the channel, andτ is the time
delay. The estimated channelĤ is correlated with the actual

Fig. 2. Evolution of the correlation coefficient between theCSI and the
actual channel.

channel,ρ(τ) = E[hij(τ)ĥ∗
ij ]/σ2

h, where the value ofρ(τ)
depends strongly on the time required to feedback the CSI
and on doppler frequency. Therefore, the channel estimate is
modeled as

Ĥ(τ) = ρ(τ)Ho +
√

1 − ρ(τ)2Hw(τ) (4)

whereHo and Hw(τ) are the actual channel and a spatially
white estimation error, respectively. To clarify the model
Figure 2 shows an example of the evolution of the correlation
coefficient between the CSÎH(τ) and the actual channelHo.
Additionally, the transmitter is assumed to know the long-term
channel statistics.

III. A NALYSIS

The objective is to minimize average probability of error
Pe for a fixed rate application by varying the rate of CSIT
updates. In this section we will upper bound the probability
of error obtained by the scheme in [6] with the minimum of the
probability of error of the two basic diversity schemes: naive
beamforming and OSTBC. Here we define naive beamforming
as the scheme that assumes (often incorrectly) that the CSIT
is perfect, and therefore aligns its transmitted signal with the
input singular vector associated to the largest singular value of
the channel estimate. To keep the tractability of the problem
we will consider in this section aM × 1 MISO system with
Rayleigh fading.

In this scenario there exists an optimal feedback percentage
βopt to minimizePe. To understand the trade-off inβ, consider
a highβ that ensures nearly perfect CSIT, and minimizes any
misalignment during beamforming, and therefore reducesPe.
However, a highβ requires excessive CSIT updates through a
feedback channel that cannibalizes the useful DL timetDL.
For a fixed rate application, any reduction intDL implies
a necessary increase in the constellation size/coding rate,
and thus a degradation in the error performance for fixed
bandwidth and power constraints.

The probability of error for the OSTBC scheme for a fixed
h averaged over all the transmission symbols can be upper
bounded by the union of events bound as

POSTBC
e ≤ N̄eQ

{

√

ηd2
min‖h‖2

}

(5)



where N̄e represents the average number of neighbor
points/codewords anddmin is the minimum distance of the
constellation/coding scheme.η = Es/σ2

N is the average
received SNR on a single receive antenna. For ease of notation
we introducek = ηd2

min/2. By applying the Chernoff-
bound and using that

√
2‖h‖ is a χ-distributed random vari-

able, we obtain the following upper-bound on̄POSTBC
e =

Eh
[

POSTBC
e

]

[4]

P̄OSTBC
e ≤ N̄e

2

(

1 +
k

M

)−M

. (6)

Note thatP̄OSTBC
e is not a function of the quality of the

channel state information at the transmitter (given in our model
by ρ) since OSTBC does not require CSIT.

On the other hand, the probability of error for a naive
beamforming scheme with imperfect channel knowledge can
be obtained from the channel model given in Section II. In
order to get a closed-form expression, this probability of
error is upper-bounded by the union of events bound and
subsequently by Chernoff-bound as

PBF
e ≤ N̄eQ

{

√

2k〈h, ĥ〉
}

≤ N̄e

2
exp

{

−k〈h, ĥ〉
}

=
N̄e

2
exp

{

−k
(

ρ‖h‖2 + ρ̄〈h, hw〉
)}

(7)

where we definēρ =
√

1 − ρ2. By taking the expectation over
the distributions ofh andhw we obtain a bound on the average
probability of error

P̄BF
e ≤ E

[

N̄e

2
exp

{

−k(ρ‖h‖2 + ρ̄〈h, hw〉)
}

]

=
N̄e

2
Eh

[

exp
{

−kρ‖h‖2
}

·
Ehw|h [exp{−kρ̄〈h, hw〉〉}]

]

. (8)

We decompose the inner product as〈h, hw〉 =
‖h‖‖hw‖cos(α). Using that the individual entries of the vec-
tors h and hw are independent complex gaussian random
variables with unit variance, both

√
2‖h‖ and

√
2‖hw‖ are

χ-distributed with 2M degrees of freedom, and the angle
between both vectorsα follows a U (−π, π):

Ehw|h [exp{−kρ̄〈h, hw〉}]
= E‖hw‖ [Eα [exp{−kρ̄‖h‖‖hw‖cos(α)}]]
= E‖hw‖ [I0 (−kρ̄‖h‖‖hw‖)] (9)

whereI0 is the modified Bessel function of first kind.
By taking M = 1 and expanding the average

E‖hw‖ [I0 (−kρ̄‖h‖‖hw‖)] the resulting expression can be
written as a Marcum Q-function and thus can be bounded
by [12] exp

{

1/4(kρ̄‖h‖)2
}

. By deriving a similar bound for
general M [13] we obtain a bound tight for̄ρ → 0:

E‖hw‖ [I0 (−kρ̄‖h‖‖hw‖)] ≤ exp

{

M

4
(kρ̄‖h‖)2

}

. (10)

Note that this bound reduces to the one proposed in [12]
for M = 1. Since this inequality holds for all‖h‖,

P̄BF
e ≤ N̄e

2
Eh

[

exp
{

−kρ‖h‖2
}

·
E‖hw‖ [I0 (−kρ̄‖h‖‖hw‖)]

]

≤ N̄e

2
Eh

[

exp

{

−‖h‖2

(

ρk − M

4
(ρ̄k)2

)}]

=
N̄e

2

(

1 + ρk − ρ̄2k2 M

4

)−M

(11)

where for the last equality we have used that the random
variable

√
2‖h‖ is χ-distributed with 2M degrees of freedom.

Brehler showed in [14] that the asymptotic gap between
the pairwise error probability with coherent detection and
its Chernoff bound is a constant function of the number of
antennas. Moreover, the gap vanishes for large number of
antennas and the expressions (6) and (11) are asymptotically
tight for high SNR,ρ → 1, and increasing number of antennas.
By equating (6) and (11) we obtain an approximate closed
expression for the ideal switching pointρ∗ between both
schemes.

ρ∗ ≈
−1 +

√

1 + Mk
(

Mk
4 + 1

M

)

Mk
2

. (12)

Since the two upper bounds may not intersect in the same
point where the actual pairwise error probabilities do, we
have to take this result with care. Note that because of the
asymptotically tightness of the Chernoff bound (12) turns to
be a good approximation for high SNR and large number of
transmit antennas, ifρ∗ is close to1. It can be expected that the
approximation still holds for moderated SNRs and number of
antennas. Figure 3 shows the behavior of the approximatedρ∗

with respect to the real crossing point for a set of simulations
with MT = 2, MR = 1 and a set of different SNRs. We
can see how the gap between the actual average probability of
error and the bounds obtained in the previous section decreases
with the SNR, and the approximation approaches the actual
crossing point. Note that the general behavior of the actualρ∗

is well approximated by (12).
In the previous analysis we obtained that forρ > ρ∗ naive

beamforming performs better than a simple OSTBC scheme.
This gives us a lower bound for the amount of needed feedback
in order to use naive beamforming instead of OSTBC. To
obtain some improvement the CSIT update rate has to be
high enough to guaranteeρ > ρ∗. From (2), by assuming
the worst case correlation (at the end of the downlink period)
ρ = Jo(2πfDtDL), the optimal feedback durationβopt is lower
bounded by

βopt ≥ 2πfDtUL

2πfDtUL + J−1
o (ρ∗)

. (13)

While the Jo is not strictly invertible for allρ∗, it is for
ρ∗ > 0.5 and therefore is a well-defined expression for all
reasonableη anddmin.
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Fig. 3. Comparison between the analytical expression obtained for ρ and
the actual crossing point OSTBC and beamforming curves.

IV. PROPOSEDSCHEME

In the previous section we showed how the feedback is only
useful for the naive beamforming scheme whenρ > ρ∗, where
ρ∗ can be approximated by (12).

If we examine the values ofρ∗ for this setup, we can see
that they are over 0.75 for the SNR=5dB and even higher for
the remaining SNRs. Analyzing the behavior of the scheme
presented in [6] for these system parameters, we realize that
the scheme is working in its asymptotic regime for this value
of ρ and thus behaving as a pure beamforming scheme. That is,
for this level of channel quality, the optimal scheme is nearly
identical to simply using the naive beamforming scheme.

Based on this observation, we propose a simplified scheme
for our fixed rate communication system. The idea of this
scheme is presented in Figure 4. In scenario-I, the channel
is completely static andρ equals1, the optimal scheme is
beamforming. As the user’s mobility increases in scenario-II,
the channel estimate starts to decorrelate from the true value,
and more feedback is required, i.e.βopt increases enough to
guarantee that naive beamforming outperforms the OSTBC
modulation. At a critical speed, the channel estimate has
decorrelated beyond use asρ < ρ∗ and the optimal scheme is
OSTBC withβopt = 0, as in scenario-III.

Fig. 4. Proposed scheme: I. No motion: feedback once then usebeamforming;
II. Small motion: increase rate of feedback, and use beamforming; III. Fast
motion: no feedback and OSTBC.

Parameter Value
α 64 bits
SNR 5dB, 10dB, 15dB
fD 0-250 Hz
MT 2
MR 1
Ruplink 250 kbps
Rdownlink 1 Mbps
N0 2
Ne 1

TABLE I
SIMULATION PARAMETERS.

The performance of this very simple scheme will be com-
pared in Section V to the optimal linear precoding, OSTBC
and naive beamforming schemes.

V. SIMULATION RESULTS

In this section, two main results are presented. First, the
behavior of the optimal feedback time fractionβopt is shown
as the user’s mobility changes for different SNRs. Secondly,
our scheme is compared with the performance of the scheme
in [6] and the static diversity schemes of beamforming and
OSTBC.

During the theoretical analysis developed in Section III
we used a simplified model where the optimal scheme was
approximated by two simple transmission schemes: OSTBC
and naive beamforming. Moreover, worst case correlation at
the end of the block was assumed to establish the lower bound
on β∗ (13). In the simulation we will consider the original
system described in Section II where each individual space-
time symbolC is prefiltered by the optimal scheme of [6]
for each correlation value during the downlink period. The
parameters of the simulation are presented in Table I.

Figure 5 shows how the optimal amount of feedback fraction
βopt varies with the doppler spread and thus with the mobility
profile of the user. We can observe that the theoretical result
obtained in Section III matches the behaviour of the more
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Fig. 5. The optimal fraction of timeβopt against the mobility of the users.
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Fig. 6. Minimum probability of error for the different schemes.

complex simulated system model. To maintain the tractability
of the problem, the changes of minimum distance of the
constellation were not taken into account in the theoretical
analysis, and therefore the dropping behaviour of the curve
has not been characterized.

For a fixed SNR, the figure shows two regions as a function
of fD: an increasingβopt followed by aβopt falling to zero.
Both of these regions have an intuitive meaning. The amount
of feedback required to minimizePe initially increases with
the velocity of the user, as more frequent channel estimatesare
needed. However, at a critical speed, i.e. the inflection point,
the penalty on probability of error imposed by the increased
constellation size cancels the benefit of beamforming, and
therefore OSTBC is used.

At first it may seem surprising that for a fixed doppler spread
the amount of useful feedback increases with the SNR. An
intuitive explanation comes from the fact that for high SNR
only high quality CSI is useful, since the beamformer has to
be perfectly aligned with the largest mode of the channel. Oth-
erwise, the cost (in terms of increased probability of errordue
to reduced minimum distance between constellation points)is
larger than the improvement obtained by beamforming. Note
that we could have derived this behavior from equation (12):
if the SNRη → ∞ we have thatρ∗ → 1 and the slope of the
feedback fraction approaches∞.

If we look at the dropping point of the optimal feedback
fraction βopt as a function of the SNR, we can see that the
feedback helps fast moving users with low SNR. On the other
hand, users with high SNR use the OSTBC scheme already at
moderate speeds not requiring any feedback. The explanation
of this behaviour is closely related to the higher quality ofCSI
required for users with better SNR. Since users with higher
SNR require more feedback updates to obtain the required
quality of CSI, they exceed the limit on the channel resources
at lower speeds than low SNR users.

Finally Figure 6 shows the performance comparison of
different schemes. We can see how the simplified scheme

presented in Section IV performs nearly identically to the
optimal solution in [6], and outperforms the static beam-
forming and OSTBC schemes. As we commented in Section
IV, the optimal linear precoding scheme offers no important
improvement with respect to the simplified scheme because
at βopt the optimal linear precoding is working close to its
asymptotic regime, and thus can be readily approximated by
its asymptotic behaviour: beamforming and OSTBC.

VI. CONCLUSIONS

In this paper, the value of the feedback was investigated fora
point-to-point MIMO fixed-rate scenario. The optimal amount
of feedback was shown to be a strong function of the user’s
mobility and average SNR. Thus, to minimize probability
of error, a transmitter should evaluate both user’s mobility
and average SNR to determine the appropriate feedback and
diversity scheme. Additionally, a simple switching schemewas
presented that chooses between OSTBC and Beamforming
and controls the frequency of feedback depending on the user
mobility profile. Under the scenario of point-to-point fixed-rate
communication the proposed scheme has a negligible loss of
performance with respect to the optimal scheme proposed in
[6].
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