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ABSTRACT

In Cognitive Radio scenarios channelization information

from primary network may be available to the spectral mon-

itor. Under this assumption we propose a spectral estima-

tion algorithm from compressed measurements of a multi-

channel wideband signal. The analysis of the Cramer-Rao

Lower Bound (CRLB) for this estimation problem shows the

importance of detecting the underlaying sparsity pattern of the

signal. To this end we describe a Bayesian based iterative al-

gorithm that discovers the set of active signals conforming the

band and simultaneously reconstructs the spectrum. This iter-

ative spectral estimator is shown to perform close to a Genie-

Aided CRLB that includes full knowledge about the sparsity

pattern of the channels.

Index Terms— Spectral estimation, compressive sam-

pling, cognitive radio

1. INTRODUCTION

Cognitive Radio (CR) is receiving considerable interest as

a means for wireless systems to improve spectral efficiency.

The key idea of opportunistically accessing temporally and/or

spatially unused licensed bands implicitly assumes a power-

ful spectral monitor with the capability of scanning multiple

channels in a wideband scenario. The large bandwidth in-

volved makes Nyquist-rate wideband monitoring impractical,

due to power consumption and analog implementation com-

plexity constraints. Compressed sampling could result in sig-

nificant savings in data rate (provided that one can find a do-

main in which the signal is sparse), hopefully maintaining the

required spectral resolution.

Assuming a spectrum model consisting of several flat

bandpass signals, and considering the edges between them,

the observed signal is sparse in the “spectral edges domain”.

This fact is used in [1] to propose a spectrum reconstruction

algorithm from compressed samples of the input autocorre-

lation estimate. This method was extended in [2] in order to
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work directly from compressed measurements of the received

signal. These methods do not assume information about the

primary network channelization, so that the spectral edges

could assume any position within the frequency band.

We exploit a priori knowledge about the spectral shape

(not necessarily flat) and location of the signals conforming

the spectrum. This is reasonable in the CR context, since the

channelization and modulation parameters of the primary sys-

tem are often known (e.g. broadcast networks). Moreover,

the CR paradigm is based on the infrautilization of spectral

resources, and hence we can expect that only an (unknown)

subset of the constituent signals will be simultaneously active

at a given location and frequency band. Exploiting such spar-

sity in the “activity domain”, we propose a spectrum estimator

from compressed samples performing close to a Genie Aided

Bound that assumes full knowledge on the sparsity pattern.

This paper is organized as follows. Section 2 formal-

izes the estimation problem, Section 3 gives the performance

bounds, and Section 4 describes a Bayesian based spectral es-

timator. Numerical results and final conclusions are presented

in Sections 5 and 6, respectively.

2. PROBLEM STATEMENT

Primary users employ Frequency Division Multiplexing with

fixed channelization, known to the spectrum monitor. Several

primary channels are sensed simultaneously, by selecting a

wide band containing M of such channels, downconverting it

to baseband and sampling the resulting analog signal through

an Analog-to-Information (A2I) converter that produces sam-

ples at a rate below the Nyquist rate. The baseband analog

signal at the receiver after wideband filtering is given by

r(t) =

M
∑

m=1

σmxm(t) + σw(t), (1)

where w(t) is a zero mean, circular complex Gaussian noise

with unit variance; σ2 is the background noise power; xm(t)
is the (noiseless) primary signal in channel m, normalized

to have unit variance (E{|xm(t)|2} = 1); and σ2
m is the

power of the primary signal in the mth channel. Assuming



that primary transmissions employ Multicarrier Modulation,

the signals {xm(·)} can be modeled as wide-sense stationary,

zero mean circular Gaussian proccesses. Since {xm(·)} cor-

respond to different primary transmissions, they are assumed

statistically independent.

Compression model. We restrict our study to linear A2I

converters, that is, converters that can be represented in matrix

form from an oversampled version of the analog signal r(t).
For compactness we define x0(t)

.
= w(t) and σ2

0
.
= σ2. The

finite discrete representation of (1) at Nyquist rate using the

obvious vector notation can be written as

r =
M
∑

m=0

σmxm, (2)

where r and xm with m = 0, . . . , M are now N × 1 circu-

lar Gaussian vectors, with zero mean and covariance matrix

Cm
.
= E{xmxH

m}. Due to the normalization and stationarity

of the original processes {xm(·)}, Cm are Toeplitz with ones

on the diagonal. If we define the K × N compression ma-

trix Φ, with K < N , we can write the signal available to the

digital spectrum monitor as

y = Φr =

M
∑

m=0

σmx̃m, with x̃m
.
= Φxm. (3)

Thus y is zero-mean circular Gaussian with covariance

R̃
.
= E{yyH} =

M
∑

m=0

σ2
mC̃m, (4)

where C̃m
.
= E{x̃mx̃H

m} = ΦCmΦ
H . We say that the mth

channel is vacant if σ2
m = 0. Then we can define the set of

active channels as

S =
{

m | σ2
m 6= 0, 0 ≤ m ≤ M

}

. (5)

It is assumed that the noise is always present and thus 0 ∈ S
always. For the signal channels, we model the sparsity of

the system with each event m ∈ S following an independent

Bernoulli distribution: Prob{m ∈ S} = p1 for m = 1,. . . ,

M , with p1 assumed known to the receiver (p1 gives an in-

dication of the average occupancy of the frequency band and

can be estimated beforehand; in a CR context, it is expected

that p1 � 1). On the other hand no assumption is made on

σ2
m given that channel m is active.

Problem statement. The goal is to estimate the power

spectral density (psd) of r(t), defined as Sr(e
jω), from the

compressed sampled vector y. The digital processing unit is

assumed to have perfect knowledge of the compression ma-

trix Φ and the normalized covariance matrices Cm, m =
0, . . . , M . Due to statistical independence, one has

Sr(e
jω) =

∑

m∈S

σ2
mSm(ejω), (6)

with Sm(ejω) the psd of the signal xm(t). Since these nor-

malized psds are assumed known, then under the parametric

model adopted in this framework the problem reduces to esti-

mating the sparse vector of power levels

σ
.
= [ σ2

0 σ2
1 · · · σ2

M ]T . (7)

3. ON THE CRAMER-RAO LOWER BOUND

Suppose that one attempts to estimate σ from y without mak-

ing any assumption on its sparsity. Given σ, the observation

y is zero mean circular Gaussian with covariance R̃(σ) as

in (4). The elements of the Fisher information matrix (FIM)

F (σ), of size (M +1)× (M +1), are given by (see e.g. [3]):

[F (σ)]ij = Tr
{

R̃−1(σ)C̃iR̃
−1(σ)C̃j

}

, (8)

where we used that in our model ∂R̃(σ)/∂σ2
m = C̃m. The

variance of any unbiased estimator σ̂ (ignoring sparsity) of

the parameters of interest σ is lower bounded by the Cramer-

Rao Lower Bound (CRLB),

var(σ2
m) ≥ γ

(m)
CRLB

.
= [F (σ)−1]mm. (9)

However, when only a subset S of the M signals is active we

expect that this bound can be beaten. To show this imagine

a genie that provides the receiver with a priori information

about the set of active channels S. Then, the spectral mon-

itor only has to estimate the powers for the |S| active chan-

nels. The FIM for this genie aided estimation problem F̃

can be derived from F by eliminating the rows and columns

corresponding to the (known) inactive channels. That is, F̃

keeps only the rows and columns with indices in the set S =
{m1, m2, . . . , m|S|}:

var(σ2
mi

) ≥ γ
(mi)
GACRLB

.
= [F̃ (σ)−1]ii, (10)

and since the presence of nuisance parameters can only

hurt [4], we must have γ
(mi)
GACRLB ≤ γ

(mi)
CRLB. We refer to (10)

as Genie Aided CRLB (GACRLB). Its significance resides

in that it can be asymptotically achieved in some simplified

estimation problems, as it was shown in [5] for estimators

based on asymptotic typicality. Next we present practical

estimation algorithms that perform close to the GACRLB in

several cases of interest for the problem at hand.

4. ESTIMATION FROM COMPRESSED DATA

The previous discussion shows the importance of exploiting

the a priori information available about the problem in or-

der to approach the GACRLB. Therefore we pose here the

problem of estimating the sparsity pattern S together with the

power vector σ. Using Bayes’ rule we can state the Maximum



A Posteriori (MAP) estimation of {σ,S} as

{σ̂, Ŝ} =argmax
σ,S

f(S, σ|y) (11)

=argmax
σ,S

f(y|S, σ)f(σ|S)f(S) (12)

=argmax
σ(S),S

f(y|S, σ(S))f(S). (13)

where in the last step we made use of the fact that the a priori

distribution f(σ|S) is modeled as non-informative for those

active components of σ with the sparsity pattern imposed by

S (denoted here as σ(S)). That is, σ(S) has zeros at the po-

sitions specified by {0, . . . , M} − S, but no prior is assumed

for the remaining components.

Note that (13) is a mixed discrete/continuous maximiza-

tion problem, i.e., S can only take one out of 2M values,

whereas for fixed S the maximization is performed over the

continuous parameter vector σ(S). Given S, the problem re-

duces to one of Maximum Likelihood (ML) estimation:

σ̂ML(S) =argmax
σ(S)

ln f(y|σ(S),S). (14)

where f(y|σ,S) = exp{−yHR̃−1(σ)y}/(πK det R̃(σ)).

This problem amounts to one of structured covariance matrix

estimation from Gaussian observations [6], where the struc-

ture of R̃(σ) is defined by (4). This estimation problem has

unfortunately no closed-form solution, though a fixed point it-

eration exists [6] that converges to the ML estimate σ̂ML(S).

Substituting the ML estimate R̂S
.
= R̃(σ̂ML(S)) in (13) and

disregarding constant additive terms, we define an equivalent

log-likelihood function as

µ(S)
.
= ln {f(y|S, σ̂ML(S))f(S)} − constant terms

= − ln det(R̂S) − yHR̂−1
S y + |S| ln

p1

1 − p1
. (15)

In principle, the metric µ(S) must be maximized with respect

to S by exhaustive search. This is impractical since the num-

ber of possible sets is 2M . Instead we propose a Bayesian

matching pursuit [7] algorithm that iteratively estimates the

set of active channels, as described in Table 1. This subop-

timal greedy solution finds the right set of active channels

with high probability, as shown in the simulations section.

The idea is to construct the active set estimate Ŝ sequentially:

starting with the “only noise” set Ŝ = {0}, at each step a new

active channel is added to Ŝ in order to maximize the corre-

sponding metric µ(Ŝ). This procedure is repeated until we

find a set with Mmax active channels, where Mmax is user-

selected. The final estimate Ŝ is given by the partial solution

Ŝn with maximum posterior loglikelihood function, obtaining

as byproduct the corresponding estimate σ̂ML(Ŝ).

5. NUMERICAL RESULTS

We analyze the performance of the proposed spectral estima-

tor via Monte Carlo simulations, focusing on a scenario where

Ŝ0 = {0}
for n = 1 to Mmax do

begin

m? =arg max
m/∈Ŝn−1

µ(Ŝn−1 ∪ {m})

Ŝn = Ŝn−1 ∪ {m?}
end;

Ŝ =arg max
Ŝn

µ(Ŝn)

Table 1. Pseudocode for the proposed greedy approach.
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Fig. 1. One realization of a scenario with 8 DVB-T channels.

the primary system is a TV broadcast network and the noise

is assumed white. The compression matrix Φ is a random

pinning matrix, i. e. it is comprised by K randomly selected

rows of the N × N identity matrix.

Synthetic scenario with 8 DVB-T channels. Channels

are 8 MHz wide and can be occupied by DVB-T signal of

bandwidth B = 7.61 MHz. Each of this channels is active

with probability p1 and, for simplicity in the presentation of

results, they are all received with the same power when active.

Fig. 1 shows one realization of this scenario.

Fig. 2 shows the behavior of the Normalized Mean

Squared Error (NMSE) of the proposed scheme for p1 =
0.25, Mmax = 4, N = 2048, and K = 512. We sweep the

power of active channels between −15 and 0 dB, while the

noise power is kept constant to 0 dB. The NMSE of both the

noise level and of one of the active channels is shown, to-

gether with the bounds presented in Section 3, averaged over

the active channel set realizations. For low SNR values close

to −15 dB the active channel power estimate becomes biased,

which explains the apparent violation of the GACRLB. This

bias can be reduced by increasing the observation time. It is

interesting to note that (i) a gap exists between the CRLB and

the corresponding GACRLB, which is particularly significant

for the estimation of the noise variance, and (ii) the noise

variance estimate performs close to the GACRLB over this

SNR range. Providing the receiver with accurate noise vari-

ance estimates is of great importance to CR systems, in order

to determine the correct threshold for the target probabilities

of detection and false alarm [8]. Fig. 3 shows the variation

of the NMSE with the compression ratio. For the same p1 we

fixed here the observation time to N = 210, and let K vary
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Fig. 2. NMSE for varying SNR. N = 2048, K = 512.
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Fig. 3. NMSE for varying compression ratios. N = 1024,

SNR = −10 dB.

from 26 to 210, for SNR = −10 dB. For K ≥ 128 the noise

variance estimate is unbiased with performance close to the

GACRLB.

Captured TV band. In this (more realistic) scenario we

captured part of the Spanish TV broadcast band (112 MHz

bandwidth, comprising 14 channels with PAL/DVB-T sig-

nals). The a priori covariance matrices were generated us-

ing the channelization information of the PAL/DVB-T broad-

cast network, while the occupacy probability was considered

p1 = 0.3. The compression procedure has been simulated in

Matlab using a 512×2048 random pinning matrix. No knowl-

edge is fed to the reconstruction algorithm about the particular

modulation (PAL or DVB-T) encountered at a given channel.

Fig. 4 shows the psd of the band (obtained using a large num-

ber of uncompressed samples) together with the reconstruc-

tion obtained by the proposed method using just K = 512
samples. Even this reduced number of samples allows the es-

timation of 29 power levels needed for the reconstruction (14
DVB-T + 14 PAL + noise level).
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Fig. 4. Example of reconstruction of a mixed analog/digital

broadcasting television band.

6. CONCLUSIONS

In CR applications, the observed signal is expected to be

sparse in the “activity domain”. Capitalizing on recent

compressed sensing ideas, we proposed an iterative greedy

approach which simultaneously estimates the set of active

channels and their power levels. Significant improvement is

observed in terms of noise variance estimation, an important

parameter for detection threshold design. In practice, the

complexity of the iteration described in [6], which is applied

at the parameter estimation stage of the proposed method, can

become too costly. Research is underway in order to devise

alternative methods with lower computational cost.
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