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ABSTRACT

The cognitive radio paradigm is based on the ability to de-
tect the presence of primary users in a given frequency band.
In this scenario a spectrum monitor may estimate the signal
power levels of all frequency channels in the band of inter-
est, together with the background noise level. We address
Maximum Likelihood estimation for this problem, exploiting
a priori knowledge about the primary network, summarized
in the spectral shape of primary transmissions. An iterative
asymptotic ML estimate is proposed, which can be further
simplified in order obtain a computationally more efficient
Least Squares estimator with performance very close to the
Cramer-Rao lower bound in several cases of interest.

1. INTRODUCTION

Cognitive Radio is receiving considerable interest as a means
for wireless systems to improve spectral usage. The key idea
of opportunistically accessing temporally and/or spatially un-
used licensed bands requires powerful spectrum monitoring
techniques, since the interference produced to licensed (pri-
mary) users must be kept at sufficiently low levels. The en-
ergy detector is a popular choice due to its simplicity, but it
is not robust to noise-level uncertainty [1]; the induced sensi-
tivity to threshold setting is a characteristic common to many
detectors [2]. Due to this, accurate estimation of noise vari-
ance becomes an important task in spectrum sensing, which
is hampered by the fact that it is unknown whether the sig-
nal is present or not at the time of the measurement, and with
which level. Thus, joint estimation of noise and signal levels
must be performed. This was done in [3] assuming a single
primary subchannel is monitored at a time. However, when
the whole bandwidth to monitor is large, sequential individual
sensing of many (say N ) primary channels poses significant
challenges to the design of the receiver’s analog front-end os-
cillators [4]. A means to alleviate this problem is to break
the bandwidth of interest into subbands comprising M < N
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primary channels each. These subband signals are then down-
converted, digitized and analyzed sequentially. Note that the
resolution and speed requirements for the analog-to-digital
converter (ADC) become more stringent as M increases, so
this strategy allows a tradeoff between oscillator and ADC
complexity by judiciously choosing the ratio N/M . In ad-
dition, one expects that, since the bandwidth available to the
noise variance estimators is now M times larger than in the
single-channel case, estimation performance should improve.

In the setting considered in this paper it is assumed that
several primary network parameters, such as channelization,
modulation type, etc., are available to the spectrum monitor,
and this information is translated into knowledge about the
spectral shape of primary transmissions. This is reasonable
in many practical cases, in particular for broadcast-type pri-
mary networks. If in addition the network uses multicarrier
modulation, then a mathematically tractable Gaussian model
can be adopted. Under this assumption we derive a joint es-
timator for multicarrier signals based on a Maximum Likeli-
hood (ML) derivation that simultaneously estimates the noise
power and the signal level present in each of the channels.

Section 2 presents the system model. ML estimation is ad-
dressed in Section 3, whereas a Least Squares (LS) estimator
and the derivation of the Cramer-Rao Lower Bound (CRLB)
are derived in Sections 4 and 5. Numerical results and final
conclusions are given in Sections 6 and 7, respectively.

2. SYSTEM MODEL

Primary users employ Frequency Division Multiplexing with
fixed channelization, known to the spectrum monitor. Several
primary channels are sensed simultaneously, selecting a sub-
band containing M such channels, downconverting the wide-
band signal to baseband, and sampling this baseband signal at
fs samples/s, thus obtaining K complex-valued samples:

rk =
M∑

m=1

σmx
(m)
k + σwk, 0 ≤ k ≤ K − 1, (1)

where rk are the observations; x
(m)
k are the (noiseless) sam-

ples of the primary signal in channel m, normalized to unit



variance (E{|x(m)
k |2} = 1); wk are samples of a zero mean,

circular complex white Gaussian noise with unit variance; σ 2
m

is the power of the primary signal in the mth channel (σ 2
m = 0

if the mth channel is vacant); and σ2 > 0 is the background
noise power. Assuming that the primary users employ multi-
carrier modulation, the processes x

(m)
k can be taken as circu-

lar Gaussian. This is reasonable for the number of subcarriers
typically used in practical multicarrier systems.

For ease of notation we define x
(0)
k = wk and σ2

0
.= σ2,

such that we can compactly write (1) in vector notation as

r =
M∑

m=0

σmxm (2)

with r = [r0 r1 · · · rK−1]T and xm = [x(m)
0 x

(m)
1 · · · x

(m)
K−1]

T .
Hence, each x(m) is circular Gaussian with zero mean and co-
variance matrix Cm

.= E{xmxH
m}, which is assumed known.

This is reasonable if the channelization and the modulation
parameters of the primary system are fixed and public, as
would be the case for broadcasting networks1. We model
the asynchronously sampled discrete-time processes as wide-
sense stationary; thus, Cm is Toeplitz with ones on the diag-
onal. Note that C0 = I since the noise is assumed white.

The signals x
(m)
k with m = 1, . . . , M are assumed sta-

tistically independent, since they correspond to different pri-
mary transmissions; and in addition they are statistically in-
dependent of the background noise. Hence, the observation r
is zero-mean circular Gaussian with covariance

R
.= E{rrH} =

M∑
m=0

σ2
mCm, (3)

and the power spectral density (psd) of the observed signal is

Sr(ejω) =
M∑

m=0

σ2
mSm(ejω) (4)

where Sm(ejω) are the psd’s of the constituent signals x
(m)
k

for m = 0, 1, . . . , M . We address the estimation of the signal
and noise powers σ2

m, 0 ≤ m ≤ M from the observations r.

3. MAXIMUM LIKELIHOOD ESTIMATION

Let σ
.= [σ2

0 σ2
1 · · · σ2

M ]T be the vector of unknown param-
eters. The probability density function (pdf) of the observa-
tions conditioned on the unknown parameters is

f(r|σ) =
1

πK detR
exp

{−rHR−1r
}

(5)

1Knowledge of the Cm’s implicitly assumes that the channel is
frequency-flat. However, the resulting estimators turn out to be robust to
unknown frequency selectivity effects, as in [3].

and the ML estimate should maximize f(r|σ), or equiva-
lently minimize − ln f(r|σ). Thus, the problem reduces to
the minimization of

L(r; σ) .= ln detR + rHR−1r (6)

The partial derivatives of L(r; σ) w.r.t. σ2
m are

∂L(r; σ)
∂σ2

m

= −Tr{R−1Cm} + rHR−1CmR−1r (7)

The ML estimate of σ satisfies ∂L/∂σ2
m = 0 for 0 ≤ m ≤

M . This yields a set of nonlinear equations with no closed-
form solution, and one must resort to numerical schemes. We
propose a fixed-point iterative method for the computation of
the ML estimate in the asymptotic regime K → ∞.

3.1. Iterative solution for the asymptotic case

In view of (7), the natural approach to solving ∂L/∂σ 2
m = 0

seems to be the diagonalization of the matrices involved, as
done in [3] for the case M = 1. However, when M >
1 channels are present, the covariance matrices Cm do not
share common eigenvectors, and the eigenstructure of R in
(3) is unclear. However, as K → ∞, the eigenvalues of
Cm are well approximated by the regularly spaced samples
of Sm(ejω), whereas the eigenvectors approach the columns
of the K × K orthonormal IDFT matrix W [5], i.e.,

Cm ≈ WΛmW H , m = 0, 1, . . . , M (8)

where Λm
.= diag(λm), with λm

.= [λ(m)
0 λ

(m)
1 · · · λ

(m)
K−1]

T ,
and

λ
(m)
k

.= Sm(ej 2πk
K ), 0 ≤ k ≤ K − 1. (9)

From (3) and (8) it follows that

R ≈ WΔ(σ)W H as K → ∞, (10)

with Δ(σ) .=
M∑

m=0

σ2
mΛm. (11)

Substituting (10) back into (7) we obtain

∂L(r; σ)
∂σ2

m

≈ −Tr
{
Δ−1(σ)Λm

}
+ vHΔ−1(σ)ΛmΔ−1(σ)v, (12)

where v
.= W Hr is the DFT of the observations. Using the

definitions of Λm and Δ(σ), we can rewrite (12) as

∂L

∂σ2
m

≈ −
K−1∑
k=0

λ
(m)
k∑M

i=0 σ2
i λ

(i)
k

+
K−1∑
k=0

|vk|2λ(m)
k(∑M

i=0 σ2
i λ

(i)
k

)2 . (13)

Let us define

Δk(σ) .=
M∑
i=0

σ2
i λ

(i)
k , 0 ≤ k ≤ K − 1, (14)



so that

Δ(σ) = diag{ Δ0(σ) Δ1(σ) · · · ΔK−1(σ) }. (15)

Then, equating (13) to zero, we find that the ML estimate σ̂ML

must satisfy

K−1∑
k=0

λ
(m)
k

Δk(σ̂ML)
=

K−1∑
k=0

|vk|2λ(m)
k

Δ2
k(σ̂ML)

, 0 ≤ m ≤ M, (16)

as K → ∞. The left hand side of (16) can be rewritten as

K−1∑
k=0

λ
(m)
k

Δk
=

K−1∑
k=0

Δkλ
(m)
k

Δ2
k

(17)

=
M∑
i=0

σ2
i

(
K−1∑
k=0

λ
(i)
k λ

(m)
k

Δ2
k

)
. (18)

Substituting (18) into (16) and writing the result in matrix-
vector form,

B(σ̂ML)σ̂ML = b(σ̂ML), (19)

where B(σ) and b(σ) are defined elementwise as

[B(σ)]ij
.=

K−1∑
k=0

λ
(i)
k λ

(j)
k

Δ2
k(σ)

, 0 ≤ i, j ≤ M, (20)

[b(σ)]i
.=

K−1∑
k=0

|vk|2λ(i)
k

Δ2
k(σ)

, 0 ≤ i ≤ M. (21)

Eqn. (19) suggests the following fixed point algorithm to ob-
tain the asymptotic ML estimate: starting with some initial
guess σ̂1, compute

σ̂n+1 = B−1(σ̂n)b(σ̂n), n = 1, 2, . . . (22)

This requires an initial K-point FFT, and solving a linear sys-
tem of (M + 1) equations at each iteration. Fast convergence
has been observed within a few iterations (<10) in all cases
tested. In practice, M � K and thus the computational com-
plexity of this method is O(K log2 K).

Remark: If we define the K × (M +1) matrix L and the
K × 1 vector p (the periodogram) respectively as

L
.= [ λ0 λ1 · · · λM ], (23)

p
.= [ |v0|2 |v1|2 · · · |vK−1|2 ]T , (24)

then we can write (20)-(21) compactly as

B(σ) = LHΔ−2(σ)L, (25)

b(σ) = LHΔ−2(σ)p. (26)

Iteration (22) is well defined providedB remains non-singular
along the iterations. Note from (25) that B is the Gram matrix
of Δ−1L. Assuming that the diagonal matrix Δ stays invert-
ible, the invertibility of B(σ) amounts to linear independence

of the columns of L, i.e. the vectors λ(m), 0 ≤ m ≤ M .
This condition, which can be checked a priori, states that the
constituent reference psd’s Sm(ejω), 0 ≤ m ≤ M , must be
linearly independent. This is intuitively satisfying: since the
observed process is a mixture of circular Gaussian processes,
the only means available to estimate the relative powers is by
exploiting spectral diversity. When this linear independence
condition is violated, the parameter vector σ is not identifi-
able.

4. LEAST SQUARES ESTIMATION

Substituting (25)-(26) back into (19), one obtains

LHΔ−2(σ̂ML)Lσ̂ML = LHΔ−2(σ̂ML)p, (27)

revealing certain similarity between the left and right terms,
which can be exploited in order to obtain a simplified esti-
mator as follows. First, note that the periodogram p is an
asymptotically unbiased estimate of the received psd [6], and
therefore p�

.= limK→∞ E{p} = Lσ� with σ� the vector
of true parameters. Thus, asymptotically, the expected value
of p lies in the subspace spanned by the columns of L. By
assumption, L has full column rank, and L†L = IM+1, with
L† denoting the pseudoinverse of L. Then it holds that

LL†p� = LL†Lσ� = Lσ� = p�, (28)

which suggests the approximation p ≈ LL†p (asymptoti-
cally exact in expected value). Substituting this in (27),

σ̂ML ≈ [
LHΔ−2(σ̂ML)L

]−1
LHΔ−2(σ̂ML)LL†p

= L†p .= σ̂LS (29)

The subscript LS refers to the fact that this estimate is the
solution to the Least Squares problem minσ̂ ‖Lσ̂−p‖2. The
appeal of σ̂LS resides in its one-shot nature, as opposed to the
iterative scheme (22) for the computation of the ML estimate.
Note that the iterations required by the ML method may pose
a problem in practical implementations in which the subband
to be analyzed contains a large number of channels.

5. CRAMER-RAO LOWER BOUND

Since the observations are (complex valued) circular Gaus-
sian with zero mean and covariance R(σ), the elements of the
Fisher information matrix F (σ) are given by (see e.g. [7]):

[F (σ)]ij = Tr

{
R−1(σ)

∂R(σ)
∂σ2

i

R−1(σ)
∂R(σ)
∂σ2

j

}
. (30)

In our case, ∂R(σ)/∂σ2
m = Cm. Using the asymptotic ap-

proximations (8) and (10),

[F (σ)]ij ≈ Tr
{
Δ−1(σ)ΛiΔ−1(σ)Λj

}
(31)

=
K−1∑
k=0

λ
(i)
k λ

(j)
k

Δ2
k(σ)

= [B(σ)]ij (32)
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Fig. 1. PSD of the 8 MHz DVB-T reference signals.

Thus, the Fisher information matrix converges to B(σ) asymp-
totically. The CRLB is given by

var(σ̂2
i ) ≥ [F−1(σ)]ii

K→∞−→ [B−1(σ)]ii. (33)

6. SIMULATION RESULTS

The performance of the proposed estimation schemes is tested
via Monte Carlo simulations, in which the primary system is
a DVB-T broadcast network with 8 MHz channel spacing.
Each DVB-T signal2 has bandwidth B = 7.61 MHz and was
quantized to 9-bit precision.

Two different scenarios are presented. In the first, M = 2
channels (centered at ±4 MHz) are sampled at fs = 16 MHz.
This multichannel setting is the simplest possible, and illus-
trates the mutual effect of adjacent channels with possibly dis-
parate powers. In the second scenario the number of channels
is M = 4, with center frequencies at ±4 and ±12 MHz, and
the sampling frequency is fs = 32 MHz.

The psd’s3 of the reference signals for both scenarios are
shown in Fig. 1. This psd estimates are used to approximate
the actual psd’s Sm(ejω). In the following, the SNR at chan-
nel m is defined as SNRm

.= σ2
m/σ2

0 .

6.1. Scenario 1: M = 2 channels

The SNR of channel 1 is swept between−30 and 10 dB, while
the SNR of channel 2 remains fixed. These low SNR values
are expected to be typical operation regions for a Cognitive

28K mode, 64-QAM, guard interval 1/4, inner code rate 2/3.
3via Welch’s method (210-point Hamming windowing and 50% overlap).
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Fig. 2. Estimator performance in Scenario 1 (M = 2 chan-
nels). K = 1024 samples, SNR2 = −10 dB.

Radio spectrum monitor, which must detect primary activity
even under strong fading conditions. Both the ML 4 and LS
estimators were applied on K = 1024 data samples.

Fig. 2 shows the results obtained when SNR2 = −10 dB.
Regarding noise power estimation, both the ML and LS ap-
proaches are unbiased and perform close to the CRLB in the
range shown, although the LS estimator starts to deviate for
SNR1 > 0 dB. Similar statements can be made about the es-
timates of the signal power in channel 2. On the other hand,
regarding the estimation of σ2

1 , both methods become severely
biased for SNR1 < −15 dB. Above this threshold value, both
are unbiased and achieve the CRLB.

Fig. 3 shows the results obtained when SNR2 = 10 dB.
Now we can see noticeable differences between both meth-
ods. The ML estimate offers a performance very similar to
that in the previous case (SNR2 = −10 dB). The LS esti-
mate of σ2

1 becomes now biased for SNR1 < 10 dB, and even
above this new threshold value, it presents a gap to the CRLB.
Similarly, although the LS estimate of the noise power re-
mains unbiased in the range shown, it also suffers from a gap
to the corresponding CRLB.

6.2. Scenario 2: M = 4 channels

Here we study the effect of sample size K on the mean value
of the estimates. The SNRs of channels 1 through 4 were
fixed at 10, 5 −5 and −10 dB respectively, and then K was
swept between 256 and 4096. The results are shown in Fig. 4.

4implemented as in (22) initialized at σ̂2
i = 10−2, i = 0, 1, 2, and

stopping at iteration 10.
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Fig. 3. Estimator performance in Scenario 1 (M = 2 chan-
nels). K = 1024 samples, SNR2 = 10 dB.

For small K both methods present a strong bias in the estima-
tion of the noise power, as well as in the estimation of the sig-
nal power in those channels with low SNR. This is not surpris-
ing, since the estimators developed in the previous sections
rely on asymptotic results. To reduce the bias in this regime,
it becomes necessary to increase the sample size K . It is also
seen that the bias of the LS scheme goes to zero more slowly
as K increases than that of the ML estimate. Note that the
reduced space between contiguous DVB-T signals, as seen in
Fig. 1(b), poses a significant challenge to noise variance es-
timators, and thus a relatively large value of K is required to
estimate the noise level correctly.

7. CONCLUSIONS

We have considered Maximum Likelihood estimation of the
noise and signal power levels from samples of a wideband
signal comprising multiple multicarrier channels. Although
no closed-form solution is available for the ML estimate in
the finite data case, a recursive method was developed based
on asymptotic approximations. The resulting iterative scheme
can be further simplified in order to obtain a one-shot Least
Squares estimator.

For both methods, signal level estimates suffer from a bias
in those channels with low SNR. This bias is exacerbated for
the LS estimator when a strong adjacent channel is present,
and can be reduced by increasing the number of samples to
process. Regarding noise variance estimation, strong chan-
nels also seem to affect the LS method more adversely. This
would favor the use of the recursive ML scheme in Cogni-
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Fig. 4. Mean Estimator Output in Scenario 2 (M = 4 chan-
nels).

tive Radio applications, in which an accurate estimate of the
background noise level is required for adequate detector per-
formance [1].
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