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Abstract—Spectrum sensing is a key ingredient of the dynamic
spectrum access paradigm, but it needs powerful detectors
operating at SNRs well below the decodability levels of primary
signals. Noise uncertainty poses a significant challenge to the
development of such schemes, requiring some degree of diversity
(spatial, temporal, or in distribution) for identifiability of the
noise level. Multiantenna detectors exploit spatial independence
of receiver thermal noise. We review this class of schemes and
propose a novel detector trading off performance and complexity.
However, most of these methods assume that the noise power,
though unknown, is the same at all antennas. As it turns out,
calibration errors have a substantial impact on these detectors.
Another novel detector is proposed, based on an approximation
to the Generalized Likelihood Ratio, outperforming previous
schemes for uncalibrated multiantenna receivers.

I. INTRODUCTION

The apparent scarcity of spectral resources while most

allocated frequency bands are underutilized motivates the

Cognitive Radio (CR) paradigm [1]. The key idea of op-

portunistically accessing momentarily unused licensed bands

requires powerful spectrum monitoring techniques, since the

interference produced to licensed (primary) users must be

kept at sufficiently low levels. At the same time, the wireless

medium makes reliable detection of primary users a very

challenging task: due to fading and shadowing phenomena, the

received primary signal may be very weak, resulting in very

low Signal-to-Noise Ratio (SNR) operation conditions [2].

Certain properties of the primary signal, such as the

presence of any pilots or cyclostationary features, could in

principle be exploited in order to obtain powerful detectors.

However, such approaches become very sensitive to synchro-

nization errors [2]. With very low SNR, the synchronization

loops of the monitoring system cannot be expected to provide

the required accuracy for the carrier frequency and/or clock

rate estimates. At the other end of the range of detection

techniques one finds the popular Energy Detector, which has

very low complexity, operates asynchronously, and does not

require any a priori knowledge of primary signals. These

desirable traits come at the cost of a reduced detection
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performance [2]. However, knowledge of the noise variance

is required so that the threshold to which the received signal

power is compared can be computed in order to set the desired

probability of false alarm. A critical SNR level (an “SNR

wall” [3]) appears if the actual value of the noise variance

is different from the nominal value. Primary signals below

this critical value become undetectable, even if the observation

time goes to infinity. This serious drawback motivates the

search for asynchronous detectors robust to noise uncertainty.

In this regard, exploiting the availability of multiple anten-

nas constitutes a promising approach. Multiple-input multiple-

output (MIMO) technologies having reached considerable ma-

turity, it is very likely for future CR terminals to incorporate

them [4], [5]. In terms of transmission/reception, multiple

antennas provide a means to increase channel capacity without

bandwidth expansion, as well as to overcome the effects

of fading via space-time coding [6]. Several authors have

recently studied the benefits of having multiple antennas in

terms of enhancing detection performance in the context of

CR systems. In [7] an analysis was given for multiantenna

Energy Detectors using maximal ratio combining and antenna

selection; these schemes require knowledge of the channel

from the primary user to the cognitive node and therefore are

difficult to implement in practice. A priori knowledge about

the spectral characteristics of the transmitted primary signal

was exploited in [8] together with a multiantenna sensor in

order to develop a generalized Energy Detector under a weak

signal assumption. Both [7] and [8] assume knowledge of the

noise variance, and therefore they inherit the sensitivity of the

original Energy Detector to uncertainties about this parameter.

However, with multiantenna sensors it is possible in prin-

ciple to overcome this problem. The basic idea is to exploit

the fact that, if the channel under scrutiny is being used by

the primary network, then some spatial correlation should

be present in the signals at different antennas. On the other

hand, if the channel is idle so that the only contribution

in the observations corresponds to thermal noise, then such

correlation should be absent. Thus, detectors can be designed

based on spatial correlation estimates, rather than received

signal power. An alternative interpretation is that multiantenna

sensors provide additional degrees of freedom which allow for

simultaneous estimation of signal and noise parameters. This



is not possible with single-antenna systems, unless some ad-

ditional assumptions are adopted to allow distinction between

signal and noise, e.g. Gaussian noise vs. non-Gaussian signal,

or temporally white noise vs. correlated signal.

Several authors have considered the multiantenna detection

problem under unknown noise [9]–[12] to devise schemes that

remain robust to noise uncertainties. All of these detectors

assume the same noise variance across the antennas. In prac-

tice, however, tolerances in the components of the different

RF chains will result in deviations of the noise level from

antenna to antenna. As it turns out, the detectors from [9]–

[12] are sensitive to these calibration errors. Hence, it is of

interest to devise detectors handling unknown noise variances

which are potentially different at each antenna; see e.g. [13].

The contribution of this paper is twofold. First, a new

multiantenna detector under unknown noise is proposed which,

though suboptimal, does not require obtaining the eigenvalues

of the spatial correlation matrix, in contrast to previous ap-

proaches. The performance of this detector compares favorably

to eigenvalue-based detectors, but it also degrades when the

noise variance is not uniform across the antennas. A second

multiantenna detector is proposed for this more challenging

scenario, based on an approximation to the Generalized Like-

lihood Ratio. This scheme performs better that the detector

from [13] when the number of antennas is larger than two.

The problem setting is given in Section II. Section III

presents different detectors derived assuming uniform noise

variance across all antennas. Detectors designed for uncali-

brated receivers are presented in Section IV. Numerical results

and conclusions are given in Sections V and VI, respectively.

II. SYSTEM MODEL

The sensor has M antennas with their respective RF chains.

The same primary channel is selected at all antennas, down-

converted to baseband, and asynchronously sampled. The K

complex-valued samples y
(m)
k at the mth antenna are given by

y
(m)
k = h∗

mxk + σmw
(m)
k , 1 ≤ m ≤ M, 1 ≤ k ≤ K, (1)

where xk are the (noiseless) samples of the zero-mean primary

signal, normalized to unit variance (E{|xk|2} = 1); w
(m)
k

are samples of a zero mean, circular complex white Gaussian

noise also with unit variance; h∗
m and σ2

m > 0 are respectively

the complex channel gain and noise power at antenna m (if

the channel is vacant, then h∗
m = 0 for all m). The noise

processes at different antennas are assumed independent. Let

Y ∈ CK×M be the data matrix whose (k, m)-th element is

y
(m)
k . Then we can rewrite (1) as

Y = xhH + WΣ, (2)

where the (k, m)-th element of W ∈ CK×M is w
(m)
k , and

x
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Note that the model above assumes that the channel from

the primary transmitter to the spectrum monitor is frequency

flat in the RF channel bandwidth, and that it remains constant

for the duration of the sensing time. In addition, for the sake

of tractability the following assumptions are adopted:

• A1: The primary signal follows a Gaussian distribution.

• A2: The primary signal is temporally white.

If the modulation format of the primary system is Orthogonal

Frequency Division Multiplexing (OFDM), then Assumption

A1 approximately holds for the number of subcarriers used in

practice. Noting that the spectrum of an OFDM signal is ap-

proximately constant within the signal bandwidth, Assumption

A2 will be approximately satisfied if the sampling frequency

of the system is set to twice the baseband bandwidth of the

primary transmission (i.e. equal to the RF channel bandwidth

minus the guard bands).

If primary users employ single-carrier modulation and pulse

shaping with excess bandwidth, the assumptions above will not

strictly hold. In that case, exploiting time correlation and/or

non-Gaussianity of the primary signal could result in more

powerful detection schemes. Nevertheless, the Gaussian model

still provides practical detectors for this scenario.

Under Assumptions A1 and A2, the observation processes

y
(m)
k , 1 ≤ m ≤ M , are temporally white and Gaussian, and

the only dependence of the probability density function (pdf)

of Y is through the sample correlation matrix

R̂
.
=

1

K
Y HY . (4)

Then, with R
.
= E{R̂} = Σ

2 + hhH , this pdf is given by

f(Y |R) =

[

1

π det R
exp{− tr(R−1R̂)}

]K

. (5)

III. CALIBRATED MULTIANTENNA DETECTORS

The schemes presented in this section assume that the noise

variance is the same at all of the M antennas, i.e. Σ = σI.

A. Mean/max eigenvalue test

The corresponding hypothesis test using model (2) is

H0 : R = R0
.
= σ2I, H1 : R = R1

.
= σ2I + hhH . (6)

Since the parameters σ2, h are unknown, a sensible ap-

proach is the Generalized Likelihood Ratio Test (GLRT). In

the GLRT, the unknown parameters are substituted by their

Maximum Likelihood (ML) estimates under each hypothesis:

`
.
= −2 log

maxR0
f(Y |R0)

maxR1
f(Y |R1)

H1

≷
H0

γ, (7)

where γ is a suitable threshold. The GLRT for this model has

been proposed in [12], and we briefly review it now. Under

H0, the ML estimate of σ2 is

σ̂2
0 =

1

M
tr R̂. (8)



Under H1, the ML estimates of σ2 and h are given by

σ̂2
1 =

tr R̂ − λ1(R̂)

M − 1
, ĥ1 =

√

λ1(R̂) − σ̂2
1 · v, (9)

where λ1(R̂) is the largest eigenvalue of R̂ and v is the

corresponding unit-norm eigenvector. Note that σ̂2
0 is the mean

of the M eigenvalues of R̂, whereas σ̂2
1 is the mean of the

M − 1 smallest eigenvalues of R̂. Substituting (8)-(9) back

in (7), one obtains

` = 2K log
(M − 1)M−1µM

(Mµ − 1)M−1
, with µ

.
=

1
M tr R̂

λ1(R̂)
∈
[

1

M
, 1

]

(10)

Noting that ` is a monotonically decreasing function of µ, the

GLRT can be equivalently expressed as µ ≷H1

H0
γ′. We refer to

this scheme as “Mean/Max test”, since the statistic µ is the

ratio of the mean of the eigenvalues of R̂ to the largest one.

B. Sphericity test

If no structure is assumed about the covariance matrix when

the signal is present, the following test results:

H0 : R = R0
.
= σ2I, H1 : R = R1 = RH

1 > 0. (11)

The ML estimate of σ2 under H0 is given by (8), whereas the

ML estimate of R under H1 is R̂1 = R̂. This results in the

following GLRT:

` = 2KM log
1
M tr R̂

M
√

det R̂
, (12)

which is known as the “test for sphericity” [10], [14]. Note

that the statistic for the GLRT in this case reduces to the ratio

of the arithmetic to geometric mean of the eigenvalues of R̂.

C. Ad hoc eigenvalue tests

Both the Mean/Max and Sphericity tests are based on

metrics on the eigenvalues of R̂ that measure the distance

from this matrix to a scaled identity, for which all eigenvalues

are equal. Two other tests have been proposed in [11] based on

alternative metrics of this kind: the “dispersion test” (i.e. ratio

of smallest to largest eigenvalues λM/λ1), and the “Min/Mean

test” λM/( 1
M tr R̂). Here we propose another detector based

on the following property of the trace operator:

Property 1: For any Hermitian A ∈ CM×M , it holds that

0 ≤ tr2(A)

M tr(AHA)
≤ 1, (13)

and the upper bound is attained iff A = αI.

The proof follows by invoking the Cauchy-Schwarz inequality

for the inner product 〈A, B〉 .
= tr(BHA) with B = I.

Hence, the following “Trace/Trace” test can be applied to

this detection problem:

tr2(R̂)

M tr(R̂HR̂)

H0

≷
H1

γ. (14)

Note that (14) does not require eigenvalue extraction.

D. Two-antenna sensors

When M = 2, the following relations are readily checked:

tr R̂

Mλ1
=

1 + ν

2
,

1
M tr R̂

M

√

det R̂
=

1 + ν

2
√

ν
, (15)

λM

1
M tr R̂

=
2ν

1 + ν
,

tr2(R̂)

M tr(R̂2)
=

(1 + ν)2

2[1 + ν2]
, (16)

which are all monotonic functions of the dispersion ν
.
=

λ2/λ1 ∈ [0, 1]. Therefore, for the important case of a sensor

with two antennas, the Mean/Max, Sphericity, Min/Mean,

Dispersion, and Trace/Trace tests are all equivalent.

IV. DETECTORS FOR UNCALIBRATED RECEIVERS

Now we relax the assumption of uniform noise variances

across the antennas, so that Σ is any positive diagonal matrix.

A. Hadamard ratio test

The following test makes no assumption on the structure of

the covariance matrix when the signal is present:

H0 : R = R0
.
= Σ

2, H1 : R = R1 = RH
1 > 0. (17)

The ML estimate of Σ
2 under H0 is Σ̂

2
0 = diag R̂, whereas

the ML estimate of R under H1 is R̂1 = R̂. This yields the

following GLRT [13]:

` = −2KM log
det R̂

det diag R̂
= −2KM log det Ĉ, (18)

where we have introduced the sample correlation matrix (also

known as spatial coherence matrix)

Ĉ
.
= [diag R̂]−1/2R̂ [diag R̂]−1/2. (19)

Note that Ĉ has ones on the diagonal, and that its (m, n)-
th element is just the sample correlation coefficient between

antennas m and n. Note that the (squared) Frobenius norm

||Ĉ||2F is therefore (twice) the sum of the squares of the

correlation coefficients of all antenna pairs, plus a constant

term, and constitutes a plausible statistic for this hypothesis

test. In fact, it was shown in [13] that, for weak signals,

the Frobenius norm test and the “Hadamard ratio” test based

on (18) are equivalent in terms of detection performance;

computational complexity favors the Frobenius norm test.

Finally, note that the approach from Section III-C could be

applied here in order to derive a detector that measures the

distance between Ĉ and the identity: the resulting scheme

turns out to be equivalent to the Frobenius norm test, since

tr2(Ĉ) = M2 and tr(ĈHĈ) = ||Ĉ||2F .

B. A new detector

The corresponding hypothesis test using model (2) is

H0 : R = R0
.
= Σ

2, H1 : R = R1
.
= Σ

2 + hhH . (20)

Thus, under H1, the covariance matrix is “diagonal plus

rank one”. Again, the ML estimate of Σ
2 under H0 is

Σ̂
2
0 = diag R̂, yielding

log detR0 + tr(R−1
0 R̂) = M + log det diag R̂. (21)



In order to obtain the ML estimates of Σ
2 and h under H1,

note that the following two facts hold:

det(Σ2 + hhH) = (1 + hH
Σ

−2h) detΣ
2, (22)

(Σ2 + hhH)−1 = Σ
−2 − Σ

−2hhH
Σ

−2

1 + hHΣ−2h
. (23)

Hence, the negative of the log-likelihood function, which is to

be minimized under H1 w.r.t. Σ
2 and h, is given by

log detR1 + tr(R−1
1 R̂) = log detΣ2 + tr(Σ−2R̂)

+ log(1 + hH
Σ

−2h) − hH
Σ

−2R̂Σ
−2h

1 + hHΣ−2h
. (24)

Let us define now

g
.
=

Σ
−2h√

hHΣ−2h
, α2 .

= hH
Σ

−2h, (25)

and note that gH
Σ

2g = 1. Then (24) reads as

log detR1 + tr(R−1
1 R̂) = log detΣ2 + tr(Σ−2R̂)

+ log(1 + α2) − α2

1 + α2
gHR̂g, (26)

which is minimized w.r.t. g (subject to gH
Σ

2g = 1) when g

is the eigenvector of Σ
−2R̂ associated to its largest eigenvalue

and satisfying the constraint. This choice yields gHR̂g =
λ1(Σ

−2R̂) and

log detR1 + tr(R−1
1 R̂) = log detΣ

2 + tr(Σ−2R̂)

+ log(1 + α2) − α2

1 + α2
λ1(Σ

−2R̂), (27)

which in turn is minimized w.r.t. α2 for α2 = λ1(Σ
−2R̂)−1.

Substituting this in (27), the expression obtained depends only

on Σ
2 and can be written as

log detR1 + tr(R−1
1 R̂) = 1 + log det R̂ − (M − 1)

×



log

(

det(Σ−2R̂)

λ1(Σ−2R̂)

)
1

M−1

− tr(Σ−2R̂) − λ1(Σ
−2R̂)

M − 1



 . (28)

Now the bracketed term in (28) must be maximized w.r.t. Σ
2

(diagonal and positive definite). Note that this term can be

written in terms of the arithmetic and geometric means of the

M − 1 smallest eigenvalues of Σ
−2R̂ as

log

[

M
∏

i=2

λi(Σ
−2R̂)

]

1

M−1

−
∑M

j=2 λj(Σ
−2R̂)

M − 1

= − 1

M − 1

M
∑

i=2

[

λi(Σ
−2R̂) − log λi(Σ

−2R̂)
]

. (29)

There is no closed-form general solution for the diagonal

Σ
2 maximizing (29). Note, however, that the maximum of (29)

w.r.t. λ2, . . . , λM is attained when λ2 = · · · = λM = 1. But

this point is not reachable in general, since the eigenvalues

of Σ
−2R̂ cannot be arbitrarily selected by choice of Σ

2. An

exception occurs if R̂ is diagonal: in that case, the maximum is

attained when Σ
2 = diag R̂. Under a weak signal assumption

the matrix R̂ will be close to diagonal, and therefore Σ
2 =

diag R̂ will be close to optimal. With this choice, and noting

that the eigenvalues of [diag R̂]−2R̂ are the same as those of

Ĉ from (19), the bracketed term in (28) reduces to

1

M − 1
log

det(Ĉ)

λ1(Ĉ)
− M − λ1(Ĉ)

M − 1
, (30)

and (28) becomes

log detR1 + tr(R−1
1 R̂) = M + 1 + log

det R̂

det Ĉ

− λ1(Ĉ) + log λ1(Ĉ). (31)

From (21) and (31), and after taking into account that

(det diag R̂)(det Ĉ) = det[(diag R̂)Ĉ] = det R̂, the result-

ing approximate GLRT that results is given by

` = 2K

[

log
det R0

det R1
+ tr(R−1

0 − R−1
1 )R̂

]

≈ 2K[−1 + λ1(Ĉ) − log λ1(Ĉ)]. (32)

Since λ1(Ĉ) ≥ 1
M tr Ĉ = 1, and f(x) = −1 + x − log x

is monotonically increasing in x ≥ 1, the proposed test is

equivalently given by λ1(Ĉ)≷H1

H0
γ′.

C. Two-antenna sensors

The statistics of the detectors of Sections IV-A and IV-B

are functions of the sample correlation matrix Ĉ only. When

M = 2, this matrix is given by Ĉ =

[

1 ρ̂
ρ̂∗ 1

]

, where ρ̂ is

the sampled correlation coefficient between the two antennas.

Since det Ĉ = 1 − |ρ̂|2 and λ1(Ĉ) = 1 + |ρ̂|, which are both

functions of |ρ̂|, it follows that for two-antenna arrays both

detectors are equivalent.

V. NUMERICAL RESULTS

A. Two-antenna sensors

The Receiver Operation Characteristic (ROC) curves ob-

tained for the different detectors with M = 2 are shown

in Fig. 1. The SNR at the m-th antenna is defined as

SNRm
.
= |hm|2/σ2

m. Without noise power mismatch (i.e.

same noise variance at both antennas), the detectors of Section

III (which, as expected, are all equivalent) outperform those

of Section IV. This is reasonable, since in these conditions

the schemes from Section III exploit more efficiently the data

model. However, with σ2
2 = 1.15σ2

1 (0.6 dB mismatch), the

performance of these detectors degrades substantially, whereas

that of the methods of Section IV changes only slightly.

Fig. 2 shows the variation in probability of false alarm PFA

for the Mean/Max detector under noise mismatch; together

with Fig. 1, this shows that, once a threshold is set, the

performance of this scheme (and the equivalent ones) degrades

in terms of both PFA and probability of detection PD. On the

other hand, the tests of Section IV maintain the same PFA for

a given threshold under noise mismatch conditions.
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B. Sensors with more than two antennas

When M > 2 the different detectors are not equivalent in

general. The corresponding ROC curves are shown in Fig. 3

for a uniform noise variance scenario. The Mean/Max test,

corresponding to the GLRT under this model, yields the

best performance, followed by the Trace/Trace detector (14).

Among the ad hoc schemes, the Min/Mean detector shows

the poorest performance. On the other hand, of the two

detectors designed for uncalibrated receivers, it is seen that

the novel scheme based on λ1(Ĉ) outperforms the Hadamard

ratio detector. This is also the case with noise mismatch, as

seen in Figs. 4 and 5 for two different sets of mismatch

parameters. The performance loss of the schemes from Section

III is also clear. Note also that, depending on the interantenna

mismatch values, the GLRT-based Mean/Max detector may
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perform worse than some ad hoc methods (e.g. the Trace/Trace

and Sphericity detectors in Fig. 4).

C. Frequency selective channels

To show the robustness of the different detectors against

(unknown) frequency selective channels we consider the same

scenario as in Fig. 5, but now under multipath conditions.

The channel frequency response1 at each of the four antennas

is shown in Fig. 6. Fig. 7 shows the ROC curves corre-

sponding to the detectors λ1(Ĉ), Hadamard and Mean/Max

for both the frequency flat and frequency selective scenarios.

The relative advantage of the schemes from Section IV with

respect to Mean/Max remains unaltered. However, for all the

1Obtained using the WINNER Phase II Model [15]: Profile C1 (Suburban);
central frequency 800 MHz; 8 MHz bandwidth; receiver antenna elements
placed in a uniform linear array (UL A) with 1 cm spacing.
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Fig. 6. Channel frequency response in a multipath scenario.

detectors considered there is a small perfomance loss in terms

of probability of detection with respect to a frequency-flat

scenario due to the induced temporal correlation. Note that the

probability of false alarm does not change, since the statistic

under hypothesis H0 depends only on the noise and not on

the received signal.

VI. CONCLUSIONS

It is a common belief that with multiple antennas, the noise

uncertainty problem affecting the standard Energy Detector

can be overcome. While this is true, it must be realized that

certain multiantenna detectors may be sensitive to nonuniform

noise variance across the antennas. We have revised several

multiantenna schemes from the literature, showing that this is

the case indeed.

As usually the case with detectors derived under the GLRT

approach, it is difficult in general to obtain analytical expres-

sions for the probabilities of detection and false alarm, which

in most cases must be obtained by Monte Carlo simulation. As

an exception, the result from [14, Th. 5.2.1] can be applied to

certain cases in order to obtain the probability of false alarm

of GLRT detectors: for example, the statistics (12) (sphericity

test) and (18) (Hadamard ratio test) follow respectively χ2
M2−1

and χ2
M2−M distributions under H0. Other approaches from
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under frequency selective fading.

random matrix theory can also be useful to analytically char-

acterize the performance of these detectors [12].
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