
MULTIANTENNA DETECTION UNDER NOISE UNCERTAINTY
AND PRIMARY USER’S SPATIAL STRUCTURE

David Ramírez1, Gonzalo Vazquez-Vilar2, Roberto López-Valcarce2, Javier Vía1 and Ignacio Santamaría1

1 Communications Engineering Dept., University of Cantabria, Santander, Spain.
e-mail: {ramirezgd,jvia,nacho}@gtas.dicom.unican.es

2 Dept. Signal Theory and Communications, University of Vigo, Vigo, Spain.
e-mail: {gvazquez,valcarce}@gts.tsc.uvigo.es

ABSTRACT
Spectrum sensing is a challenging key component of the
Cognitive Radio paradigm, since primary signals must be de-
tected in the face of noise uncertainty and at signal-to-noise
ratios (SNRs) well below decodability levels. Multiantenna
detectors exploit spatial independence of receiver thermal
noise to boost detection performance and robustness. Here,
we study the problem of detecting Gaussian signals with
unknown rank-P spatial covariance matrix when the noise
at the receiver is independent across the antennas and with
unknown power. A generic diagonal noise covariance matrix
is allowed to model calibration uncertainties in the different
antenna frontends. We derive the generalized likelihood ratio
test (GLRT) for this detection problem. Although in general
the corresponding statistic must be obtained by numerical
means, in the low SNR regime the GLRT does admit a closed
form. Numerical simulations show that the proposed asymp-
totic detector offers a good performance even for moderate
SNR values.

Index Terms— Cognitive radio (CR), spectrum sensing,
generalized likelihood ratio test (GLRT), maximum likeli-
hood (ML) estimation

1. INTRODUCTION

The Cognitive Radio (CR) paradigm aims to improve wireless
spectrum usage and alleviate the apparent scarcity of spectral
resources as seen today [1,2]. The key idea behind CR is to al-
low opportunistic access to temporally and/or geographically
unused licensed bands, avoiding conflicts with the rightful li-
cense owners (primary users) in those bands. Thus, CR neces-
sarily relies on powerful spectrum sensing algorithms to iden-
tify spectrum holes. However, sensing the wireless medium is
a very challenging task due to fading and shadowing phenom-
ena, which may result in very low signal-to-noise ratio (SNR)
operation conditions [3].

In principle, detectors may exploit certain features of the
primary signal such as the presence of pilots and/or cyclosta-
tionarity. However, most of such approaches assume some

level of synchronization with the primary signal, and at very
low SNRs the synchronization loops of the monitoring system
cannot be expected to provide the required accuracy for the
carrier frequency and/or clock rate estimates [3]. These issues
are avoided by detectors whose operation does not require
synchronization. The most popular of these asynchronous de-
tectors is the energy detector, which does not exploit any a
priori knowledge about the signal structure. However, this
detector requires knowledge of the noise variance to com-
pute the decision threshold, and any uncertainty regarding this
parameter translates in severe performance degradation [4].
Multiple-antenna detectors are a promising approach to al-
leviate the noise uncertainty problem. This idea has been ex-
plored by different authors [5–7] under the following assump-
tions: (i) temporally white Gaussian model for both signal
and noise, (ii) spatially white noise with the same unknown
variance across antennas, and (iii) an unknown rank-1 spatial
covariance matrix for the signal.

In this paper we consider the case in which the received
signals present a spatial rank P ≥ 1. This might happen, for
example, if several independent primary users (e.g. from ad-
jacent cells) simultaneously access the same frequency chan-
nel, or if the primary transmitter uses multiple antennas to
achieve multiplexing gain and/or enhance spatial diversity.
Additionally, we allow a generic diagonal noise covariance to
model calibration uncertainties in the different antenna fron-
tends. Under this model we derive the generalized likelihood
ratio test (GLRT), which results in an optimization problem
with no closed-form solution in the general case. We show
that for asymptotically low SNR the GLRT can be written in
closed form depending only on the P largest eigenvalues of
the sample coherence matrix. The proposed detector general-
izes the detectors derived in [8] and [9] for P = 1 and large
P , respectively.

2. PROBLEM FORMULATION

Let us consider a cognitive radio node equipped with L an-
tennas which senses a given frequency channel. The received



signals are downconverted and sampled at the Nyquist rate
assuming no synchronization with any potentially present pri-
mary signal. Assuming a frequency-flat channel, the hypoth-
esis testing problem can be written as

H1 : x = Hs + v,
H0 : x = v,

(1)

where s ∈ CP is the temporally white primary signal,
H ∈ CL×P is the unknown multiple-input multiple-output
(MIMO) channel between the primary user and the spectrum
monitor, and v ∈ CL is the additive noise, which is as-
sumed to be zero-mean circular complex Gaussian, spatially
uncorrelated and temporally white.

Before proceeding, we need the probability density func-
tion of s. We consider a zero-mean circular complex Gaussian
model, which is particularly accurate if the primary transmit-
ter uses orthogonal frequency division multiplexing (OFDM).
Even if this is not the case, the Gaussian model leads to
tractable analysis and useful detectors. We may assume that s
is spatially white with unit-power components, as any spatial
correlation and scaling of the primary signal can be absorbed
in the channel matrix H without altering the statistical model.
Under these assumptions, the spatial covariance matrices of
the primary signal and noise are given by

E
[
ssH

]
= IP , E

[
vvH

]
= Σ2, (2)

where Σ2 is an unknown diagonal covariance matrix with
positive entries and IP is the identity matrix of dimensions
P × P . Hence, the detection problem in (1) is a test for the
covariance structure of the vector-valued random variable x,
i.e.,

H1 : x ∼ CN
(
0L,HHH + Σ2

)
,

H0 : x ∼ CN
(
0L,Σ

2
)
,

(3)

where CN (µ,R) stands for the complex circular Gaussian
distribution with mean µ and covariance matrix R. There-
fore, under H0 the covariance matrix R is diagonal, whereas
underH1 it is a rank-P matrix plus a diagonal term. We shall
assume that H has full column rank.

3. DERIVATION OF THE GLRT

In this section we consider the detection problem given in
(3). As there are unknown parameters under both hypothe-
ses, this is a composite test and the Neyman-Pearson detec-
tor is not implementable. We apply instead the generalized
likelihood ratio test (GLRT), since it usually results in sim-
ple detectors with good performance [10]. We shall consider
M ≥ L snapshots x0,. . . , xM−1. Assuming a block-fading
channel, that is, the channel remains approximately constant
during the sensing time window, these can be regarded as iid
realizations of x ∼ CN (0L,R). Hence, the likelihood is

given by the product of the individual pdfs, i.e.,

p (x0, . . . ,xM−1;R) =

1

πLMdet (R)
M

exp
{
−M tr

(
R̂R−1

)}
, (4)

where R̂ = 1
M

∑M−1
m=0 xmxHm is the sample covariance ma-

trix. The GLRT forH0 : R = Σ2 vs. H1 : R = HHH +Σ2

is based on the generalized likelihood ratio L [10]

L =
max
Σ2

p
(
x0, . . . ,xM−1;Σ

2
)

max
H,Σ2

p (x0, . . . ,xM−1;H,Σ2)
, (5)

which is compared against a threshold in order to decide if the
primary signal is present or absent.

To derive the GLRT, we need the maximum likelihood
(ML) estimates of the unknown parameters. The ML estimate
of Σ2 under H0 can be straightforwardly obtained [9], and is
given by

Σ̂2 = diag(R̂)
.
= D̂, (6)

where diag(A) denotes a diagonal matrix with diagonal equal
to that ofA.

Under H1, we need the ML estimates of Σ2 and H. As
can be expected, these estimates depend on the signal rank
P . If P is sufficiently large, the model imposes no useful
constraints on the covariance matrix, as the following result
establishes:

Lemma 1. If P ≥ L −
√
L, the ML estimates of H and Σ2

underH1 satisfy ĤĤH + Σ̂2 = R̂.

Proof: The proof can be found in [9, 11]. It hinges on
the fact that if P ≥ L−

√
L, then HHH +Σ2 has no further

structure beyond being positive definite Hermitian.

For unstructured covariance matrices, i.e. P ≥ L −
√
L,

the GLRT is given by the Hadamard ratio of the sample co-
variance matrix [9]:

L =
det(R̂)∏L
i=1[R̂]i,i

. (7)

On the other hand, for P < L−
√
L the low-rank structure

of the primary signal can be exploited in order to improve
detection performance. Let us define R̂Σ = Σ−1R̂Σ−1 and
HΣ = Σ−1H. Then, the log-likelihood can be rewritten as

log p
(
x0, . . . ,xM−1;HΣ,Σ

2
)
= − log det

(
Σ2
)

− log det
(
HΣHH

Σ + I
)
− tr

[
R̂Σ

(
HΣHH

Σ + I
)−1
]
. (8)

Taking into account the eigenvalue decomposition (EVD) of
HΣHH

Σ , which is given by HΣHH
Σ = GΦ2GH , the ML

estimates of G and Φ2 are given in Lemma 2.



Lemma 2. Let R̂Σ = Qdiag (γ1, . . . , γL)QH be an EVD
of R̂Σ, with γ1 ≥ · · · ≥ γL. The ML estimates of G and
Φ2 = diag (φ1, . . . , φL) (which are functions of Σ2) are

Ĝ = Q, (9)

φ̂2i =

{
γi − 1, i = 1, . . . , P,

0, i = P + 1, . . . , L.
(10)

Proof: Once R̂ and H have been prewhitened, the proof
follows the same lines as those in [12].

Substituting the ML estimate of HΣHH
Σ into (8) yields

log p
(
x0, . . . ,xM−1;Σ

2
)
= − log det(R̂)

−
L∑

i=P+1

[γi − log γi] . (11)

Note that (11) is maximized w.r.t. γP+1,. . . , γL when γP+1 =
. . . = γL = 1. However, this point is not necessarily reach-
able, since the eigenvalues of R̂Σ = Σ−1R̂Σ−1 cannot be
arbitrarily selected in general by choice of Σ. To the best of
our knowledge, the maximization of (11) with respect to Σ2

does not admit a closed-form solution in general. In fact this
problem is not convex and may present multiple local max-
ima. An exception occurs if R̂ is diagonal, since in that case
Σ2 = diag(R̂) results in R̂Σ = I, which is clearly optimal.

Now, for asymptotically low SNR the sample covariance
matrix will become close to diagonal, and thus it makes sense
to consider an approximate estimate of Σ2 as Σ̂2 ≈ D̂. Sub-
stituting this back into (11), we obtain the final compressed
log-likelihood:

log p (x0, . . . ,xM−1) = − log det
(
R̂
)

−
L∑

i=P+1

[βi − log βi] , (12)

where βi denotes the i-th largest eigenvalue of the sample
spatial coherence matrix Ĉ

.
= D̂−1/2R̂D̂−1/2. Then, the

asymptotic log-GLRT is

logL ≈
P∑
i=1

[log βi − βi] = log

P∏
i=1

βie
−βi . (13)

That is, the test statistic is given by the product of the P
largest eigenvalues of Ĉ, each equalized by an exponential
term. Note that βe−β is maximum at β = 1. Thus, the statis-
tic
∏P
i=1 βie

−βi measures how far the vector of the P largest
eigenvalues [β1 · · · βP ] is from the vector of all ones.

4. NUMERICAL RESULTS

The performance of the proposed detector is tested by means
of Monte Carlo simulations. The noise level at each antenna
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Fig. 1. Missed detection probability versus P .

is fixed during the experiment, and for each Monte Carlo re-
alization the channel matrix H is generated from an uncorre-
lated Rayleigh distribution and scaled so that the SNR,

SNR (dB) .= 10 log10
tr(HHH)

tr(Σ2)
, (14)

remains constant during the experiment.
In the first experiment, we analyze the effect of the rank P

on the performance of the proposed detector. To this end we
compare the proposed asymptotic detector (13), denoted here
as asympt-GLRT, with the GLRT previously derived in [8]
and [9] for the extreme cases P = 1 and P ≥ L −

√
L

(Hadamard), respectively. We consider a system with the
following parameters: SNR = −6 dB, L = 6, M = 128,
and the noise levels at each of the antennas are fixed to 0,
−1, 1, 0.5, −1 and 0.5 dB. In Fig. 1 we show the missed
detection probability (for a given fixed PFA = 0.01) of the
different detection schemes against the primary signal spatial
rank. First, we note that the performance of all detectors de-
grades for larger P . This may be explained by the fact that as
P increases, the covariance matrix is losing spatial structure
which, in general, helps to improve detection. We can see that
the proposed asymptotic detector outperforms the other two
schemes for intermediate values of P . The detector derived
for P = 1 shows a performance loss when this assumption
does not hold. On the other hand, for P ≥ 4 the Hadamard
ratio test shows similar performance to that of the rank-based
detector, at a lower computational cost. This is in agreement
with the result from Lemma 1.

In the second experiment, we evaluate the effect of the
SNR in the performance of the proposed detector (13), which
was designed for a low SNR regime. The system parame-
ters are the same as in the previous experiment except for the
SNR, which is swept between −10 dB and −3 dB. Fig. 2
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Fig. 2. Missed detection probability versus SNR for different
detectors.

shows the missed detection probability of the proposed de-
tector and that of the Hadamard ratio detector for two values
of P = 1, 2. In Fig. 2 it is seen that whereas the asymp-
totic GLRT outperforms the Hadamard Ratio test for low SNR
values, its performance advantage is reduced as the SNR in-
creases. This effect can be avoided if we employ the exact
GLRT obtained after numerical optimization of (11). Note
that such scheme would be considerably more complex that
the proposed closed-form detector.

5. CONCLUSIONS

We have presented a novel multiantenna detector for rank-
P signals in spatially uncorrelated noises with different vari-
ances. In particular, we propose to use the GLRT for detect-
ing a rank-P vector-valued random variable in non-iid noises,
which generalizes several previous schemes derived either for
P = 1 or for large P . Although this detector does not admit,
in general, a close-form solution, we have shown that in the
low SNR regime it reduces to a one-shot practical detector.
Finally, we note that the derivation considered here assumes
knowledge of the signal rank P . While this may be reason-
able in some contexts, there are scenarios in which P is un-
known. Future research should consider estimation of P [13]
and primary signal detection jointly.
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