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Abstract—We show that the meta-converse bound derived by
Polyanskiy et al. provides the exact error probability for a fixed
joint source-channel code and an appropriate choice of the bound
parameters. While the expression is not computable in general,
it identifies the weaknesses of known converse bounds to the
minimum achievable error probability.

I. INTRODUCTION

In the study of reliable communication, the hypothesis-
testing method is a useful technique to derive converse bounds
on the average error probability [1]–[4]. For channel coding,
Polyanskiy et al. provided a meta-converse bound [2, Th.
26], which states that the average error probability ε(C) of
a channel code C with M codewords and block length n
transmitted over a channel PY |X satisfies

ε(C) ≥ sup
QY

{
α 1

M

(
P

(C)
X × PY |X , P

(C)
X ×QY

)}
, (1)

where αβ (P,Q) is the minimum type-I error1 for a maximum
type-II error β ∈ [0, 1] for a binary hypothesis test between
distributions P and Q; and P

(C)
X denotes the channel-input

distribution induced by the codebook C. This result has been
extended to joint source-channel coding in [3] and [4].

In this paper, we show that (1) holds with equality. First,
we use the hypothesis-testing method to provide a lower-bound
on the error probability for source-channel coding. Then, for
a fixed codebook, this bound is shown to be equal to the error
probability of a maximum a posteriori (MAP) decoder.

A. System Model and Notation

We consider the transmission of a length-k discrete memo-
ryless source over a discrete memoryless channel (DMC) using
length-n block codes. The source is distributed according to
PV (v) =

∏k
i=1 PV (vi), v = (v1, . . . , vk) ∈ Vk, where V is

an alphabet with cardinality |V|. The channel law is given by
PY |X(y|x) =

∏n
i=1 PY |X(yi|xi), x = (x1, . . . , xn) ∈ Xn,

y = (y1, . . . , yn) ∈ Yn, where X and Y are discrete alphabets
with cardinalities |X | and |Y|, respectively.
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1Since the focus of this paper is the error probability, we refer to the
minimum type-I error for a maximum type-II error β ∈ [0, 1] as αβ (·, ·).
This definition is the counterpart of the function β1−α (·, ·), defined in [2]
as the minimum type-II error for a maximum type-I error α ∈ [0, 1].

An encoder maps the length-k source message v to a length-
n codeword x(v) using a codebook C and then, x(v) is
transmitted over the channel. We consider a MAP decoder that
randomly chooses one source message z (decoded message)
among the source messages belonging to the set

SC(y) ,
{
v
∣∣ P (C)

V Y (v,y) = max
v′

P
(C)
V Y (v′,y)

}
, (2)

where we defined the joint distribution P (C)
V Y , PV × P (C)

Y |V ,

where P (C)
Y |V (y|v) , PY |X(y|x(v)), y ∈ Yn, v ∈ Vk. This

decoding rule is described by the distribution P (C)
Z|Y ,

P
(C)
Z|Y (z|y) ,

{
1

|SC(y)| , if z ∈ SC(y),
0, otherwise.

(3)

The error probability ε(C) of the code C can be expressed as

ε(C) , Pr{Z 6= V } (4)

= 1−
∑
v

∑
y

P
(C)
V Y (v,y)P

(C)
Z|Y (v|y). (5)

II. HYPOTHESIS-TESTING APPROACH

For an observation (v,y) we define the hypotheses

H0 : (V ,Y ) ∼ PV Y , (6)
H1 : (V ,Y ) ∼ QV Y , (7)

for arbitrary distributions PV Y and QV Y . Any test deciding
between these two hypotheses can be defined by a (possibly
random) transformation (Vk,Yn) → {H0,H1} described by
the conditional distribution PW |V Y .

The performance of a test PW |V Y can be evaluated ac-
cording to its type-I and type-II errors. The type-I error, the
probability of choosing H1 when the true hypothesis is H0,
is given by

εI(PV Y , PW |V Y ) =
∑
v

∑
y

PV Y (v,y)PW |V Y (H1|v,y).

(8)

Similarly, the type-II error, i.e. the probability of choosing H0

when the true hypothesis is H1, is given by

εII(QV Y , PW |V Y ) =
∑
v

∑
y

QV Y (v,y)PW |V Y (H0|v,y).

(9)



We define the smallest type-I error among all tests PW |V Y

with a type-II error at most β as

αβ
(
PV Y , QV Y

)
, min

PW |V Y :

εII(QV Y ,PW |V Y )≤β

{
εI(PV Y , PW |V Y )

}
.

(10)

The Neyman-Pearson (NP) lemma [5] gives the form of a
test PW |V Y achieving this optimum performance,

PNP
W |V Y (H0|v,y) =


1, if PV Y (v,y)

QV Y (v,y) > γ,

p0, if PV Y (v,y)
QV Y (v,y) = γ,

0, otherwise,

(11)

where the threshold γ and the probability p0 are chosen such
that type-II error equals β.

This lemma is a key result to derive lower bounds on the
error probability of a code C (see e.g. [1].) Consider the
hypotheses (6)-(7) for PV Y = P

(C)
V Y and arbitrary QV Y . We

define a (possibly suboptimum) test based on the MAP decoder
in (3) as follows. Given an observation (v,y), we choose H0

if v = z and H1 otherwise, i.e. the test is defined as

PMAP
W |V Y (H0|v,y) = P

(C)
Z|Y (v|y). (12)

Particularizing (8) and (9) for this test, we obtain

εI(P
(C)
V Y , P

MAP
W |V Y ) = 1−

∑
v,y

P
(C)
V Y (v,y)P

(C)
Z|Y (v|y), (13)

εII(QV Y , P
MAP
W |V Y ) =

∑
v,y

QV Y (v,y)P
(C)
Z|Y (v|y). (14)

As (5) and (13) coincide, we have that εI(P
(C)
V Y , P

MAP
W |V Y ) =

ε(C). As a result, lower bounds on the type-I error for this
binary hypothesis-testing problem with type-II error given by
(14) directly provide lower bounds on the MAP decoding
error probability. In particular, for a fixed distribution QV Y ,
the type-I error can be lower-bounded by the type-I error
performance of the Neyman-Pearson test, i.e.,

ε(C) ≥ αεII(QV Y ,PMAP
W |V Y

)

(
P

(C)
V Y , QV Y

)
. (15)

This inequality can be tightened by maximizing (15) over the
set of distributions {QV Y }, yielding

ε(C) ≥ max
QV Y

{
αεII(QV Y ,PMAP

W |V Y
)

(
P

(C)
V Y , QV Y

)}
. (16)

This lower bound is a particularization of [3, Eq. (59)] to
almost lossless source-channel coding and a given codebook.
In principle, the computation of (16) is at least as difficult as
the computation of ε(C) since it requires the knowledge of the
MAP decoding transformation P (C)

Z|Y .

III. MAIN RESULT

In this section, we show that (16) holds with equality by
proving that the test PMAP

W |V Y achieves the Neyman-Pearson
performance for a specific choice of QV Y and the type-II
error given in (14).

Theorem 1: The average error probability of a given code-
book C under MAP decoding satisfies

ε(C) = max
QV Y

{
αεII(QV Y ,PMAP

W |V Y
)

(
P

(C)
V Y , QV Y

)}
. (17)

Moreover, there exists a distribution QV Y optimizing (17)
such that QV Y = Q?V ×QY with Q?V (v) = |V|−k for all v.
Then

ε(C) = max
QY

{
α|V|−k

(
P

(C)
V Y , Q

?
V ×QY

)}
. (18)

Proof: To prove (17), consider the hypotheses (6)-(7) with
PV Y = QV Y = P

(C)
V Y . From (13) and (14), it follows that

εI = 1− εII. Noting that αβ(P, P ) = 1− β and using ε(C) =
εI(P

(C)
V Y , P

MAP
W |V Y ) it follows that

ε(C) = α
εII(P

(C)
V Y ,P

MAP
W |V Y

)

(
P

(C)
V Y , P

(C)
V Y

)
(19)

≤ max
QV Y

{
αεII(QV Y ,PMAP

W |V Y
)

(
P

(C)
V Y , QV Y

)}
. (20)

By combining the inequalities (16) and (19)-(20) the first part
of the theorem follows.

In order to prove the second part, consider the hypotheses
(6)-(7) with PV Y = P

(C)
V Y and QV Y = Q

(C)
V Y , where

Q
(C)
V Y (v,y) , Q?V (v)Q

(C)
Y (y), v ∈ Vk,y ∈ Yn, (21)

with

Q?V (v) , |V|−k, (22)

Q
(C)
Y (y) ,

1

µ
max
v′

P
(C)
V Y (v′,y), (23)

and where µ is a normalization constant. The test PMAP
W |V Y ,

according to (3) and (21)-(23), is given by

PMAP
W |V Y (H0|v,y) ,

 1
|SC(y)| , if P

(C)
V Y (v,y)

Q
(C)
V Y (v,y)

= µ|V|k,

0, otherwise.
(24)

Let us choose γ = µ|V|k and

p0 =

∑
y

∑
v∈SC(y)

1
|SC(y)|P

(C)
V Y (v,y)∑

y

∑
v∈SC(y) P

(C)
V Y (v,y)

(25)

=

∑
y

∑
v∈SC(y)

1
|SC(y)|Q

(C)
V Y (v,y)∑

y

∑
v∈SC(y)Q

(C)
V Y (v,y)

, (26)

where equality between (25) and (26) holds since
P

(C)
V Y (v,y) = µ|V|kQ(C)

V Y (v,y) for all y, v ∈ SC(y).
We now show that the MAP test (24) achieves the same

type-I and type-II error probability as the NP test (11) for
this choice of parameters γ and p0. This shows that both the
MAP and the NP test achieve the optimum performance in the
Neyman-Pearson sense.



The type-I error probability of the NP test (11) is given by

εI(P
(C)
V Y ,P

NP
W |V Y )

= 1−
∑
v,y

P
(C)
V Y (v,y)PNP

W |V Y (H0|v,y) (27)

= 1−
∑
y

∑
v∈SC(y)

p0P
(C)
V Y (v,y) (28)

= 1−
∑
y

∑
v∈SC(y)

1

|SC(y)|
P

(C)
V Y (v,y) (29)

= 1−
∑
v,y

P
(C)
V Y (v,y)PMAP

W |V Y (H0|v,y) (30)

= εI(P
(C)
V Y , P

MAP
W |V Y ) = ε(C), (31)

where in (28) we used the definitions of SC(y) and PNP
W |V Y ;

(29) follows from (25), and (30) follows from the definition
of PMAP

W |V Y . Similarly, the type-II error probability of the NP
test is

εII(Q
(C)
V Y ,P

NP
W |V Y )

=
∑
y

∑
v∈SC(y)

p0Q
(C)
V Y (v,y) (32)

=
∑
y

∑
v∈SC(y)

1

|SC(y)|
Q

(C)
V Y (v,y) (33)

=
∑
v,y

Q
(C)
V Y (v,y)PMAP

W |V Y (H0|v,y) (34)

= εII(Q
(C)
V Y , P

MAP
W |V Y ), (35)

where (33) follows from (26); and (34) follows from the
definition of PMAP

W |V Y .
Then it holds that

max
QV Y

{
αεII(QV Y ,PMAP

W |V Y
)

(
P

(C)
V Y , QV Y

)}
(36)

≥ α
εII(Q

(C)
V Y ,P

MAP
W |V Y

)

(
P

(C)
V Y , Q

(C)
V Y

)
(37)

= εI(P
(C)
V Y , P

NP
W |V Y ) = ε(C) (38)

where in (38) we used (27)-(31) and (32)-(35).
From the inequalities (16) and (36)-(38) it follows that (37)

holds with equality. Hence, Q(C)
V Y is a maximizer of (36).

Then, in order to perform the optimization in (17) we may re-
strict ourselves to distributions of the form QV Y = Q?V ×QY .
For this choice of QV Y we have that

εII(QV Y , P
MAP
W |V Y ) =

∑
v,y

Q?V (v)QY (y)P
(C)
Z|Y (v|y) (39)

= |V|−k
∑
v,y

QY (y)P
(C)
Z|Y (v|y) (40)

= |V|−k. (41)

As a result, (18) follows.

IV. CONNECTION WITH PREVIOUS RESULTS

In [4], the present authors derived a lower bound on the
minimum error probability of almost lossless source-channel

coding. Following a variation of the method described in
Section II, they considered an independent binary hypothesis
test for every source message and individually applied the
NP lemma to each test. In an analogous way to Section II,
this setup provides lower bounds on the error probability
conditioned on each transmitted message. The next result
shows that this method also gives the error probability:

Corollary 1: The average error probability of a given code-
book C under MAP decoding satisfies

ε(C) = max
QY |V

{∑
v

PV (v)αQZ(v)

(
PY |X=x(v), QY |V =v

)}
,

(42)
where

QZ(v) ,
∑
y

QY |V (y|v)P (C)
Z|Y (v|y). (43)

Proof: The proof follows from the definition of α(·)(·, ·)
using convex-optimization techniques. Let us define

fv(PW |V Y )

,
∑
y

QY |V =v(y)PW |V Y (H0|v,y)−QZ(v). (44)

When optimized over the auxiliary distribution QV , the
bracketed term in (17) becomes

max
QV

{
α(

∑
v QV (v)QZ(v))

(
P

(C)
V Y , QV Y

)}
= max

QV

min
PW |V Y :∑

v QV (v)fv(PW |V Y )≤0

{
1

−
∑
v,y

P
(C)
V Y (v,y)PW |V Y (H0|v,y)

}
(45)

= max
λ≥0,QV

min
PW |V Y

{
1−

∑
v,y

P
(C)
V Y (v,y)PW |V Y (H0|v,y)

− λ
∑
v

QV (v)fv(PW |V Y )

}
(46)

= max
{λv≥0}

min
PW |V Y

{
1−

∑
v,y

P
(C)
V Y (v,y)PW |V Y (H0|v,y)

−
∑
v

λvfv(PW |V Y )

}
(47)

=
∑
v

PV (v) min
PW |V Y :

fv(PW |V Y )≤0

{
1

−
∑
y

P
(C)
Y |V (y|v)PW |V Y (H0|v,y)

}
(48)

=
∑
v

PV (v)αQZ(v)

(
PY |X=x(v), QY |V =v

)
, (49)

where in (46) we introduced the constraint into the objective
by means of the Lagrange multiplier λ; (47) follows from
the fact that λ and QV only appear in the objective as
λv , λQV (v); and finally (48) follows from considering



{λv} as Lagrange multipliers associated with the individual
constraints fv(PW |V Y ) ≤ 0, ∀v. Eqs. (46) and (48) hold
with equality since the constrained optimization problem is
convex, fv(PW |V Y ) is affine in PW |V Y and there exists a
feasible point (e.g. by choosing PW |V Y (H0|v,y) = 0 for all
v,y.) The result follows by substituting (45)-(49) into (17).

The performance of the MAP decoder can thus be equiva-
lently characterized by either a bank of independent binary
hypothesis tests defined over the channel outputs for each
source message or by a single binary hypothesis test defined
over the 2-fold space of messages and channel outputs. This
equivalence holds as long as the bound (16) is maximized over
QV . For fixed QV the bank of independent binary hypothesis
tests gives tighter bounds in general.

We now assess the weaknesses of previous converse
bounds [3], [4] with respect to the minimum achievable error
probability. One can obtain the converse bound [4, Lem. 2]
from Corollary 1 by minimizing (42) over all codebooks and
distributions QZ . This converse is not tight in general as the
minimizing distribution Q?Z does not need to coincide with
the distribution induced by the MAP decoder.

Also, from (18) it follows that

min
C
ε(C) = min

C
max
QY

{
α|V|−k

(
P

(C)
V Y , Q

?
V ×QY

)}
(50)

≥ inf
PX|V

sup
QY

{
α|V|−k

(
PV Y , Q

?
V ×QY

)}
, (51)

where the last step follows from relaxing the minimiza-
tion to account for every PX|V such that PV Y (v,y) =∑

x PV (v)PX|V (x|v)PY |X(y|x). The optimum value of the
minimization in (51) does not coincide in general with the
distribution induced by the codebook and hence the inequality
(51) is not tight in general. The bound (51) is equivalent to
[3, Th. 4] when particularized to the almost lossless setting.

V. DISCUSSION

Theorem 1 shows that the extension of the meta-converse
to source-channel coding coincides with the MAP decoding
error probability. This is no longer true if we weaken (50) to
ignore the structure imposed by the codebooks, which yields
the possibly strict inequality (51).

As an example, consider the channel-coding problem of
transmitting M equiprobable messages over a DMC. Particu-
larizing (50)-(51) with k = 1, |V| =M , we obtain

min
C
ε(C) = min

C
max
QY

{
α 1

M

(
P

(C)
X × PY |X , P

(C)
X ×QY

)}
(52)

≥ inf
PX

sup
QY

{
α 1

M

(
PX × PY |X , PX ×QY

)}
, (53)

where (53) coincides with the hypothesis-testing bound from
[2, Thm. 27]. The exponential decay of (53) has recently
been shown [6, Sec. VI.E] to be equal to the sphere-packing
exponent. However, below the critical rate of the channel, the
reliability function is in general bounded away [7] from the
sphere-packing exponent and thus, the gap between (52) and
(53) may grow exponentially with n.
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Fig. 1. Channel coding error probability bounds for the BSC with parameters
PY |X(1|0) = 0.1, M = 4.

Fig. 1 shows different bounds on the error probability for
M = 4 messages and a binary symmetric channel (BSC).
In this setup, the best code can be obtained explicitly [8]
and hence the exact ML decoding error probability can be
computed. As upper bound, we show the exact random coding
error probability when the ties are decoded in error (RCE)
for a random-coding ensemble generated from the uniform
distribution. As lower bounds, we show (52) (computed for
the best code) and (53). The figure confirms our main result
in Theorem 1, since (52) is equal to the exact error probability
of the best code given in [8]. In this scenario, the reliability
function of the error probability does not coincide neither
with the random-coding nor with the sphere-packing error
exponents, given respectively by the exponential decay of the
bounds RCE and (53) in the figure. As a result, the weakening
(53) yields a looser bound that incurs in a loss in exponent.
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