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Abstract—We consider the problem of detecting a primary
signal over a wireless channel by a multiantenna cognitive
spectral monitor with knowledge of the spectral shape of primary
transmissions employing multicarrier modulation. As a starting
point, a Locally Most Powerful (LMP) test is derived for the
single-antenna case. The asymptotic performance improvement
of the LMP detector over the standard Energy Detector (ED)
is quantified in terms of the primary spectral mask. For the
case of an ideal bandpass mask the LMP test is Uniformly
Most Powerful. With multiple antennas, optimal detectors re-
quire channel knowledge and therefore are not well suited to
practical implementation. We propose a realizable multiantenna
Incoherent Detector, and compare its performance with that of
the ED and LMP single-antenna tests under both deterministic
and Rayleigh slow-fading channel scenarios. In the latter setting,
multiple antennas introduce detection diversity that determines
the slope of the probability of miss curve, and thus the overall
detection performance.

I. INTRODUCTION

In the last years we have witnessed the paradox of the
apparent scarcity of spectral resources while most of the
allocated spectrum is underutilized. This fact motivates the
concept of spectrum reuse addressed by the Dynamic Spec-
trum Access / Cognitive Radio paradigm [1]. The key idea of
opportunistically accessing temporally and/or spatially unused
licensed bands requires powerful spectrum monitoring tech-
niques, since the interference produced to licensed (primary)
users must be kept at sufficiently low levels. The nature of
wireless channels makes reliable detection of primary users
a challenging task: due to fading and shadowing phenomena,
the received primary signal may be very weak, resulting in
negative Signal-to-Noise Ratio (SNR) operation conditions [2].

Powerful detectors can in principle be derived by exploiting
certain properties of the primary signal, such as the presence of
any pilots or cyclostationary features. However, these detectors
are very sensitive to synchronization errors [2]. With very low
SNR, the synchronization loops of the monitoring systems
cannot be expected to provide the required accuracy for the
frequency and clock rate estimates. On the other hand, the
popular energy detector is robust to sync errors, does not
require any a priori knowledge of primary signals, and has
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lower complexity than other sensing schemes. These desirable
traits come at the cost of a reduced detection performance [2].

Hence, one may ask whether there are any primary signal
features that could be exploited by a detector without requiring
accurate synchronization. For example, knowledge of the
spectral shape of primary transmissions is usually available to
the secondary network. We adopt a weak signal assumption in
order to obtain a Locally Most Powerful test resulting in an
asynchronous detector which happens to incorporate this kind
of information.

Another way to enhance detection power is to exploit
the availability of multiple antennas at the secondary termi-
nal. Multiple-input multiple-output (MIMO) technologies have
reached maturity and it is very likely that future Cognitive
Radio networks will incorporate this type of hardware [3],
[4]. As in wireless communication reception, multiple anten-
nas provide spatial diversity when the detector faces fading
channels. In [5] a performance analysis was presented for the
multiantenna energy detector using maximal ratio combining
and antenna selection. These schemes require knowledge of
the channel from the primary user to the cognitive node and
therefore are difficult to implement in practice.

The detectors considered in this paper, which do not need
channel state information, exploit knowledge about some pri-
mary network parameters (such as channelization, modulation
type, etc.) that may be available to the cognitive node. This
information is translated into knowledge about the spectral
shape (or equivalently, the autocorrelation) of the primary
signal. Spectral shape knowledge is reasonable in many prac-
tical cases, in particular for broadcast primary networks. If in
addition primary transmitters use multicarrier modulation, then
a mathematically tractable Gaussian model can be adopted.
Under this assumption we propose and analyze the perfor-
mance of a practical multiantenna Incoherent Detector (ID)
and compare it to both the Energy Detector (ED) and the
Locally Most Powerful (LMP) test for the single antenna case,
for both deterministic and Rayleigh fading channels.

The rest of this paper is organized as follows. Section II
presents the system model. Both the ED and LMP single-
antenna detectors are analyzed in Section III, whereas the
multiantenna ID test is presented in Section IV. Numerical
results and final conclusions are given in Sections V and VI,
respectively.



II. SYSTEM MODEL

It is assumed that primary users employ Frequency Division
Multiplexing with fixed channelization, known to the spectrum
monitor. The cognitive receiver has M antennas with their
respective Radio Frequency (RF) chains. At each antenna,
a single primary channel is selected and downconverted to
baseband, where it is asynchronously sampled at fs samples/s,
thus obtaining K complex-valued samples (T = K/fs is the
observation time). The samples r

(m)
k at the mth RF chain are

given by

r
(m)
k = hmxk+σw

(m)
k , 1 ≤ m ≤ M, 0 ≤ k ≤ K−1, (1)

where xk are the (noiseless) samples of the primary signal,
normalized to unit variance (E{|x(m)

k |2} = 1); w
(m)
k are

samples of a zero mean, circular complex white Gaussian
noise with unit variance; hm is the complex channel gain at
antenna m, and thus |hm|2 is the power of the primary signal
at that antenna (if the channel is vacant |hm|2 = 0 for all m);
and σ2 > 0 is the background noise power, assumed known
and equal at all the antennas. The noise processes at different
antennas are assumed independent. We can rewrite (1) as

rm = hmx + σwm, 1 ≤ m ≤ M, (2)

with the obvious definitions for the K×1 vectors rm, x, wm.
Also, introducing the vectors r

.
= [rT

1 rT
2 · · · rT

M ]T , w
.
=

[wT
1 wT

2 · · · wT
M ]T , h

.
= [h1 h2 · · · hM ]T and denoting the

Kronecker product by ⊗, (2) can be compactly rewritten as

r = h ⊗ x + σw. (3)

The (asynchronously sampled) process {xk} can be taken
as wide-sense stationary with psd Sxx(ejω). In addition, if the
primary users employ multicarrier modulation, it is reasonable
to assume (for the number of subcarriers used in practical
systems) that {xk} is circular Gaussian. Hence, x is zero-mean
circular Gaussian with covariance matrix C

.
= E{xxH}.

Assuming that the channelization and modulation parameters
of the primary system are fixed and public (as would be the
case, e.g. for broadcast networks), then Sxx(ejω) is known
(and so is C). Note that C is Toeplitz with ones on the
diagonal. In general, {xk} will be colored (and C 6= I) as
a result of interchannel guard bands, pulse shaping, etc.

Let C = UΛUH with Λ = diag(λ0 λ1 · · · λK−1) be an
eigendecomposition of C. It is well known [6] that for K →
∞ (long observation time), then

U → W , λk → Sxx(ej 2πk

K ), 0 ≤ k ≤ K − 1, (4)

with W the K × K orthonormal IDFT matrix. In the sequel
we will make use of these asymptotic results.

III. SINGLE ANTENNA DETECTORS

We analyze the detection problem for the single antenna
case as starting point. When M = 1, (3) reduces to

r = hx + σw, (5)

and the detection problem is summarized as

H0 : |h|2 = 0 (primary is absent) (6)

H1 : |h|2 > 0 (primary is present) (7)

This hypothesis test is composite since |h|2 is unknown. Since
the test is one-sided, a uniformly most powerful (UMP) test
may exist [6]. Note that r ∼ CN (0, σ2I) under H0 and
r ∼ CN (0, |h|2C + σ2I) under H1. The Neyman-Pearson
(NP) test for this Gaussian detection problem is an estimator-
correlator [6] deciding H1 if rHx̂ exceeds a threshold, where

x̂ = |h|2C
(

|h|2C + σ2I
)−1

r (8)

is the (scaled) MMSE estimator of x (given r and |h|2). Unfor-
tunately, the NP test (8) is not implementable in general since
it requires knowledge of |h|2. However, two limit scenarios
are of interest as they result in practical tests:

• High SNR case with a full rank C: |h|2 � σ2, so that
x̂ ≈ 1

σ2 r. The NP test reduces to an Energy Detector
(ED) that decides H1 if rHr exceeds a threshold.

• Low SNR case: |h|2 � σ2 and x̂ ≈ |h|2
σ4 Cr. The NP test

reduces to a weighted ED deciding H1 if rHCr exceeds
a threshold. This is the Locally Most Powerful (LMP)
test, derived from weak signal detection theory [6].

Note that, in contrast to the ED test, the LMP test makes use of
the available information about the primary signal spectrum.

Multicarrier signals are well approximated as bandpass
processes with a flat passband. For this particular scenario of
practical importance, the LMP test becomes UMP as K → ∞.
To see this, note that the NP test statistic is

rHx̂ =

K−1
∑

k=0

|h|2λk

|h|2λk + σ2
|vk|2, (9)

where v
.
= UHr = [v0 v1 · · · vK−1]

T . For a bandpass signal,
Sxx(ejω) takes only the values 0 (outside the passband) and
λ > 0 (inside the passband). Thus, in view of (4), as K → ∞,
and with B the set of indices corresponding to the passband,

rHx̂ →
∑

k∈B

|h|2λ
|h|2λ + σ2

|vk|2 ∝ λ
∑

k∈B
|vk|2 = rHCr, (10)

which is the statistic of the LMP test. In contrast to the ED test,
which measures the energy in the whole Nyquist bandwidth,
the LMP test compares only the energy in the passband to a
threshold. This is intuitively satisfying.

A. Asymptotic Performance of the LPM Test

Let TLMP

.
= rHCr. We can obtain the asymptotic detec-

tion performance of the LMP test invoking the central limit
theorem: for large K , TLMP is Gaussian distributed, and

µLMP(h)
.
= E{TLMP} = Tr{CE{rrH}}

= Tr{C(|h|2C + σ2I)}
= |h|2b2 + σ2b1, (11)



where we have introduced the coefficients

bn
.
= Tr{Cn} =

K−1
∑

k=0

λn
k , n = 0, 1, 2, . . . (12)

(Note that b0 = b1 = K). The variance of TLMP is1

α2
LMP(h)

.
= var{TLMP} = Tr{(CKE{rrH})2}

= Tr{(|h|2C2
K + σ2CK)2}

= |h|4b4 + 2|h|2σ2b3 + σ4b2. (13)

Therefore, for large K , the probability of false alarm PFA is

PFA

.
= prob{TLMP > γLMP|H0} = Q

(

γLMP − µLMP(0)

αLMP(0)

)

, (14)

where γLMP is the threshold. Since PFA does not depend on h,
we can set the threshold γLMP for a given target PFA as

γLMP = αLMP(0)Q−1(PFA) + µLMP(0). (15)

Using (11), (13) and (15), the probability of detection follows:

PD

.
= prob{TLMP > γLMP |H1} = Q

(

γLMP − µLMP(h)

αLMP(h)

)

= Q

(

αLMP(0)

αLMP(h)
Q−1(PFA) −

µLMP(h) − µLMP(0)

αLMP(h)

)

= Q





Q−1(PFA) −
√

b2ζ
√

1 + 2 b3
b2

ζ + b4
b2

ζ2



 , (16)

where ζ
.
= |h|2/σ2 is the SNR. A useful measure of detection

performance is the deflection coefficient [6], which for the
LMP test is asymptotically given by

d2
LMP

.
=

(µLMP(h) − µLMP(0))2

α2
LMP(h)

= K
b̄2
2ζ

2

b̄2 + 2b̄3ζ + b̄4ζ2
, (17)

after introducing the normalized coefficients b̄n
.
= bn/K .

B. Asymptotic Performance of the Energy Detector

Let now TED

.
= rHr. Following steps similar to those in the

previous section, it is found that for large K , TED is Gaussian
distributed with expected value and variance given by

µED(h)
.
= E{TED} = |h|2b1 + σ2b0, (18)

α2
ED(h)

.
= var{TED} = |h|4b2 + 2|h|2σ2b1 + σ4b0. (19)

The threshold γED can be set for a given target PFA as

γED = αED(0)Q−1(PFA) + µED(0). (20)

1We make use of the fact that, for zero-mean complex circular Gaussian
vectors x, y and constant matrices A, B, it holds that

E{(xHAy)(yH Bx)} = Tr
[

A · E{yxH}
]

Tr
[

B · E{xyH}
]

+ Tr
[

AE{yyH}BE{xxH}
]

.

Using (18), (19) and (20) the probability of detection follows:

PD

.
= prob{TED > γED |H1} (21)

= Q





Q−1(PFA) − b1√
b0

ζ
√

1 + 2 b1
b0

ζ + b2
b0

ζ2



 . (22)

Hence, the corresponding deflection coefficient is

d2
ED

.
=

(µED(h) − µED(0))2

α2
ED(h)

= K
b̄2
1ζ

2

b̄0 + 2b̄1ζ + b̄2ζ2
. (23)

C. Performance Comparison

It is interesting to compare the asymptotic performance
of the LMP and ED tests. Since the detection performance
increases as the deflection coefficient increases [6], we focus
on the ratio d2

LMP/d2
ED for the same number of samples K:

d2
LMP

d2
ED

=
b̄2
2(b̄0 + 2b̄1ζ + b̄2ζ

2)

b̄2
1(b̄2 + 2b̄3ζ + b̄4ζ2)

. (24)

In the low SNR region, this ratio goes to

lim
ζ→0

d2
LMP

d2
ED

=
b̄2
2b̄0

b̄2
1b̄2

= b̄2 (since b̄0 = b̄1 = 1). (25)

Using Szegö’s Theorem [7], one has

b̃n
.
= lim

K→∞
b̄n = lim

K→∞

1

K

K−1
∑

k=0

λn
k

=
1

2π

∫ π

−π

Sn
xx(ejω)dω. (26)

From the fact that {xk} has unit variance and the Cauchy-
Schwarz inequality, it follows that b̃2 ≥ 1. Therefore,

lim
K→∞

lim
ζ→0

d2
LMP

d2
ED

≥ 1, (27)

with equality if and only if Sxx(ejω) = 1 for −π ≤ ω ≤ π,
that is, for white primary signals. In that case C = I and the
LMP test reduces to the energy detector.

Let us return to the ideal frequency flat passband model for
the multicarrier primary signal, and let B̄ < 1 be the fraction
of the Nyquist bandwidth occupied by the signal. From (26),

b̃n = lim
K→∞

b̄n =
1

B̄n−1
, (28)

and therefore, for this particular case,

lim
K→∞

lim
ζ→0

d2
LMP

d2
ED

=
1

B̄
> 1, (29)

that is, the advantage of the LMP test over the ED test
increases as the primary signal becomes more narrowband.

Regarding computational load, the ED test just requires K
complex multiplications and K−1 additions to compute rHr,
and thus its complexity is O(K). For the LMP test, the statistic
rHCr can be most efficiently computed by obtaining the FFT
of the vector r and using the asymptotic results (4), resulting
in O(K log K) complexity.



IV. MULTIPLE ANTENNA DETECTORS

With M > 1 antennas, the received MK × 1 vector r is
given by (3), and the corresponding hypothesis test is

H0 : ‖h‖2 = 0 (primary is absent) (30)

H1 : ‖h‖2 > 0 (primary is present) (31)

which is again composite since h is unknown. Now r ∼
CN (0, σ2I) under H0 and r ∼ CN (0, (hhH ⊗ C) + σ2I)
under H1. The NP test decides H1 if rH x̂ exceeds a threshold,
where now

x̂ = (hhH ⊗ C)
[

(hhH ⊗ C) + σ2I
]−1

r. (32)

In contrast with the single antenna case, neither in the high
nor low SNR regimes does the NP test reduce to a test not
depending on h. For example, for asymptotically small SNR,
the statistic of the NP test becomes

rHx̂ ∝ rH(hhH ⊗ C)r =

M
∑

i=1

M
∑

j=1

hih
∗
jr

H
i Crj. (33)

The main difficulty stems from the fact that, although the
parameter defining the hypotheses is ||h||2, the distribution
of r under H1 depends on all products of the form hih

∗
j .

A. Multiantenna Incoherent Detector (ID)

One possible detector in this case can be obtained by
neglecting the “off-diagonal terms” (i.e. i 6= j) in (33) as
well as the weights |hi|2 in the “diagonal terms” (i = j). The
resulting test decides H1 if

TID

.
=

M
∑

i=1

rH
i Cri > γID, (34)

or, upon defining Q
.
= IM ⊗ C,

TID

.
= rHQr > γID. (35)

We refer to (34) as Incoherent Detection (ID) test, since it
ignores the correlation among different antennas. Note that
this detector does not require knowledge of the channel h.

The statistic of the multiantenna ID test is the sum of the
LMP statistics for each individual antenna. For large K , we
rely again on the central limit theorem to obtain the asymptotic
detection performance. The expected value of TID is just

µID(h)
.
= E{TID} = ‖h‖2b2 + Mσ2b1, (36)

whereas its variance is given by

α2
ID(h)

.
= var{TID} = Tr{(QE{rrH})2}
= Tr{(hhH ⊗ C2 + σ2IM ⊗ C)2}
= Tr{‖h‖2hhH ⊗ C4

+ 2σ2hhH ⊗ C3 + σ4IM ⊗ C2}
= ‖h‖4b4 + 2‖h‖2σ2b3 + Mσ4b2 (37)

Therefore, the threshold for a target PFA is

γID = αID(0)Q−1(PFA) + µID(0). (38)

Using (36), (37) and (38) the probability of detection is found
to be

PD

.
= prob{TID > γID |H1} = Q

(

γID − µID(h)

αID(h)

)

= Q

(

αID(0)

αID(h)
Q−1(PFA) −

µID(h) − µID(0)

αID(h)

)

= Q





Q−1(PFA) −
√

Mb2ζ
√

1 + 2 b3
b2

ζ + M b4
b2

ζ2



 (39)

where ζ is now defined as the average SNR per antenna:

ζ
.
=

‖h‖2

Mσ2
. (40)

The corresponding deflection coefficient is

d2
ID = KM

b̄2
2ζ

2

b̄2 + 2b̄3ζ + Mb̄4ζ2
. (41)

B. Performance comparison

It is of interest to compare the asymptotic performances of
the single-antenna LMP test with K input samples and the
M -antenna ID test with K̃ samples per antenna (thus a total
of K̃M samples), for the same average SNR ζ. If K 6= K̃,
the parameters b̄n featuring in (17) are different from those
in (41). However, asymptotically as both K, K̃ → ∞ they
reach the same values b̃n in (26), which depend only on the
signal psd. Taking this into account, the asymptotic deflection
coefficient ratio can be written as

d2
LMP

d2
ID

=
K

K̃M

b̃2 + 2b̃3ζ + Mb̃4ζ
2

b̃2 + 2b̃3ζ + b̃4ζ2
as K , K̃ → ∞. (42)

Hence, in the low SNR regime, one has

lim
ζ→0

d2
LMP

d2
ID

=
K

K̃M
as K , K̃ → ∞. (43)

On the other hand, the single-antenna LMP test requires
one FFT of size K , whereas the multiple-antenna ID test
requires M FFTs of size K̃. The integration times of these
detectors are proportional to K and K̃ respectively. All these
considerations allow different tradeoffs in terms of detection
power, computational complexity, and dwelling time (this last
quantity is important in cognitive radio systems, since they
must scan a large number of primary channels):

• If both single- and multiple-antenna tests process the
same total number of samples, i.e K = K̃M , then (43)
equals 1: both systems achieve the same asymptotic de-
tection performance. Their complexities are O(K log K)
and O(K log K

M ) respectively, favoring the multiantenna
scheme, which in addition requires a dwelling time M
times smaller for the same detection power.

• If both systems operate with equal dwelling times, i.e.
K = K̃ , then the deflection coefficient is M times
larger for the multiantenna ID test (which now pro-
cesses M times more samples than the single-antenna
LMP test). The complexities are now O(K log K)
and O(MK log K); thus, the performance improvement
comes with an M -fold increase in computational load.



C. Detection Diversity Gain

In the previous sections a deterministic channel has been
implicitly assumed. Now we consider a slow fading setting
where the channel coefficients are assumed constant over the
detector integration time. We model the channel coefficients as
Rayleigh distributed with a given correlation matrix Υ (with
rank{Υ} = M̃ ≤ M ) among the multiple antennas:

h ∼ CN (0,Υ). (44)

From (39), the probability of miss is given by

PMiss

.
= 1 − PD = Q





√
Mb2ζ − Q−1(PFA)

√

1 + 2 b3
b2

ζ + M b4
b2

ζ2



 . (45)

Using a first-order Taylor approximation of the argument of
the Q-function in (45) about ζ = 0, one finds that in the low
SNR regime,

PMiss ≈ Q

[(

√

Mb2 +
b3

b2
Q−1(PFA)

)

ζ − Q−1(PFA)

]

. (46)

In a fading environment, PMiss in (46) becomes a random
variable. Its mean value can be upper bounded by noting that

Q(x) ≤ 1

2
e−x/2, x ≥ 0. (47)

By using this bound in (46) and then averaging over h,

E[PMiss] ≤
1

2
exp

{

Q−1(PFA)

2

}

× E

[

exp

{

−ζ

2

(

√

Mb2 +
b3

b2
Q−1(PFA)

)}]

(48)

Using similar steps to those in [8, Sec. 4.4], one finds that

E[PMD] ≤ Cζ̄−M̃
M̃
∏

m=1

1
M̃

∑M̃
k=1 εk

εm
, (49)

where ε1,. . . ,εM̃ are the M̃ nonzero eigenvalues of Υ,

ζ̄
.
=

1

M̃σ2
Tr{Υ} (50)

is the SNR, and

C =
1

2
exp

{

Q−1(PFA)

2

}

(

2√
Mb2 + b3

b2
Q−1(PFA)

)M̃

(51)

is a constant independent of the SNR and ε1, . . . , εM̃ . Hence
the diversity order, that is, the slope of E[PMiss] versus the SNR
when plotted on a log-log scale, is given by the rank of the
fading correlation matrix. This shows the advantage of having
multiple antennas for channel sensing under fading conditions.
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Fig. 1. Receiver Operation Characteristic for the different detectors in a
deterministic channel with SNR = −10 dB.

V. NUMERICAL RESULTS

The performance of the proposed detectors is tested via
Monte Carlo simulations, using a DVB-T reference signal2

with bandwidth B = 7.61 MHz quantized to 9-bit precision.
This channel was downshifted to baseband and asynchronously
sampled at fs = 16 MHz, thus in this case the occupied band-
width fraction is B̄ = 0.4756. The autocorrelation estimate
of this reference signal was used to generate the covariance
matrix C used by the LMP and ID tests.

A. Deterministic channels

A low SNR scenario is considered in which the signal
is corrupted by white noise with known power. We analize
the performance of the proposed detectors in four different
configurations:

1) Energy Detector (M = 1, K = 256)
2) Locally Most Powerful Test (M = 1, K = 256)
3) Multiantenna Incoherent Detector (M = 2, K̃ = 128)
4) Multiantenna Incoherent Detector (M = 2, K̃ = 256)

Fig. 1 shows the PD vs. PFA tradeoff for SNR = −10
dB. The results match the asymptotic analysis even for these
moderated values of K . Regarding the performance of the
tests, the improvement obtained by exploiting the available
knowledge about the signal psd is apparent. It is also seen that
the performances of the single-antenna LMP test and the two-
antenna ID test when both process the same total number of
samples is very similar, as foreseen in Section IV-A, whereas
for the same dwelling time, the two-antenna system shows a
significant improvement.

In Fig. 2 the probability of miss is plotted in the range
SNR ∈ [−15,−5] dB, and for PFA = 0.01. For the same
total number of samples both the single-antenna LMP and
the multiantenna ID tests perform about 3 dB better than the

28K mode, 64-QAM, guard interval 1/4, inner code rate 2/3.
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ED Analytical (K=256, M=1)

ED Simulation (K=256, M=1)
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Fig. 2. Detection performance of the different tests as a function of the SNR
for fixed PFA = 0.01.

Energy Detector in the region of interest. If we match the
dwelling times of the LMP and ID tests, then the latter offers
an additional 2.5 dB gain due to the increased total number of
samples. As PD → 1, simulation results begin to disagree with
the analytical curves: these were obatined with an asymptotic
probability distribution for large values of K , and the accuracy
of the approximation degrades in this region.

B. Rayleigh fading channels

We assume independent Rayleigh fading at the multiple
antennas. The channel coefficients are drawn from a Gaussian
distribution:

h ∼ CN (0, ρ2I), (52)

so that the SNR is ζ̄ = ρ2/σ2. We consider three of the
proposed detectors with the same total number of samples,
as follows:

1) Energy Detector (M = 1, K = 512).
2) Locally Most Powerful Test (M = 1, K = 512).
3) Multiantenna Incoherent Detector (M = 4, K̃ = 128).

In Fig. 3 the probability of miss has been plotted in the
range ζ̄ ∈ [−15, 0] dB for PFA = 0.01. It is seen that the
two single-antenna detectors have the same asymptotic slope,
whereas ID with 4 antennas has an increased diversity gain that
translates in a faster decay for the probability of miss. Note
that the asymptotic bound presents in all the cases the right
slope, though it becomes looser as the number of antennas
increases.

VI. CONCLUSIONS

In cognitive radio systems it is reasonable to assume that
some knowledge about the primary network, such as chan-
nelization and modulation type, is available to the secondary
users. This information, translated into knowledge of the
spectral shape of primary signals, can be exploited in order
to enhance signal detection algorithms such as the popular
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Fig. 3. Detection performance of the different tests in a fading channel as a
function of the average SNR for fixed PFA = 0.01.

Energy Detector. We have presented a single-antenna Locally
Most Powerful detector for multicarrier signals, which asymp-
totically becomes Uniformly Most Powerful if the signal psd
is approximated as an ideal bandpass function.

When the spectrum monitor is equipped with multiple
antennas, it is not possible to remove the dependence of the op-
timal Neyman-Pearson detector with the channel coefficients
by letting the SNR approach zero. Nevertheless, a suboptimal
multiantenna Incoherent Detector has been proposed, which
does not need channel knowledge. It can reduce the dwelling
time of the single-antenna LMP test maintaining the same
detection power, and moreover, for slow fading scenarios it
offers a diversity gain in terms of the rate at which the average
probability of detection goes to one with increasing SNR.
Work is in progress in order to improve on the performance of
the Incoherent Detector by exploiting signal correlation among
different antennas.
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