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ABSTRACT
Spectrum sensing is a key component of the Cognitive Ra-
dio paradigm. Multiantenna detectors can exploit different
spatial features of primary signals in order to boost detec-
tion performance and robustness in very low signal-to-noise
ratios. However, in several cases these detectors require ad-
ditional information, such as the rank of the spatial covari-
ance matrix of the received signal. In this work we study
the problem of estimating this rank under Gaussianity as-
sumption using an uncalibrated receiver, i.e. with different
(unknown) noise levels at each of the antennas.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication

Keywords
Cognitive Radio, Spectrum Sensing, Multiantenna, Rank
Estimation, ML

1. INTRODUCTION
Cognitive Radio (CR) has gained popularity as a means to
alleviate the apparent scarcity of spectral resources as seen
today [10, 11]. The key idea behind CR is to allow oppor-
tunistic access to temporally and/or geographically unused
licensed bands. In order to keep the interference produced
to licensed (primary) users at sufficiently low levels, novel
powerful detection schemes are required [2].

Recent developments show the advantages of exploiting the
spatial properties of the received primary signal in order
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to boost both robustness and detection performance when
multiple antennas are available. The detection schemes pro-
posed in [15, 17] exploit the fact that the received signal
presents a spatial rank P = 1 with noises assumed inde-
pendent identically distributed (iid) across the antennas.
When the noises are assumed uncorrelated non-iid detectors
have been proposed in [3, 9]. These detectors either assume
rank-1 primary signals or unstructured signals. The case of
(known) rank-P > 1 was treated in [19, 12, 13], under the
assumption of both iid and non-iid noises.

Note that the detection schemes above have been derived un-
der different assumptions on the spatial rank of the received
signal covariance matrix. The reason is that, in practical sce-
narios, the spatial rank of the received signals may be larger
than one. This is the case, for example, if multiple indepen-
dent users (e.g. from adjacent cells) simultaneously access
the same frequency channel. Alternatively, many state-of-
the-art communication standards consider the simultaneous
transmission of different data streams through multiple an-
tennas to achieve multiplexing gain and/or the use of space-
time codes to enhance spatial diversity. For these systems,
the signal received at the multiantenna sensor will exhibit
a spatial rank equal to the number of independent streams
or the spatial size of the code, respectively. Examples range
from broadcasting standards, such as the european DVB-
T2 [6] which considers 2-antenna space-time Alamouti codes,
to point-to-multipoint standards, such as IEEE 802.11n [7],
IEEE 802.16 [8] or LTE [1], which support up to four trans-
mit antennas.

In practice, however, the spatial rank cannot be assumed
known a priori since it may depend on the current state of
the primary network. Hence, it is of interest to develop de-
tection schemes robust to uncertainties on the spatial rank
P of the primary signal. In this work we address the esti-
mation of the rank of primary signal spatial covariance as a
first step towards the derivation of detection schemes robust
to rank uncertainty.

This problem has been extensively addressed in the litera-



ture in the context of model selection. In [18] the authors
apply the Akaike information criterion (AIC) and the mini-
mum description length (MDL) criterion in order to obtain
a model selection framework. Other popular metric is the
Bayesian information criterion (BIC) first proposed in [14].

Recently, in [5] Chiani et al. applied both AIC and BIC to
the problem of estimating the number of signals in cogni-
tive radio networks from short data records when the noises
across the antennas are assumed iid. In several cases, how-
ever, this assumption may not completely hold. For exam-
ple, tolerances in the components of the analog frontends at
different antennas will result in deviations of the noise level
from antenna to antenna, and as it turns out, the schemes
proposed in [18] and [5] are very sensitive to these calibration
errors.

Here we propose a spatial rank estimator which can deal
with uncalibrated multiantenna receivers, build upon the
ML estimation scheme proposed in [12]. The paper is orga-
nized as follows. In Section 2 we present the system model
and formulate the problem. In Section 3 we present the
general problem of of rank estimation based on information
criteria. A numerical analysis of the performance of the pro-
posed scheme is included in Section 4 and Section 5 closes
this paper with some concluding remarks.

2. PROBLEM FORMULATION
Consider a spectrum monitor equipped with M antennas
which is to monitor a given frequency channel. The received
signals are downconverted and sampled at the Nyquist rate.
We assume no synchronization with any potentially present
primary signal. Primary transmission, if present, has an
(unknown) spatial rank P , and for tractability a frequency-
flat channel is assumed.

The spectrum monitor acquires K samples from the mth
antenna arranged in aK×1 vector ym, which can be written
as

ym = Shm + σmnm, (1)

where the K×P matrix S
.
= [s1 s2 · · · sP ] is comprised of P

primary signal streams, hm denotes the P×1 channel vector
from the primary system to the mth receiver antenna, σ2

m

denotes the noise power, and n1,n2, . . . ,nM represent the
the K × 1 independent noise streams.

Additionally we assume that both primary streams and noise
processes are temporally white with unit variance so that

E[sps
H
q ] = E[npn

H
q ] =

{

IK if p = q,
0 if p 6= q,

(2)

Note that the model above assumes that the channel from
the primary transmitter to the spectrummonitor is frequency-
flat in the RF channel bandwidth, and that it remains con-
stant for the duration of the sensing time. We restrict
our analysis to both signal and noise following a zero-mean
Gaussian distribution. The reasons for adopting a Gaussian
model for the primary signal are, (i) the Gaussian pdf for
a signal is the least informative one when the noise is as-
sumed Gaussian as well, (ii) the Gaussian model is accurate
for primary system using multicarrier modulation when the

number of subcarriers is large enough [16], (iii) this model
is tractable and Gaussianity is a common assumption in the
development of signal detectors, either explicitly or implic-
itly.

The received signal can be compactly written in matrix form
as

Y = SH+NΣ, (3)

where we have defined theK×M received signal matrixY
.
=

[y1 y2 · · ·yM ], the P×M channel matrixH
.
= [h1 h2 · · ·hM ],

the M × M noise levels diagonal matrix given by Σ =
diag(σ1, σ2, . . . , σM ) and the K × M noise samples matrix
N

.
= [n1 n2 · · ·nM ].

The matrix Y can be described as a complex Gaussian ran-
dom matrix with iid rows, each of them with the same co-
variance matrix

R
.
= E

[

YHY

K

]

= HHH+Σ2. (4)

In the presented model, the receiver has no knowledge about
P , H, or the noise covariance matrix Σ2. The problem we
are interested in is to find a good estimator of the primary
signal rank P from the received data matrix Y.

Note that since both noise and signal are assumed tempo-
rally iid, the likelihood is given by the product of the indi-
vidual pdfs, i.e.,

f(Y |R) =
1

πMK det(R)K
exp

{

−K tr
(

CR−1)} , (5)

where

C
.
=

1

K
YHY (6)

denotes the sample covariance matrix. Since the data matrix
Y appears in (5) only through C, the sample covariance
matrix C is a sufficient statistic for the estimation of the
unknown parameters.

3. RANK ESTIMATION BASED ON INFOR-

MATION CRITERIA
In general the problem of rank estimation can be presented
in the folowing form [5]

P̂ = argmin
P

{

− log

(

max
R|P

f(Y |R)

)

+ L(ν(P ),K)

}

(7)

= argmin
P

{

− log f(Y | R̂ML) + L(ν(P ),K)
}

, (8)

where L(ν(P ),K) is a penalty function depending on the
number of degrees of freedom of the model ν(P ) and on K,

and R̂ML denotes the Maximum Likelihood (ML) estimate
of R for fixed P .

It is interesting to note that the penalty function is required
to obtain a meaningful estimate of the rank of the covariance
matrix of the primary signal. If we ignore the penalty func-
tion related to the rank, from the likelihood expression (5)
it is easy to see that f(Y |R) is maximized for R = C. This



can be always achieved if we allow a rank P large enough.1

The penalty function L(ν(P ),K) can be determined via in-
formation theoretic or Bayesian criteria, such as the BIC,
MDL or AIC presented previously. The model selection
schemes proposed in [14], [18] and [5] fit into the general

model (7) with different expressions for f(Y | R̂ML) and for
the penalty function L(ν(P ),K).

3.1 Maximum Likelihood Estimation
We shall assume without loss of generality that H has full
rank. From (4) we have that R corresponds to a rank-P
matrix plus a diagonal matrix.

In [12] it is shown that, for a fixed rank P , the maximiza-
tion of f(Y |R) with respect to H and Σ2 presents no closed
form solution in general. However, while this optimization
problem is non-convex, it is possible to partition the free
variables in two different sets to obtain an alternating opti-
mization scheme which outputs a quasi-ML estimate. This
algorithm is briefly described next for completness.

The ML estimation problem maxH,Σ2 f(Y |R) can be rewrit-
ten as

minimize
HΣ,Σ

log detRΣ − log det
(

Σ−2)+ tr
(

CΣR−1
Σ

)

, (9)

subject to RΣ = IM +HH
ΣHΣ,

[Σ]i,i ≥ 0,

where we defined CΣ

.
= Σ−1CΣ−1 (the whitened sample

covariance matrix) and HΣ

.
= HΣ−1.

From (9), we note that the individual minimization with
respect to Σ (considering HΣ fixed) and with respect to
HΣ (considering Σ fixed) can be easily written as convex
problems individually, and, therefore, they can be efficiently
solved.

Minimization with respect to HΣ. For fixed Σ, the
optimal HΣ minimizing (9) is (up to a left multiplication by
an arbitrary unitary matrix) given by [12, Lemma 4], that
is

ĤΣ = (diag (γ1, . . . , γP )− IP )
1/2
[

q1 · · · qP

]H
, (10)

with CΣ = Qdiag (γ1, . . . , γM )QH denoting the EVD of
CΣ, with γ1 ≥ · · · ≥ γM .

Minimization with respect to Σ. For fixed HΣ the
minimization problem in (9) reduces to

minimize
Σ

tr
(

CΣ−1R−1
Σ

Σ−1)− log det
(

Σ−2) (11)

subject to [Σ]i,i ≥ 0.

Defining the vector α =
[

[Σ−1]1,1, . . . , [Σ
−1]M,M

]T
, the

trace term in (11) can be reorganized to obtain an equiv-

1For example, in the extreme case P = M , H = C1/2 and
Σ2 = 0, obtaining R = HHH+Σ2 = C.

Algorithm 1: Iterative estimation of HΣ and Σ via alter-
nating optimization.

Input: Starting point α(0) and C.
Output: ML estimates of HΣ and Σ.
Initialize: n = 0;
repeat

Compute Σ−1
(n) = diag(αn) ;

Obtain C
(n+1)
Σ

= Σ−1
(n)CΣ−1

(n) and its EVD;

Compute H
(n+1)
Σ

from (10) (fixed Σ−1
(n));

Solve (12) to obtain α(n+1) (fixed H
(n+1)
Σ

) ;
Update n = n+ 1;

until Convergence;

alent minimization problem given by

minimize
α

α
T (CT ⊙R−1

Σ )α−
M
∑

i=1

logα2
i (12)

subject to αi ≥ 0.

Note that, given the trace term in (11), the matrixCT⊙R−1
Σ

is positive semidefinite. Hence, the problem (12) is convex
with respect to the parameter vector α and, therefore, it can
be efficiently solved using any convex optimization solver.

The proposed alternating minimization algorithm is sum-
marized in Alg. 1. When the estimates of Σ−1 and HΣ are
available, we can construct the quasi-ML estimator of R as

R̂qML = Σ̂(IM + ĤH
ΣĤΣ)Σ̂. (13)

While the alternating minimization approach does not guar-
antee that the global maximizer of the log-likelihood is found,
in the numerical experiments conducted this estimator shows
good performance.

3.2 Rank Estimation
Once the quasi-ML estimate R̂qML is available, and using
the likelihood expression (5), the rank estimation problem
in (7) can be rewritten as

P̂ = argmin
P

{

− log det(R̂qML) + tr
(

CR̂−1
qML

)

+ L(ν(P ),K)/K

}

. (14)

The minimization problem in (14) can be further simplified

by noting that the quasi-ML estimate R̂qML is a minimizer
of (12). Then, it must fulfill the KKT conditions of this
problem [4]. If we define the Lagrange multipliers λi for
i = 1, . . . ,M , associated to each of the constraints, we have
that the Lagrangian of the cost function and its gradient are
respectively given by

J(α) = α
T (CT ⊙R−1

Σ
)α−

M
∑

i=1

logα2
i −

M
∑

i=1

λiαi, (15)

∂J(α)

∂αi
= 2

(

α
T (CT ⊙R−1

Σ )ei −
1

αi
− λi

2

)

. (16)



Equating (16) to zero and rearranging terms we obtain

α̂
T (CT ⊙ R̂−1

Σ
)(α̂iei) = 1 +

1

2
λiαi, (17)

for i = 1, . . . ,M . However, due to the complementary slack-
ness condition, λiαi = 0 for all i. Using this property and
adding together the equations (17) for i = 1, . . . ,M we ob-
tain

α̂
T (CT ⊙ R̂−1

Σ
)α̂ = M. (18)

Therefore, we have that the quasi-ML estimate R̂qML fullfils

tr
(

CR̂−1
qML

)

= tr
(

CΣ̂−1R̂−1
Σ

Σ̂−1
)

(19)

= α̂
T (CT ⊙ R̂−1

Σ
)α̂ = M. (20)

Finally, noting that (20) does not depend on P , we may
rewrite (14) as

P̂ = argmin
P

{

− log det(R̂qML)+L(ν(P ),K)/K

}

. (21)

In our problem, the number of free-adjusted parameters
ν(P ) can be computed as follows: the diagonal matrix Σ2

presentsM real parameters and the P eigenvalues and eigen-
vectors conforming the H matrix correspond to P+P (2M−
(P +1)) real parameters. Then the total number of free real
parameters is given by

ν(P ) = M + P (2M − P ). (22)

4. NUMERICAL RESULTS
In this section, we will restrict our analysis to the BIC cri-
terion based on a Bayesian approach given by L(ν(P ),K) =
ν(P )/2 logK. Then, from (22) we have that

L(ν(P ),K) =
M + P (2M − P )

2
logK. (23)

We now compare the proposed rank estimation scheme (14)
with the schemes proposed by Wax et al. in [18] and Chiani
et al. in [5].

The scheme by Wax et al. uses the closed form ML esti-
mates of the channel to primary H and of the noise power
σ2 assuming that all the antennas present equal noise level.
The estimator is given by [18]

P̂Wax = argmin
P

{

K(M − P ) log

(

1
M−P

∑M
i=P+1 li

∏M
i=P+1 l

1/(M−P )
i

)

+ L(P (2M − P ),K)

}

, (24)

where l1 ≥ l2 ≥ . . . ≥ lM denote the eigenvalues of C.

The scheme proposed by Chiani et al. can be found in [5]
and it is very similar to (24). The only difference is that
the scheme by Chiani et al. does not use the estimate of the
whole matrix H. Instead, it estimates only the eigenvalues
of H, showing a better performance for short data records.
The drawbacks of this scheme are its increased complexity
and sensitivity to numerical problems as the record-length
increases.
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Figure 1: Probability of correct estimation versus
the rank of the primary signal. (a) iid noise (b)
non-iid noise.

Unless otherwise specified, the noise level at each antenna is
fixed for each experiment, and for each Monte Carlo realiza-
tion the entries of the channel matrix H are independently
drawn from a complex Gaussian distribution (thus obtain-
ing a Rayleigh fading scenario) and scaled so that the SNR
is constant during the experiment:

SNR (dB) = 10 log10
tr(HHH)/P

tr(Σ2)/M
. (25)

4.1 Performance versus the number of sources
Here we compare the performance of the proposed detectors
in two different scenarios with M = 6 antennas, K = 32
samples and SNR equal to 10 dB. While the first assumes
that all the antennas present a noise level equal to 0 dB,
in the second we consider a noise mismatch exists between
different antennas. In particular we assume that each of the
antennas presents a noise level equal to 0, −2, 3, 0, −3 and
2 dB, respectively.

Fig. 1 shows the probability of correct estimation versus the
rank of the primary signal for the three detectors consid-
ered. We can see that for iid noises the estimators proposed
by Chiani et al. and Wax et al. outperform the proposed
scheme. This is intuitively satisfying since these schemes
have been derived under the iid assumption. However, when
a noise level mismatch exist, the Chiani et al. and Wax et
al. methods suffer a strong degradation while the proposed
scheme performance remains unaffected.

It is interesting to note that, both in the i.i.d and non-iid
cases the probability of error increases with the rank of the
signal to detect. This can be attributed to the loss of di-
agonal structure of the received covariance matrix when the
number of signal streams grows. This structure is completely
lost [12] for signal ranks P > M −

√
M , i.e. in our example

for P ≥ 4. This fact explains the poor performance obtained
by the proposed algorithm when P = 4.

4.2 Performance versus the SNR
Here we compare the performance of the proposed estimator
for growing values of the SNR. We consider now an scenario
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Figure 2: Probability of error versus the SNR under
non-iid noises.

with M = 6 antennas, K = 128 samples and uncalibrated
antennas. We use the same noise mismatch as in Fig. 1(b).
The scheme proposed by Chiani et al. has not been consid-
ered in this section due to numerical precision issues arising
from the fact of considering a relatively large number of
samples (K = 128).

We assume that the rank P is randomly chosen between 0
and M − 1 in each Monte Carlo realization, so that Fig. 2
shows the average probability of error in the estimation pro-
cess. From Fig. 2 it is apparent that the average probability
of error of the proposed scheme decreases for growing val-
ues of the SNR. On the other hand, the scheme by Wax
et al. presents a very poor performance due to the model
mismatch when an uncalibrated receiver is considered.

5. CONCLUSIONS
Under Gaussianity assumption on both noise and data, we
proposed a novel spatial rank estimation algorithm which is
robust to mismatch in the noise levels at different antennas.
The proposed estimator was compared to other schemes de-
signed for calibrated receivers. While previous estimators
suffer from a strong degradation in uncalibrated scenarios,
the proposed scheme shows a good performance both under
iid and non-iid noises.
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