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Board members: Wilfried Gappmair

Santiago Zazo Bello

Ashish Pandharipande

Board secretary: Josep Sala Alvarez

Thesis defense: Vigo, June 29, 2011

This edition: July 5, 2011

http://www.gonzalo-vazquez-vilar.eu




The wireless channel is a complicated animal.
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Abstract

The key idea behind Cognitive Radio (CR) is to allow opportunistic access to tem-

porally and/or geographically unused licensed bands, avoiding conflicts with the

rightful license owners in those bands. To achieve this, novel interference manage-

ment algorithms are required to limit the interference seen by the primary (licensed)

users. A key aspect of any interference management scheme is spectrum monitoring,

that allows to detect and track primary users.

This PhD. Thesis contributes to the field of CR in two different ways. First,

we address the problem of primary user monitoring using novel detection schemes

which exploit multiple antennas, wideband processing, and the available a priori

knowledge about primary transmissions. Then, we propose a general framework for

interference management in cognitive radio networks in which certain interaction is

allowed between primary and secondary systems.

Specifically, the detection problems investigated in this thesis include multi-

antenna detection exploiting a priori spectral information when the noise statistics

are assumed known. In this setting we will also derive novel diversity order analysis

of the proposed detectors. The case of multiantenna detection under unknown noise

statistics is covered under different hypotheses, including both the detection of pri-

mary signals with spatial rank larger than one and detection in presence of spatially

unstructured noise. Additionally we study the problem of multichannel monitoring.

In this context, wideband acquisition can be performed using traditional analog to

digital converters or the recently proposed analog to information converters. When

the channelization of the primary network is assumed known, we show that guard

bands and weak channels can be used to improve detection performance, both when

the detection is performed from a set of samples at Nyquist rate, or from a set of

compressed measurements.

Finally, we propose a general framework for interference management in cogni-



vi

tive radio networks in which the primary network is allowed to dynamically adjust

the tolerable interference margin to be met by the secondary system. In particular,

we propose a game theoretical formulation which allows us to study the perfor-

mance gain which can be expected from this limited interaction between primary

and secondary systems. Moreover, we show that certain architectures fulfilling these

requirements are implementable in practice and present good performance in both

static and dynamic environments.
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Vı́a, and Ignacio Santamaŕıa. Detection of rank-P signals in cognitive ra-

dio networks with uncalibrated multiple antennas. Signal Processing, IEEE

Transactions on, 2011. In press.

5. Gonzalo Vazquez-Vilar, Carlos Mosquera, and Sudharman K. Jayaweera.

Primary user enters the game: Performance of dynamic spectrum leasing in

cognitive radio networks. Wireless Communications, IEEE Transactions on,

9(12):3625–3629, December 2010.

vii



viii

6. Sudharman K. Jayaweera, Gonzalo Vazquez-Vilar, and Carlos Mosquera.

Dynamic Spectrum Leasing (DSL): A new paradigm for spectrum sharing

in cognitive radio networks. Vehicular Technology, IEEE Transactions on,

59(5):2328–2339, June 2010.

Conference publications

1. Gonzalo Vazquez-Vilar, Roberto López-Valcarce, and Ashish Pandhari-
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Chapter 1

Introduction

Contents

1.1 Cognitive Radio: Motivation . . . . . . . . . . . . . . . . 1

1.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Spectrum Monitoring . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Interference Management . . . . . . . . . . . . . . . . . . . 7

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Multiantenna and multichannel detection of primary users . 8

1.3.2 DSL: an Interference Management Scheme . . . . . . . . . . 10

1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . 11

1.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Cognitive Radio: Motivation

In the recent years we have witnessed a constant increase in the price of the spectral

resources. The main reason is the rising demand of spectrum as a result of emerging

communication standards and services.

However this scarcity of spectral resources happens while most of the allocated

spectrum is underutilized. This paradox occurs only due to the inefficiency of tra-

ditional static spectrum allocation policies, which translates in a waste of spectral

resources (FCC, 2002, 2003). Most of the useful spectrum is allocated to licensed

users (e.g. mobile carriers, TV broadcasting companies) that do not transmit at all

the geographical locations all the time. If this spectrum is opened for unlicensed

use (e.g. private users, short range networks, ...) it is highly likely that a vast array
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of new services will appear. One example of this is the huge innovation that has

occurred in WiFi and Bluetooth operating in unlicensed bands, even though these

two standards share just scraps of spectrum with many other technologies.

The wireless industry has considerable interest in the development of dynamic

spectrum access (DSA) as a means to improve spectral efficiency (FCC, 2002, 2003).

Cognitive radio (CR) (Mitola and Maguire Jr., 1999) is receiving considerable at-

tention as the enabling technology to achieve DSA in licensed bands. The key idea

behind CR is to create smarter radios which are aware of, and can adapt to, their

environment. Hence, in licensed bands CR nodes will monitor primary users in or-

der to transmit in temporally and/or spatially unused slots. For example, the U.S.

Federal Communications Commission (FCC) has recently issued a Second Report

and Order (FCC, 2010), allowing operation on an unlicensed basis in the TV white

spaces of VHF and UHF bands to both fixed and portable devices. While this or-

der requires secondary users to access a database with information of the available

resources, it is expected that these first steps start a major change to DSA in most

of the spectrum once the CR technology is mature enough.

One of the problems pointed out in FCC (2010) is that the available sens-

ing technology is not reliable enough to guarantee that the interference produced

to licensed (primary) users is kept at sufficiently low levels. Wireless propagation

phenomena such as shadowing and fading pose significant challenges to the reliable

detection of primary users. The received primary signal may be very weak, resulting

in very low Signal-to-Noise Ratio (SNR) operation conditions and “hidden node”

situations. Hence novel powerful spectrum monitoring techniques are required in

order to increase CR network agility (Akyildiz et al., 2008).

On the other hand, CR schemes may lead to very complex networks, in which

primary and secondary users coexist in dynamic environments. This may lead to

unexpected behavior and/or an impact on system performance. Hence, new schemes

and analytical tools are required to control and model the interactions between the

different elements of the system.

1.2 Previous work

While CR is a relatively novel area (Mitola’s landmark paper appeared in 1999 (Mi-

tola and Maguire Jr., 1999)), it has received significant research interest in the last

few years. In this section we present the most relevant previous work directly related
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to this thesis.

1.2.1 Spectrum Monitoring

Spectrum monitoring is based on the detection of weak signals from primary trans-

mitters through the local observations of cognitive users, either individually or in a

collaborative fashion. While cooperative sensing has the potential to overcome the

effects of shadowing (Ganesan and Li, 2007a,b), it still relies on standalone detectors

whose performance should be optimized.

Three schemes are generally used for sequential individual sensing of primary

channels, each of them requiring different degrees of knowledge and synchronization

with the primary network:

1. Matched filter detection: If the secondary user is locked1 to the primary net-

work, the optimal detection strategy in stationary Gaussian noise is matched

filtering (Kay, 1998). Note that matched filter detection schemes require full

synchronization with the primary network and thus they are difficult to im-

plement in the low SNR conditions, which cognitive networks are expected to

work in.

2. Feature based detection: Certain properties of the primary signal, such as

the presence of any pilots or cyclostationary features, could in principle be

exploited in order to obtain powerful detectors. However, such approaches

become very sensitive to synchronization errors (Cabric, 2008). With very low

SNR, the synchronization loops of the monitoring system cannot be expected

to provide the required accuracy for the carrier frequency and/or clock rate

estimates.

3. Asynchronous detectors: These detection schemes do not assume any synchro-

nization with the primary signal. Hence they rely on other signal properties

such as certain temporal and/or spatial structure. Among these, the most

popular one is the energy detector, which does not require (or exploit) any

a priori knowledge about the signal structure. The detector reduces to inte-

grating received energy in a given frequency band and comparing it to a noise

level dependent threshold. However, computation of the threshold in energy

1Meaning that both frequency and timing synchronization loops are locked to a given set of
signals.
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detection requires knowledge of the noise variance. Any uncertainty regard-

ing this parameter translates to severe performance degradation, so that the

detection/false alarm requirements may not be satisfied (Tandra and Sahai,

2008).

The reasons exposed motivate the search for asynchronous detectors robust to

noise uncertainty, two possibilities being the use of multiple–antenna sensors and

wideband monitoring covering multiple frequency channels. Moreover, if certain

information about the primary network, such as channelization and modulation,

is available to the spectrum monitor, it should be exploited to increase detection

performance. In this thesis we will consider that this knowledge can be summarized

as the spectrum shape / temporal correlation of the received signal.

Several authors considered the problem of exploiting temporal structure of the

received signal. Under the assumption that the power spectral density (psd) of the

signal is completely known, Zhang et al. (2010b) derive the optimal Neyman-Pearson

detector for both scalar and vector-valued signals. However, in spectrum sensing

applications the propagation channel is unknown, and thus only partial knowledge

of the second-order statistics is available in practice. A possible approach in that

case is to neglect this partial knowledge, and consider test statistics that quantify the

departure of the sample temporal autocorrelation matrix of the observations from the

noise temporal covariance (Zeng and Liang, 2009a,b). Under the assumption that

the signal is bandlimited, while its actual bandwidth, spectral shape and carrier

frequency are unknown, Derakhtian et al. (2009) propose a generalized likelihood

ratio test (GLRT) based scheme. Alternatively, metrics quantifying the distance

of the sample correlation matrix from a “candidate” matrix summarizing a priori

knowledge can be used: in the single–antenna setting, for example, Perez-Neira et al.

(2009) assume the signal psd known up to a scaling and a shift, respectively modeling

uncertainty about the power level and carrier frequency of the signal. Also assuming

a single antenna, Quan et al. (2011) adopt a similar approach when the carrier

frequency is known, as it often occurs in practice: for instance, for frequency division

multiple access (FDMA) primary networks with public channelization parameters.

However, all these works either assume that temporal correlation of the primary

signal is unknown to the receiver or they do not consider the multiantenna and

wideband settings.
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Multiantenna detection

The gain offered by multiantenna processing in energy detection schemes was ana-

lyzed in Pandharipande and Linnartz (2007) under the assumption of channel infor-

mation available to the secondary system. This assumption is not realistic in prac-

tice and the channel needs to be estimated. Assuming a temporally white Gaussian

model for both signal and noise, spatially white noise with unknown (equal) variance

across antennas, and an unknown spatial covariance matrix for the signal, several

detectors have been proposed in the literature.

We are particularly interested in the works based on the generalized likelihood

ratio test (GLRT), since this approach usually results in simple detectors with good

performance (Mardia et al., 1979). Under rank-1 spatial covariance for the signal and

assuming iid noises, the GLRT is derived in Besson et al. (2006) and its application

to CR was presented in Taherpour et al. (2010); Wang et al. (2010). When the

signal covariance matrix is unstructured, and the noise assumed iid, the GLRT is

the well-known test for sphericity (Mauchly, 1940), which was applied to CR in Lim

et al. (2008); Zhang et al. (2010a). In these works the authors derived the GLRT

for primary signals with spatial rank P > 1 under the assumption of iid noises

with known variance. In Wilks (1935) the GLRT was derived for the case of an

unstructured signal covariance matrix for non-iid noises. This detector was later

applied to array signal processing in Leshem and Van der Veen (2001a,b). Other

detectors which can handle different (unknown) noise variances have been proposed

in Boonstra and Van der Veen (2003); Zeng and Liang (2009b).

However, all of these works either assume rank-1 primary signals or unstruc-

tured primary signals. Moreover, they do not exploit any available information

about the spectral shape of the primary signals.

Once a multiantenna detector is proposed its performance must be evaluated.

In order to quantify and compare the performance gain of multiantenna systems

in fading environments, several metrics have been considered, including different

concepts of detection diversity. One option is to adopt a definition analogous to the

one from the communications literature for a certain performance tradeoff (between

the probabilities of detection and false alarm), as proposed in Duan et al. (2010).

A similar asymptotic definition based on J-divergence is given in Kim et al. (2009).

In the context of radar, diversity order is however a low-SNR concept. For example,

Daher and Adve (2010) define diversity order as the slope of the average probability

of detection (P̄D) curve with respect to the SNR at P̄D = 0.5.
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Wideband detection

In order to improve detection performance, the sensing system may also perform

simultaneous acquisition of multiple frequency channels. This scheme improves the

agility of the detector since multiple channels are processed at once and it provides

the spectrum monitor with additional information to estimate the noise statistics

as we will see in Chapter 4. This is mainly due to the availability of guard bands

between adjacent channels, as well as to the fact that the presence of unused/weak

channels within the subband can be exploited for noise variance estimation.

Wideband spectrum sensing has been previously considered by several authors.

In Hwang et al. (2010), knowledge of the noise variance is assumed, but the band-

widths and central frequencies of primary transmissions, as well as their number, are

assumed unknown and estimated in turn. In the setting of Taherpour et al. (2008,

2009) primary system channelization is known, and the noise variance is regarded

as unknown. However, these methods do not exploit a priori information about the

psd of primary transmissions, and they assume that a minimum number of unused

channels exist in the subband under examination.

In a wideband setting, it may not be feasible to acquire the received signal at

Nyquist rate. Novel sampling methods allow the reconstruction of the received sig-

nals from a set of compressed measurements if certain properties are met (Donoho,

2006). The key technology allowing this is compressive sensing, which is able to

construct sparse solutions from a set of underdetermined equations. Several authors

have applied compressed sensing to the detection of primary users in cognitive radio

systems. Assuming a spectrum model consisting of several flat bandpass signals,

and considering the edges between them, the observed signal is sparse in the “spec-

tral edges domain”. This fact is used in Tian and Giannakis (2007) to propose a

spectrum reconstruction algorithm from compressed samples of the signal autocorre-

lation estimate. This method was extended in Polo et al. (2009) in order to process

directly a compressed version of the received signal (and not of its autocorrelation).

These methods do not assume information about the primary network channel-

ization, so that the spectral edges could occupy any position within the frequency

band.
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1.2.2 Interference Management

In order to improve spectral efficiency, the wireless industry has prompted proposals

for various dynamic spectrum access (DSA) approaches. A DSA scheme in which

secondary users are allowed to opportunistically access the spectrum on the basis

of no-interference to the primary (licensed) users, denoted as hierarchical access, is

arguably the method that has received the most attention in recent literature.

Various architectures have been proposed and investigated in recent years to

achieve hierarchical dynamic sharing of licensed bands (see Kim et al. (2008); Le

and Hossain (2008); Xing et al. (2007); Fattahi et al. (2007); Etkin et al. (2007);

Menon et al. (2008) and references therein). A common assumption in these works

is that the licensed users which own the spectrum rights are unaware of the presence

of secondary users. Hence the burden of interference management relies mainly on

the secondary system. In particular, either (i) there is a maximum interference level

that the primary system is willing to tolerate, and the secondary powers/activity

are to be adjusted within this constraint, or (ii) secondary users are allowed to

opportunistically access the spectrum on the basis of no-interference to the primary

(licensed) users.

As opposed to this is the the concept of dynamic spectrum leasing (DSL), first

presented in Jayaweera and Li (2009). A DSL scheme is characterized by the active

role of the primary user, which may interact with the secondary system in order

to define the allowed interference cap. This scheme allows the system to adapt to

changing environmental conditions and may lead to a better spectral utilization.

1.3 Contributions

This thesis treats different aspects of a cognitive radio system. On the one hand,

assuming a non-interfering DSA network we propose and analyze novel asynchronous

multiantenna detectors and wideband detection schemes. Then, in the last chapter,

we will study a DSA system in which certain interference is allowed at primary users,

namely a DSL network.
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1.3.1 Multiantenna and multichannel detection of primary users

In the previous section we showed the importance of deriving powerful asynchronous

detectors for cognitive radio systems. To this end we need to exploit any available

information about the primary network. In most of the analysis in this thesis we

assume that the modulation / channelization of the primary network is known to

the spectral monitor, which translates into a priori knowledge on the spectral shape

of the primary transmissions.

Additionally, we focus our study on Gaussian signals. The reasons for adopting

a Gaussian model for the primary signal are as follows. First, under asynchronous

sampling, the actual distribution is unknown; and since the noise is assumed Gaus-

sian as well, the Gaussian pdf for the signal is the least informative one for the

detection problem. Second, if the primary system uses multicarrier modulation

with a sufficiently large number of subcarriers (which is the case in e.g. broad-

casting applications), the Gaussian model is accurate (Tellado, 2000). Third, this

model is tractable and leads to useful detectors under other distributions: note that

Gaussianity is a common assumption in the development of signal detectors, either

explicitly or implicitly, as many ad hoc methods that limit themselves to the use

of second-order statistics of the observations can often be derived from a Gaussian

model (the Energy Detector is the most prominent example).

The main contributions of this thesis in spectrum monitoring are the following:

• Derivation and analysis of different multiantenna detectors exploit-

ing a priori knowledge of the spectral shape of the primary trans-

missions when the noise statistics are assumed known. From the

(non-implementable) Neyman-Pearson optimal detector we derive a family of

practical multiantenna detectors with different levels of complexity. This will

allow us to study both the advantages of exploiting spectral information and

multiantenna processing under different scenarios.

• Diversity order analysis of multiantenna detection systems in cog-

nitive radio. In order to compare and rank the different detectors in fading

environments we propose the use of two different performance metrics which

reflect the diversity gain obtained by multiantenna systems. The first is anal-

ogous to the one used in communications and measures the asymptotic slope

of the probability of misdetection with respect to the SNR (in log-log scale)

for increasing SNRs. The second is borrowed from the radar community and
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is related to the behavior of the probability of detection around the point at

which it equals 1/2. These key measures show the advantage of multiantenna

processing when detecting primary signals.

• Multiantenna detection of primary signals with spatial rank larger

than one when the noise statistics are assumed unknown. Under the

Gaussian assumption, we derive the GLRT when both signal and noise are

assumed temporally white and the primary signal may present an arbitrary

spatial rank larger than one, both for spatially iid noises and when the noise

is spatially uncorrelated but not necessarily iid.

We emphasize the practical implications of this scenario. A primary signal

with spatial rank larger than one will occur, for example, if multiple indepen-

dent users (e.g. from adjacent cells) simultaneously access the same frequency

channel. Alternatively, many state-of-the-art communication standards con-

sider the simultaneous transmission of different data streams through multiple

antennas to achieve multiplexing gain and/or the use of space-time codes to

enhance spatial diversity. For these systems, the signal received at the multi-

antenna sensor will exhibit a spatial rank equal to the number of independent

streams or the spatial size of the code, respectively. On the other hand, tol-

erances in the components of the analog frontends at different antennas will

result in deviations of the noise level from antenna to antenna, and as it turns

out, detectors derived under the iid assumption are very sensitive to these

calibration errors.

• Derivation and analysis of multiantenna detection of primary sig-

nals under strong interference. Assuming strong interference, modeled

as temporally white noise with arbitrary spatial covariance matrix, we derive

the GLRT for detection of primary signals with known temporal structure.

We additionally propose a low SNR asymptotic analysis of this detector which

can be tightened in the SNR range of interest. This analysis shows the ex-

isting tradeoff between the spectral shape of the primary signal and detection

performance when the spatial structure of the signal is masked by the noise.

This scenario may occur in the presence of strong cochannel interference gen-

erated by other secondary users. In this case, the secondary contributions can

be modeled as noise with arbitrary and unknown spatial covariance.

• Wideband detection in the presence of unknown noise level. Intu-

itively, if multiple primary channels are simultaneously acquired and channel-
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ization information is available, the guard bands between adjacent channels

could be used to estimate the noise power. We will show that when consider-

ing the problem of GLRT detection of one of the channels, not only the guard

bands but also the empty/weak channels are used to improve the noise esti-

mate. This analysis shows the advantages of performing wideband detection

instead of channel-by-channel scanning.

• Wideband detection from compressed measurements. We propose a

primary user detection scheme from a set of compressed samples based on the

GLRT when the channelization of the primary network is assumed known.

From a maximum a posteriori formulation we establish a connection between

the estimation problem of the unknown parameters and certain compressed

sensing techniques. Additionally, we propose a simple iterative procedure that

conducts to similar detection performance as by using more complex convex

optimization schemes.

1.3.2 DSL: an Interference Management Scheme

A DSL based paradigm allows certain amount of secondary interference at the pri-

mary system. Then primary user detection becomes less important in comparison

to interference management. The main contribution in this section is the study of a

family of DSL architectures showing their interference management capabilities.

• Performance gain of DSL based paradigms. We present a theoretical

analysis of the performance gain obtained by allowing a certain amount of

interaction between primary and secondary systems. To this end, we define a

family of performance metrics and propose a Stackelberg game formulation for

the interactions between primary and secondary systems. We show that the

performance gain obtained by allowing this interaction can be indeed large in

dynamic environments.

• Practical DSL scheme. Finally, we analyze certain practical DSL schemes

which are shown to have a unique Nash equilibrium. In the stationary regime,

the global performance of the system can be assumed to be the performance

at the (unique) Nash equilibrium, which makes its analysis tractable. More-

over, the proposed DSL schemes show a graceful degradation under dynamic

conditions and thus perform well in practice.
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1.4 Structure of the thesis

This thesis is divided in two different parts. In the first we address different spectrum

monitoring schemes, focusing on multiantenna and wideband detectors. Then, in

the second part, we propose a general framework for interference management in

cognitive radio networks.

In Chapter 2 we will study the problem of multiantenna detection exploiting

a priori spectral information when the noise statistics are assumed known. In this

chapter we will also pose the diversity order analysis of the proposed detectors. The

case of multiantenna detection under unknown noise statistics will be covered in

Chapter 3, including both the detection of primary signals with spatial rank larger

than one, and detection in the presence of spatially unstructured noise. Chapter

4 covers the topic of wideband acquisition and detection, both when the band is

acquired at Nyquist rate and when the detection must be performed from a set of

compressed measurements.

The analysis of a family of DSL schemes is presented in Chapter 5. Concluding

remarks, as well as future lines of research, are included in Chapter 6.

1.5 Notation

Any non-standard notation used in this thesis is defined for the particular chapter

at the point where the symbols first occur. For reader’s reference, we also include a

comprehensive list of the notation in Table 1.1.



Symbol Description

<(α), =(α) Real and imaginary parts of α

|α|, arg(α) Absolute value and argument of α

(·)T , (·)H Transpose and conjugate transpose

‖ · ‖` (resp. ‖ · ‖) norm ` (resp. norm 2)

det(A), tr(A), A† Determinant, trace and pseudoinverse of A

A1/2 (resp. A−1/2) Hermitian square root matrix of A (resp. A−1)

diag(a) Diagonal matrix with diagonal equal to a

adj(A) Adjugate matrix of A

vec (A) Column-wise vectorization of A

� Hadamard product

⊗ Kronecker product

0L Zero L× 1 vector or L× L matrix

1L L× 1 all-ones vector

IL Identity matrix of size L× L
ak k-th column of matrix A

ek k-th column of the identity matrix

E[·] Expectation operator

var{·} Variance operator

cov{x,y} Covariance between vectors x and y

CN (µ,R), N (µ,R)
(Complex circular) Gaussian random distribution

of mean µ and covariance matrix R

U(a, b) Uniform random distribution with support [a, b]

Q(x) Tail probability of the standard normal distribution

11(·) Indicator function

O(·) f(x) ∈ O(g(x)) iff limx→∞ f(x)/g(x) equals a constant

o(·) f(x) ∈ o(x) iff limx→0 f(x)/x = 0

Table 1.1: Notation used in this Thesis.
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2.1 Introduction

Primary user monitoring in Cognitive Radio systems is based on the detection of

the signal, generated by a primary transmitter, from the local observations of cog-

nitive users, either individually or in a collaborative fashion. In either case, it

is very likely that future CR terminals will incorporate multiple antennas, given

that multiple-input multiple-output (MIMO) technologies for communications have

reached considerable maturity (Larsson and Stoica, 2003).

In terms of transmission/reception, multiple antennas provide a means to in-

crease channel capacity without bandwidth expansion, as well as to overcome the

effects of fading via space-time coding (Larsson and Stoica, 2003). Several authors

have recently studied the benefits of having multiple antennas in terms of enhanc-

ing detection performance in the context of CR systems, see e.g. Pandharipande

and Linnartz (2007); Taherpour et al. (2010); Lunden et al. (2009). However, these

schemes do not exploit that in several cases certain primary network parameters,

such as channelization, modulation type, etc., are available as a priori knowledge. In

this chapter we study the problem of multiantenna detection in the low SNR regime

when some a priori information, summarized into knowledge about the spectral

shape of primary transmissions, is available to the spectrum monitor.

To this end, we first pose the Neyman-Pearson (NP) detector for this problem.

This detector is not implementable due to the presence of unknown parameters,

which need to be estimated. The maximum likelihood (ML) estimation of these

parameters in different scenarios leads to a family of multiantenna detectors which

result in an increased diversity gain with respect to single-antenna systems.

2.2 System model

Here we formalize the signal model that will be used in this chapter, and which,

with some additional refinements, will also be useful in the following chapters.

Multiantenna reception

We assume the primary system employs Frequency Division Multiplexing with fixed

channelization. The spectrum monitor is equipped with L antennas with their re-

spective Radio Frequency (RF) chains. A given primary channel is selected and
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downconverted to baseband, where it is sampled at fs samples/s to obtain K

complex-valued samples at each antenna (T = K/fs is the observation time). The

samples at the l-th antenna are collected into the K × 1 vector yl which can be

written as

yl = hls + σnl, 1 ≤ l ≤ L, (2.1)

where

• s = [ s0 s1 · · · sK−1 ]T comprises the samples of the primary signal.

• hl is the complex-valued channel gain at antenna l. If the channel is vacant,

then hl = 0 for all l.

• nl ∼ CN (0, IK) comprises the noise samples at antenna l.

• σ2 > 0 is the background noise power, assumed known and equal at all the

antennas1.

• The noise processes at different antennas are assumed statistically indepen-

dent, i.e. E[nln
H
n ] = IK 11(l = n).

By introducing the vectors

y
.
=


y1

...

yL

 , n
.
=


n1

...

nL

 , h
.
=


h1

...

hL

 , (2.2)

the model (2.1) can be compactly written as

y = h⊗ s + σn. (2.3)

Without loss of generality we assume E[|sk|2] = 1, since the signal power can be

absorbed into the channel vector h. Then, the average SNR per antenna is given by

ζ
.
=

E[||h⊗ s||22]

E[||σn||22]
=
||h||22
Lσ2

. (2.4)

1Since the noise variance is assumed known at each of the antennas, the derivation can be trivially
extended to the case of different noise levels by rescaling the input signals so that all present noise
variances equal to one.
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Primary signal model

In order to protect primary users from interference, the operational range of spec-

trum sensors must include primary signals well below decodability levels; in such

situations, attempting to synchronize with the potentially present primary signal is

unrealistic. Hence, we regard {sk} as a wide-sense stationary random process with

power spectral density (psd) Sss(e
ω). We additionally adopt a Gaussian model for

the primary signal.

Then we have that s ∼ CN (0,C), where C
.
= E[ssH ]. Provided that the chan-

nelization and modulation parameters of the primary system are fixed and public

(as would be the case, e.g., for broadcast networks), then Sss(e
ω) is known (and so

is C). Note that C is Toeplitz with ones on the diagonal. In general, {sk} will be

colored (and C 6= I) as a result of interchannel guard bands, pulse shaping, etc.

In the sequel we will find useful the following asymptotic eigendecomposition

of the primary signal temporal covariance matrix.

Let C = UΛUH with Λ = diag(λ0 λ1 · · · λK−1) be an eigendecomposition of

C, and let W be the K×K orthonormal IDFT matrix. As K →∞ (long observation

time) we have the following asymptotic result (Kay, 1998):

λk → Sss(e
 2πk
K ), 0 ≤ k ≤ K − 1. (2.5)

This result is based on the asymptotic equivalence of the sequences of matrices {C}
and WΓWH}, where Γ = diag{Sss(1)Sss(e

2π/K) · · ·Sss(e2π(K−1)/K)} for K = 1,

2,. . . (Gray, 2006), which has been exploited extensively in the literature; as shown

in Zhang et al. (2010c), the loss in detection performance when adopting the ap-

proximation

C ≈WΛWH (2.6)

often becomes negligible even for moderate values of K.

The following spectral shape parameters will feature in the statistical analysis

of the detectors:

b̄n
.
=

1

K
tr{Cn} =

1

K

K−1∑
k=0

λnk (2.7)

≈ 1

2π

∫ π

−π
Snss(e

ω)∂ω for K →∞. (2.8)
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Note that b̄1 = 1 since E[|sk|2] = 1. For white {sk}, C = I so that b̄n = 1 for all n

(in general, one has b̄n ≥ 1 by Jensen’s inequality).

2.3 Problem formulation

The Neyman-Pearson lemma results in optimal detectors in the sense that the prob-

ability of detection is maximized for a given probability of false alarm (Kay, 1998).

While in our setup the NP test is not implementable in practice it will lead to a series

of practical detectors with a strong connection to the diversity combining techniques

employed in communications (Simon and Alouini, 2004).

2.3.1 Neyman-Pearson detector

Based on the LK × 1 vector y from (2.3), and under the Gaussian model, the

corresponding hypothesis test is given by

H0 : y ∼ CN (0,R0) (primary is absent) (2.9)

H1 : y ∼ CN (0,R1) (primary is present) (2.10)

where we have introduced

R0
.
= σ2I, (2.11)

R1
.
= σ2I + hhH ⊗C, with ‖h‖22 > 0. (2.12)

This is a composite test (Kay, 1998), since h is unknown.

Let now

G .
= hhH ⊗C. (2.13)

The NP test for this Gaussian detection problem is an estimator-correlator (Kay,

1998) declaring H1 true if yH ẑ exceeds a threshold, where ẑ is the minimum mean

squared error (MMSE) estimator of z
.
= h⊗ s given y and h. After some straight-

forward manipulations we obtain

ẑ = GR−1
1 y, (2.14)
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so that

TNP

.
= yH ẑ (2.15)

= yHG(σ2I + G)−1y (2.16)

= yH(hhH ⊗C)(σ2I + hhH ⊗C)−1y. (2.17)

Note that this test cannot be directly implemented, since it requires knowledge of

hhH .

Single-antenna case

At this point it is instructive to consider the single-antenna case. If L = 1, then

G = |h|2C, and the NP test statistic can be written as

TNP =
∑
k∈B

|h|2λk
σ2 + |h|2λk

|vk|2, (2.18)

where v = [v0 v1 · · · vK−1]T
.
= UHy, so that B ⊂ {0, 1, . . . ,K − 1} is the set of

indices of nonzero eigenvalues of C. In view of (2.5), for large K one has v ≈WHy

(the DFT of the observations), and B is the support of Sss(e
ω). In the following

asymptotic cases, the NP test becomes independent of |h|2:

• High SNR case: if |h|2λk � σ2 for all k ∈ B, then yH ẑ ≈∑k∈B |vk|2. Thus the

NP test reduces to an Energy Detector (ED) over the spectral support of the

primary signal. If C is full rank, then yH ẑ ≈ vHv = yHy, i.e. the standard

energy detector.

• Low SNR case: if |h|2λk � σ2 for all k ∈ B, then the NP test declares H1 true

if
∑

k∈B λk|vk|2 = yHCy exceeds a threshold. This is also the Locally Most

Powerful (LMP) test for this problem, derived from weak signal detection

theory (Kay, 1998). In contrast to the ED test, it makes use of the available

information about the primary signal spectrum, since yHCy can be interpreted

as the energy at the output of a filter with frequency response S
1/2
ss (eω) (a

matched filter) fed by the observations y.
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2.3.2 Detection with multiple antennas

However, with L > 1 antennas, neither in the high nor low SNR regimes does the

dependence of the NP test with hhH disappear. In the following we will focus in

the case of asymptotically small SNR, of interest in Cognitive Radio systems.

For asymptotically small SNR, if we make use of the first-order Taylor expansion

R−1
1 ≈ 1

σ2 I, one has that the test TNP is proportional to

T0
.
= yH(hhH ⊗C)y (2.19)

=

L∑
i=1

L∑
j=1

hih
∗
jy

H
i Cyj (2.20)

= gHCg, (2.21)

where we defined

g = gMRC
.
=

L∑
l=1

h∗l yl. (2.22)

Here, as in the single-antenna case, T0 can be interpreted as the energy at the

output of a matched filter, which now is fed by a linear combination g of the signals

received at each of the antennas. We use the subscript MRC since this processing is

akin to the Maximal Ratio Combining technique for multiantenna receivers (Simon

and Alouini, 2004), by which the signals collected at each of the antennas are phased-

aligned and combined with optimal weighting to maximize the SNR at the combiner

output and prior to the demodulation stage. Note that the computation of the NP

test statistic for low SNR does not require knowledge of the total channel gain, but

only of the spherical component h̄
.
= h/‖h‖2. The threshold can be set to achieve a

given false alarm rate under H0, i.e. under ‖h‖2 = 0.

Now if we neglect the magnitude gains of the channel coefficients in (2.22), then

g can be approximated as

g ≈ gEGC
.
=

L∑
l=1

e−θlyl (2.23)

where θl
.
= arg{hl}. In this case we correct the phase of the signals received at each

of the antennas before the linear combination. This is analogous to the Equal Gain

Combining (EGC) technique in diversity reception.
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The resemblance with different diversity combining techniques suggests a third

detector based on Selection Combining (SC). In this case g is approximated by the

signal at the branch with highest SNR:

g ≈ gSC
.
= ym with m = arg max

1≤i≤L
|hi|2. (2.24)

Note that if the channel gains at all branches have similar magnitudes, then

gEGC ≈ gMRC. On the other hand, when one of the channel gains is much larger

than the remaining ones, then gSC ≈ gMRC.

However, as the reader should have noted, none of these three schemes (MRC,

EGC and SC) is directly implementable, since they depend on unknown channel

parameters. In order to avoid this problem, one option is to replace the unknown

parameters by their corresponding estimates. Inspired by the Generalized Likelihood

Ratio (GLR) approach, in Section 2.4 we present different scenarios in which the

Maximum Likelihood (ML) estimates of the unknown parameters can be obtained;

substituting these ML estimates in the corresponding statistics will in turn yield

practical detectors. An alternative approach in order to handle the unknown pa-

rameters hi is to disregard antenna crosscorrelation and assume equal weighting for

the energy estimates at the different antennas. In this case we obtain the following

detector:

2.3.3 Generalized energy detector

By disregarding in T0 the cross terms depending on hih
∗
j for i 6= j and assuming

|hi| ≈ |hj | for i 6= j, (2.20) reduces to

TGED =
1

KLσ2

L∑
i=1

yHi Cyi
H1

≷
H0

γGED, (2.25)

where the scaling factor (KLσ2)−1 was introduced for convenience and γGED is the

decision threshold. We refer to this test as “Generalized Energy Detector” (GED),

as it merely collects the (spectrally weighted) energy at all the branches.

Notice that this detector is applicable to distributed settings with L collabo-

rating single-antenna sensors: each node reports its local statistic yHi Cyi (scaled

by the inverse of the local noise variance, if different nodes are affected by different

noise levels) to a Fusion Center, where all such statistics are added together.
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The asymptotic performance of this detector is analyzed in Appendix 2.A.1,

showing that for sufficiently large K and for a fixed threshold γGED, the probabilities

of false alarm and detection are respectively given by

PFA = Q

(
√
KL

γGED − 1√
b̄2

)
, (2.26)

PD = Q

(
√
KL

γGED − (1 + ζb̄2)√
Lb̄4ζ2 + 2b̄3ζ + b̄2

)
. (2.27)

Note that the performance of the GED test depends only on the average SNR ζ,

but not on the spherical component h̄ of the channel vector.

2.4 Parameter estimation and detection

In order to derive the low SNR ML estimates of the unknown parameters under the

different models, we first obtain the likelihood function of the estimation problem.

The log-likelihood function under H1 is log f(y |h) = − log detR1−yHR−1
1 y, where

R1 depends on h as per (2.12). In the low SNR regime, using the fact that log(1 +

x) ≈ x for small |x|, we can approximate

log detR1 ≈ KL log σ2 +
trG
σ2

. (2.28)

On the other hand,

R−1
1 =

1

σ2

[
I +

1

σ2
G
]−1

≈ 1

σ2

[
I− 1

σ2
G
]
. (2.29)

Thus, noting that trG = tr hhH tr C = ‖h‖22K, for low SNR one has

log f(y |h) ≈ −KL log σ2 − K‖h‖22
σ2

− ‖y‖
2

σ2
+

yHGy

σ4
. (2.30)

2.4.1 Selection Combining detector

The SC detector is based on the approximation (2.24), and thus requires the estima-

tion of the index l of the antenna with largest SNR. ML estimation of this index in

the general case is difficult, and thus we resort to the low SNR approximation (2.30);

in addition, we will assume that h = hel, where el is the l-th unit vector. The rea-
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son for this is that, as mentioned above, the SC approach is expected to provide

close-to-optimal performance in scenarios in which the SNR at one of the antennas

is dominant.

Under this assumption, one has ‖h‖22 = |h|2 and yHGy = |h|2yHl Cyl in (2.30).

Therefore, the ML estimate of l is just l̂ = arg maxl y
H
l Cyl. The resulting decision

rule is given by

TSC

.
= max

1≤l≤L

yHl Cyl
Kσ2

H1

≷
H0

γSC, (2.31)

where the scaling factor (Kσ2)−1 does not affect the test. Thus, the SC detector

picks the antenna with largest spectrally weighted energy and uses that energy as

statistic. Note that this amounts to an OR fusion rule, applicable to distributed

settings: the channel is declared busy if the spectrally weighted energy at any of the

L nodes exceeds a threshold. In that case, only one bit of information has to be sent

to the Fusion Center by each node, in contrast with the GED scheme.

In Appendix 2.A.2 the asymptotic performance analysis of the SC detector is

given. For large K and for a local threshold γSC, we obtain the global false alarm

rate

PFA = 1−
(

1−Q
(
γSC − 1√
b̄2/K

))L
. (2.32)

On the other hand, the probability of detection cannot be expressed in closed form,

although it can be straightforwardly computed by means of a multivariate Gaussian

integration routine; see Appendix 2.A.2. It must be noted that, in contrast with

GED, the performance of the SC detector does depend on the spherical component

of the channel vector.

2.4.2 Equal Gain Combining detector

For EGC detection, an estimate of the phases {θi}Li=1 introduced at the different

branches is needed in order to combine the respective signals as per (2.23). Consid-

ering again the low SNR approximation (2.30), it is seen that in order to obtain the

ML estimates we must maximize the following quantity w.r.t. θ1, . . . , θM :

yHGy =

L∑
n=1

L∑
m=1

|hn||hm|yHn Cyme−(θm−θn). (2.33)
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Let anm
.
= |hn||hm|yHn Cym. Since anm = a∗mn, it is clear that

yHGy =

L∑
m=1

amm + 2

L∑
n=1

L∑
m=n+1

<{anme−(θm−θn)}

≤
L∑

m=1

amm + 2
L∑
n=1

L∑
m=n+1

|anm|, (2.34)

with equality iff θm − θn = arg{anm} for all (n,m) such that m > n. These con-

stitute a set of L(L − 1)/2 (linear) conditions on our L free parameters, which in

general cannot be satisfied if L > 3. Nevertheless, careful inspection of the resulting

detection statistic gHCg with g =
∑L

l=1 e−θ̂lyl reveals that it is a function of the

phase differences θ̂mn
.
= θ̂m − θ̂n only. Thus, if we take these phase differences as

our free optimization variables and neglect the dependence among them, the cor-

responding ML estimates are θ̂mn = arg{yHn Cym}. This yields the following EGC

detection rule:

TEGC

.
=

1

KLσ2

L∑
n=1

L∑
m=1

|yHmCyn|
H1

≷
H0

γEGC, (2.35)

which is intuitively satisfying: the lack of knowledge about the phase differences is

sidestepped by considering the modulus of the crosscorrelation terms.

Unfortunately, finding the distribution of TEGC (under either hypothesis) is

intractable. An asymptotic Gaussian approximation is used in Appendix 2.A.3,

showing that for large K for a given threshold γEGC,

PFA ≈ Q

√KL γEGC −
(

1 + L−1
2

√
πb̄2
K

)
√(

2L− 1 + (1− L)π2
)
b̄2

 , (2.36)

PD ≈ Q
(
√
K

γEGC − (1 + κζb̄2)√
b̄4(κζ)2 + 2b̄3κζ + b̄2

)
(2.37)

where κ
.
= ‖h‖21/‖h‖22 = ‖h̄‖21. Note that (2.37) is a function of the scaled average

SNR per antenna κζ, and that the scaling term κ ∈ [1, L] achieves its maximum

value when all elements of h have the same magnitude. Note that it is precisely in

such scenarios that one expects the EGC detector to perform best.
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2.4.3 Maximal Ratio Combining detector

For MRC detection, an estimate of the spherical component of the channel vector

h̄ = h/‖h‖2 is needed. Let us introduce the data matrix Y
.
= [ y1 · · · yM ].

Focusing again on the low SNR approximation (2.30), the ML estimate of h̄ must

maximize

yHGy = yH(hhH ⊗C)y

= hH(YHCY)∗h

= ‖h‖22h̄H(YHCY)∗h̄. (2.38)

This is achieved when h̄ is the unit-norm eigenvector of (YHCY)∗ associated to

its largest eigenvalue (up to a phase term ejφ which does not affect the test). This

results in the following scaled MRC detection rule:

TMRC

.
=
λmax(YHCY)

Kσ2

H1

≷
H0

γMRC. (2.39)

Note that neither TEGC nor TMRC lend themselves to distributed implementation,

since they require the computation of (spectrally weighted) crosscorrelations across

the different antennas.

The statistical analysis of the MRC detector amounts to finding the distribution

of the largest eigenvalue of the random matrix YHCY under each hypothesis. For

a general covariance matrix C, this remains an open problem. In Appendix 2.A.4

we present the analysis for a special case of practical interest: strictly bandlimited

primary signals using a fraction B of the total channel bandwidth, and with flat psd

within their passband. In this case, the distribution of TMRC underH0 asymptotically

follows a (shifted and scaled) Tracy-Widom distribution, which can be used to set

the threshold γMRC for a given probability of false alarm. For fixed threshold γMRC

the asymptotic probability of detection is given by

P EGC
D ≈ Q

γMRC −
(
δ1 + Lδ1

K(δ1−1)

)
δ1/
√
K

 (2.40)

where δ1
.
= 1 + b̄2Lζ.
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2.5 Detection diversity in fading environments

In the analysis of the previous section we considered that the SNR at each antenna

is fixed. In practical conditions this is unlikely to occur. Consider a slow fading

scenario in which the channel gains remain constant during the sensing window.

Then h becomes a random variable and for a fixed threshold, the probability of

detection PD is a random variable with expected value given by

P̄D(ζ̄)
.
= Eζ{PD} =

∫ ∞
0

fζ(ζ)PD(ζ) dζ, (2.41)

with fζ(ζ) the probability density function (pdf) of ζ, and ζ̄
.
= Eζ{ζ} the mean

value of the SNR.

In the following we will assume that h can be modeled with a Ricean distribu-

tion (Simon and Alouini, 2004). This accounts for the line-of-sight (LOS) component

and for the non-line-of-sight (NLOS) scattering. Hence at each realization we can

model the channel vector as

h =

√
ζ̄σ2

(√
η

1 + η
h̄ +

√
1

1 + η
h̃

)
, (2.42)

where ζ̄ denotes the average SNR and η stands for the Rice factor, the LOS channel

component h̄ is defined as h̄
.
= [eθ e2θ · · · eLθ] with θ ∼ U(0, 2π) modeling the

relative phase of the antennas of a uniform linear array, h̃ is a zero-mean complex

Gaussian vector modeling the NLOS channel component with iid components ∼
CN (0, 1), and independent of θ.

The worst-case scenario in terms of detection performance is given by the NLOS

channel, i.e. η = 0 with pure Rayleigh fading. We will see next that in this scenario

the probability of misdetection (asymptotically) decreases only linearly with the

SNR (in log scale) with a slope that is given by the asymptotic detection diversity

of system. However, this asymptotic measure does not reflect the true detection

performance of a detector in the SNR range of interest. To overcome this problem

we will also present an analysis based on the diversity measure first proposed by

Daher and Adve in the context of radar, related to the probability of detection

around the SNR at which P̄D = 1/2.
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2.5.1 High SNR diversity order analysis

We restrict here our analysis to the worst case given by iid Rayleigh fading scenarios2,

i.e. (2.42) with η = 0. In this case, the instantaneous SNR ζ = ‖h‖2/(Lσ2) is

gamma-distributed (Simon and Alouini, 2004):

fζ(ζ) =
LL

(L− 1)!

ζL−1

ζ̄L
exp {−Lζ/ζ̄}, ζ > 0. (2.43)

We will next present the analysis for the GED. This analysis can be extrapolated

with minor changes to the MRC detector. First, from (2.27), the probability of

misdetection of the GED for a fixed threshold γGED is given by

PMD
.
= 1− PD (2.44)

= Q

(1 + ζb̄2)− γGED√
Lb̄4ζ2+2b̄3ζ+b̄2

KL

 . (2.45)

Using a first-order Taylor approximation of the argument of the Q-function in (2.44)

about ζ = 0, one finds that in the low SNR regime,

PMD ≈ Q


[
b̄2 + b̄3

b̄2
(1− γGED)

]
√
b̄2/KL

ζ +
(1− γGED)√
b̄2/(KL)

 . (2.46)

In a fading environment, PMD in (2.46) becomes a random variable. Its mean value

can be upper bounded by noting that

Q(x) ≤ 1

2
e−x/2, x ≥ 0. (2.47)

Note that this bound is looser than the more usual expression Q(x) ≤ e−x
2/2/2.

However, it will allow us to obtain a tight upper bound on the asymptotic slope of

the probability of misdetection. By using this bound in (2.46) and then averaging

2The analysis can be readily extended to Rayleigh fading with a certain correlation matrix Υ.
The resulting asymptotic diversity will depend on the rank of Υ. We refer the interested reader to
López-Valcarce et al. (2009).
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over h, the average probability of detection P̄MD
.
= E[PMD] can be bounded as

P̄MD ≤
1

2
exp

{
1− γGED

2
√
b̄2/(KL)

}

× E

exp

−ζ
 b̄2 + b̄3

b̄2
(1− γGED)

2
√
b̄2/(KL)


 . (2.48)

Using similar steps to those in (Larsson and Stoica, 2003, Sec. 4.4), one finds that

P̄MD ≤ CLζ̄−L, (2.49)

where

CL
.
=

1

2
exp

{
1− γGED

2
√
b̄2/(KL)

} 2
√
b̄2L/K

b̄2 + b̄3
b̄2

(1− γGED)

L

(2.50)

is a constant independent of the average SNR. Hence the diversity order, that is,

the slope of P̄MD versus the SNR when plotted on a log-log scale, is upper bounded

by the number of antennas L of the receiver system. This shows the advantage

of having multiple antennas for channel sensing under fading conditions even when

considering the simple GED detector. By carrying a similar analysis, the MRC

detector can be shown to present the same asymptotic diversity order in Rayleigh

fading environments.

Note that this analysis cannot be applied to EGC and SC detectors, since their

performance depends on the actual SNR at each of the antennas and not on the

global instantaneous SNR. If we define

ζ
.
=

1

σ2
[ |h1|2 |h2|2 · · · |hM |2 ]T , (2.51)

so that ζ = [ζ1 · · · ζM ]T is the vector with the instantaneous SNR at each of the an-

tennas, an approximate analysis of the SC detector follows. The average probability

of misdetection is in this case given by

P̄MD =

∫
fζ(ζ)PMD(ζ)∂ζ (2.52)

where fζ(ζ) factorizes given the independent Rayleigh fading assumption. On the

other hand, as it was shown in Appendix 2.A.2, PMD(ζ) does not factorize due to the

present signal component. However, in low SNR conditions the correlation present
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will be small and we may approximate

P̄MD ≈
L∏
l=1

(∫ ∞
0

fζl(ζl)P
(l)
MD(ζl)∂ζl

)
(2.53)

=

(∫ ∞
0

fζ1(ζ1)P
(1)
MD(ζ1)∂ζ1

)L
.
= P̃MD (2.54)

where P
(l)
MD(ζl) corresponds to the probability of misdetection of a single-antenna

system with the instantaneous SNR given by ζl and in (2.54) we used the symmetry

between antennas.

Now, the misdetection probability at each of the antennas can be upper bounded

using (2.49) with L = 1. Then one obtains the approximation

P̄MD ≈ P̃MD ≤ CL1 ζ̄−L, (2.55)

and, as a result, GED, MRC, and SC detectors cannot have a diversity order larger

than L. In fact, as we will numerically show in Section 2.6 the diversity order bound

is tight in the high SNR regime for the proposed detectors. Hence the four of them

achieve full asymptotic diversity in uncorrelated Rayleigh fading.

2.5.2 Daher-Adve diversity order analysis

The asymptotic diversity order analysis presented in the previous section is a high-

SNR concept. However, spectrum sensors for CR systems are expected to provide

high detection performance at much lower SNR values. This calls for a different

definition of the diversity order better suited to the detection problem. In the

context of radar processing, Daher and Adve (2010) define diversity order as the

slope of the average probability of detection (P̄D) curve with respect to the SNR

at P̄D = 0.5. This notion of diversity is more adequate to CR networks because

(i) it indicates a minimum operational SNR from which a detection scheme starts

working reasonably well (i.e. P̄D ≥ 0.5) and (ii) describes how fast P̄D approaches 1

from this minimum operational SNR.

In this section, we characterize different spectrum sensing schemes in indepen-

dent Rayleigh fading in terms of the Daher-Adve diversity order. As opposed to

Daher and Adve (2010), in which the steering vectors are assumed known and a

single snapshot is used per sensor for detection, when sensing on wireless channels,
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the channel is not known and sensing times are longer in order to acquire several

signal samples.

Let the minimum operational SNR ζ̄∗ of the detector be defined by P̄D(ζ̄∗) =

0.5. Following Daher and Adve (2010), the diversity order d is defined as

d
.
=
∂P̄D(ζ̄)

∂ζ̄

∣∣∣∣
ζ̄=ζ̄∗

, with P̄D(ζ̄∗) =
1

2
. (2.56)

Unfortunately, P̄MD
.
= E[PMD] does not admit a closed-form solution for any

of the detectors presented. In the high SNR asymptotic analysis we resorted to an

upper bound of PMD which allowed us to obtain the analytical integral which is

tight for high SNR. However, it is not possible to use a similar approach here since

we are interested in intermediate SNRs. In order to obtain an approximation of

the diversity order we propose the following first-order piecewise approximation of

PMD(ζ), where ζ∗ is such that PMD(ζ∗) = 0.5:

PMD(ζ) ≈


1, 0 < ζ < ζ1,

1
2 − a(ζ − ζ∗), ζ1 < ζ < ζ2,

0, ζ > ζ2,

(2.57)

where ζ1
.
= ζ∗ − 1

2a , ζ2
.
= ζ∗ + 1

2a and a is the negative of the slope of PMD(ζ) at

ζ = ζ∗, i.e.

a
.
= − ∂PMD(ζ)

∂ζ

∣∣∣∣
ζ=ζ∗

=
∂PD(ζ)

∂ζ

∣∣∣∣
ζ=ζ∗

. (2.58)

Using (2.43) and (2.57), one obtains

P̄MD =

∫ ∞
0

fζ(ζ)PMD(ζ) ∂ζ (2.59)

≈ a
{
ζ2Γ

(
Lζ2

ζ̄
, L

)
− ζ1Γ

(
Lζ1

ζ̄
, L

)
−ζ̄
[
Γ

(
Lζ2

ζ̄
, L+ 1

)
− Γ

(
Lζ1

ζ̄
, L+ 1

)]}
(2.60)

where the incomplete Gamma function is defined as

Γ(x, α)
.
=

1

Γ(α)

∫ x

0
tα−1e−t∂t, (2.61)

with Γ(α)
.
=
∫∞

0 tα−1e−t∂t denoting the standard Gamma function.
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Taking derivatives in (2.59), and after some algebra, one arrives at the following

approximation for the Daher-Adve diversity order

d ≈ a
[
gL

(
ζ∗

ζ̄∗
+

1

2aζ̄∗

)
− gL

(
ζ∗

ζ̄∗
− 1

2aζ̄∗

)]
, (2.62)

where gL(x)
.
= Γ(Lx,L + 1). While (2.62) may look like a rough approximation

of the diversity order, we will show in Section 2.6 that it effectively captures the

behavior of P̄D in Rayleigh fading environments. We proceed now to compute the

parameters ζ∗ and a for the different detection schemes.

GED detector performance

Using the asymptotic distribution (2.27), one readily obtains the parameters ζ∗ and

a for the GED detector:

ζ∗GED =
1

b̄2
(γGED − 1) , (2.63)

aGED =

√
KLb̄2

2π

(
L(γGED − 1)2 b̄4

b̄32
+ 2(γGED − 1)

b̄3
b̄22

+ 1

)−1/2

, (2.64)

where we used that the derivative of the Q-function is given by

∂Q(x)

∂x
=

1√
2π

exp (−x2). (2.65)

Now, finding the value of ζ̄∗ at which (2.59) equals 0.5 is not straightforward.

However, an obvious candidate is ζ̄∗ ≈ ζ∗GED, since the instantaneous probability of

misdetection satisfies PMD(ζ∗GED) = 0.5. With εGED
.
= 1

2aGEDζ
∗
GED

, this yields

dGED ≈ aGED [gL (1 + εGED)− gL (1− εGED)] , (2.66)

where both aGED and ζ∗GED depend on the system parameters K, L, b̄i and PFA.

Noting that the bracketed term in (2.66) is less than 1, the following upper bound

is obtained:

dGED < aGED <

√
KLb̄2

2π
. (2.67)

As L→∞ and for any ε > 0, we have that3 gL(1+ε)→ 1 whereas gL(1−ε)→ 0.

3Intermediate steps can be found in Appendix 2.B.
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Thus, for large L, dGED ≈ aGED.

Remark 2.1. From (2.67), Daher-Adve diversity order of the GED detector under

uncorrelated Rayleigh fading is asymptotically bounded by O
(√

KLb̄2

)
. Moreover,

for small values of ζ̄∗ this bound becomes asymptotically tight, i.e. for a small min-

imum operational SNR, dGED grows with the square root of the number of antennas

L multiplied by the parameter b̄2 = tr{C2}/K. Since b̄2 ≥ 1 with equality for

temporally white primary signals, we have that Daher-Adve diversity increases with

the temporal correlation of the primary signals. Moreover, for larger values of b̄2 we

attain a lower minimum operational SNR (2.63), hence increasing the operational

range of the detector.

MRC detection performance

In this case, the parameters for the first-order piecewise approximation of (2.40) are

ζ∗MRC =
1

2b̄2L

(
β +

√
(2 + β)2 − 4γMRC

)
, (2.68)

aMRC =

√
KL2b̄22

2π

1− L
K(b̄2Lζ)2

1 + b̄2Lζ
, (2.69)

where β = γMRC − K+L
K , so that

dMRC < aMRC <

√
KL2b̄22

2π
, (2.70)

with dMRC → aMRC as L→∞.

Remark 2.2. Note however that for small values of ζ̄∗, that is, detectors capable of

working in harsh SNR conditions, the Daher-Adve diversity of the MRC increases

as O(
√
KL2b̄22) while the GED only achieves O(

√
KLb̄2), i.e. Daher-Adve diversity

does reflect the improved performance of MRC over GED.

SC detection performance

In order to compute the Daher-Adve diversity order for the SC detector, we neglect

again the correlation among different antennas under H1. Then

P̄MD =

∫
fζ(ζ)PMD(ζ)∂ζ ≈

[∫ ∞
0

fζ(ζ)P
(l)
MD(ζ)∂ζ

]L
.
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We now approximate the integral using the same technique as in the previous points.

Using the results obtained for the GED, particularized for L = 1, after some algebra,

one arrives at

P̄MD(ζ̄) ≈
[
1− 2aSCζ̄ sinh

(
1

2aSCζ̄

)
e−ζ

∗
SC/ζ̄

]L
, (2.71)

where

ζ∗SC =
1

b̄2
(γSC − 1) , (2.72)

aSC =

√
Kb̄2
2π

(
(γSC − 1)2 b̄4

b̄32
+ 2(γSC − 1)

b̄3
b̄22

+ 1

)−1/2

. (2.73)

Taking the derivative of (2.71), one finds that

dSC ≈
L( L
√

2− 1)

2aSCζ̄∗

[
ζ∗SC − 1

2aSC

ζ̄∗
+ 1

]
. (2.74)

One must solve for ζ̄∗ in P̄MD(ζ̄∗) = 1
2 in (2.71), i.e.,

1− 1
L
√

2
= 2aSCζ̄

∗ sinh

(
1

2aSCζ̄∗

)
e−ζ

∗
SC/ζ̄

∗
, (2.75)

which can be solved numerically.

Remark 2.3. While we are not able here to obtain a closed-form expression for

the Daher-Adve diversity order of the SC detector we conjecture that it grows as

O(
√
K log(Lb̄2)), similarly to the result obtained in Daher and Adve (2010) for

an OR based detector. In fact, in the next section we numerically show that the

diversity order of the SC detector is smaller than that of the GED, i.e. dSC <

O(
√
KLb̄2).

2.6 Numerical results and discussion

In this section we examine the performance of the proposed detectors via both

Monte Carlo simulations and analytical results. The detectors considered are the

Generalized Energy Detector (GED), the Selection Combining based detector (SC ),

the Equal Gain Combining detector (EGC ) and the asymptotic GLRT given by the

Maximal Ratio Combining detector (MRC ).
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Figure 2.1: Theoretical versus empirical distributions for a DVB-T OFDM signal
with L = 2: (a)-(d), and for a square root raised cosine signal with rolloff factor 1/2
and L = 4: (e)-(h).

Analytical statistic distributions.

In order to validate the approximations used in the derivation of the analytical re-

sults for deterministic channels, we show in Fig. 2.1 the theoretical and the empirical

distributions for a set of different scenarios. The first series of plots, namely Figs.

2.1 (a)-(d), were obtained using a primary Digital Video Broadcasting Terrestrial

television (DVB-T) signal4 (ETSI, 2004) with bandwidth B = 7.61 MHz quantized

to 9-bit precision. The DVB-T physical layer employs orthogonal frequency-division

multiplexing (OFDM) with equal power in each of the data subcarriers. Hence its

spectrum is bandpass flat. This channel was downshifted to baseband and asyn-

chronously sampled at fs = 8 MHz, thus the multicarrier signal occupying a band-

width fraction of ∼ 97%. The receiver acquires K = 1024 samples at each of the

L = 2 antennas with same instantaneous per antenna SNR equal to −11 dB. From

Fig. 2.1 (a)-(d) the good match between analytical and empirical distributions for

the four detectors is apparent. Secondly, Fig. 2.1 (e)-(h) have been generated using

baseband-equivalent single-carrier 16-QAM primary signals with square-root raised

cosine pulse shaping with rolloff factor of 1/2, sampled at the Nyquist rate (1.5 times

the baud rate in this example). We assume here K = 512, L = 4 and instantaneous

SNR at each of the antennas equal to −7, −12, −14 and −18 dB respectively. We

48K mode, 64-QAM, guard interval 1/4, inner code rate 2/3.
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Figure 2.2: Detection ROC curves of the detectors with (a) L = 2 and (b) L =
4 antennas assuming the same instantaneous per antenna SNR. Lines represent
analytical results while markers show simulation results.

can see that under the Hypothesis H0, the analytical distributions closely match the

simulation results for the four detectors. On the other hand, under H1 we observe a

deviation between analytical and theoretical results for the EGC and for the MRC.

The analytical distribution of the EGC statistic was obtained under the assumption

that the SNR of each of the individual antennas was sufficiently large under H1.

However, in the simulated setup for K = 512 the weakest antenna’s SNR (−18 dB)

is not sufficiently large in order for this approximation to hold. On the other hand,

the analytical distribution of the MRC was derived under the flat bandpass signal

assumption. Here, in the analytical representation we assumed a flat spectrum with

frequency support corresponding to the points of the square root raised cosine mask

larger than 1/2, hence the deviation observed.

Effect of the number of antennas.

In order to show the effect of the number of antennas on the proposed detectors, we

present here the Receiver Operation Characteristic (ROC) curves of a system with

L = 2 antennas compared to a system with L = 4 for a constant total number of

samples LK = 211. The primary signal is assumed to be a flat OFDM signal occu-

pying a bandwidth fraction of ∼ 97% with parameters equal to those in the previous
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Figure 2.3: Detection performance versus the SNR spread factor κ for PFA = 0.05,
L = 4, K = 512 and average SNR equal to −5 dB.

experiment. Figure 2.2 shows the detection performance of the different schemes

when the SNR at each of the antennas is fixed to −10 dB. By comparing Fig. 2.2(a)

and Fig. 2.2(b) we first note that the performance of the GED is independent of the

number of antennas, since it depends only on the received average SNR. For equal

SNR at each antenna and equal total number of samples LK MRC and EGC detec-

tors increase their performance with the number of antennas, whereas that of the

SC detector worsens. This effect comes from the fact that all the antennas present

similar SNR and the number of samples acquired from one antenna decreases with

the number of antennas as 1/L. Since the SC detector uses the information of the

best antenna only, as the number of antennas increases its performance decreases.

On the other hand, it is interesting to note that for equal per antenna SNR the

EGC detector may perform better than the MRC detector. This is apparent from

the fact that the EGC detector is derived under the assumption of equal power at

each antenna; hence, the EGC detector is exploiting additional a priori information

in this scenario. Finally, note that for L = 4 antennas we observe a mismatch be-

tween theoretical and empirical results for the MRC and EGC detectors, especially

for the latter. Given the reduced number of samples (K = 512), and the order of

the probability of misdetection, the asymptotic approximations are not accurate in

this setting.
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Effect of the instantaneous per antenna SNR.

We now compare the proposed detectors for different instantaneous channels. Fig-

ure 2.3 presents the simulation results for different values of κ = ‖h̄‖21, which is equal

to 1 when all the SNR is concentrated at one antenna, while it is equal to L when it

is spread over all the antennas. Here we assume that all the antennas have the same

SNR, except one of them, which may present a higher SNR. The remaining system

parameters are PFA = 0.05, L = 4, K = 512 and average instantaneous SNR equal

to −5 dB for primary OFDM signals.

From Fig. 2.3 the advantage of exploiting the available a priori information

becomes apparent. When the received energy is concentrated in one antenna, the

SC detector, designed under this model, outperforms the remaining detectors. On

the other hand, when the energy is spread across the antennas EGC detector shows

good performance, even better than the obtained by the MRC. It is interesting to

note that both GED and MRC performances depend on the total received SNR and

not on how this SNR is spread over the antennas. In this sense the MRC detector

offers good performance in the whole range of κ, and thus should be robust to

unknown spatial fading. We also note that the asymptotic analytical results, while

inaccurate at some points given the small number of samples, show the right global

behavior.

Detection in fading environments.

In the previous points we considered that the SNR at each antenna is fixed for

the whole experiment. Figure 2.4(a) presents the simulation results for Ricean and

Rayleigh fading environments versus the average SNR ζ̄ when PFA = 0.05, L = 4,

K = 256 and primary signals are bandpass OFDM. We can see that in Rayleigh

environments (η = 0) the MRC detector outperforms other detectors. The reason is

that MRC performance is robust to different channel realizations which may occur

in fading environments (see Fig. 2.3). Interestingly, the EGC detector presents only

a small degradation in fading environments, and, in fact, when the Rice factor grows

it may outperform the MRC detector, as it could be expected from the fading model

considered in (2.42). As the Rice factor increases we enter in the LOS regime and

the SNR received at each antenna is similar. This justifies the use of this detector in

practical settings, in which it may be not feasible to compute the largest eigenvalue

due to complexity restrictions.
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Figure 2.4: Detection performance versus the SNR under spatial fading. PFA = 0.05,
L = 4, K = 256. (a) Ricean versus Rayleigh fading. OFDM signal. (b) Exploiting
spectral information under Rayleigh fading. GSM signal.

Exploiting a priori spectral shape information.

We now study the detection performance gain of exploiting available information

about the spectral shape of primary signals. To this end, we consider a Gaussian

minimum shift keying (GMSK) signal generated according to the Global System for

Mobile communications (GSM) cellular standard (3GPP, 2001), downconverted to

baseband and I/Q sampled at 300 ksamples/s. The psd of this signal is shown in the

inset in Fig. 2.4(b). The channel from the primary user is assumed to present spatial

Rayleigh fading (η = 0), which is accurate in scenarios without LOS to the primary

user. The remaining simulation parameters are PFA = 0.05, L = 4, K = 256.

In Fig. 2.4(b) we compare the performance of the proposed detectors when

they exploit the available spectral information against the case they assume a white

primary signal, i.e., assuming spectral mask CK = IK . We can see that the per-

formance gain of exploiting spectral information can indeed be large, regardless of

the employed detector. In the setup considered here, exploiting spectral information

gives around 3 dB detection gain when using the corresponding detector, hence with

similar complexity.
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Figure 2.5: High SNR and Daher-Adve diversity orders. (a) High SNR detection
performance. (b) Detection performance around P̄D = 1/2. Solid lines: simulation
results. Dashed lines: analytical approximations.

Asymptotic diversity order of the different detectors.

Figure 2.5 shows the two different regimes that conduct to the concepts of high

SNR asymptotic diversity and Daher-Adve diversity orders in independent Rayleigh

fading.

First, in Fig. 2.5(a) we can see the high SNR behavior of the probability of

misdetection. The probability of miss has been plotted in the range of the mean

SNR ζ̄ ∈ [−10, 10] dB assuming GMSK signals with parameters as in Fig. 2.4(b) for

K = 256, PFA = 0.01. We can observe the advantage of having a larger number of

antennas in terms of asymptotic detection diversity. As can be seen in Fig. 2.5(a),

in Rayleigh fading environments the number of antennas determines the asymptotic

slope of the misdetection probability curve versus the SNR. Here we show the bound

obtained for the GED. Note that the asymptotic bound presents in all the cases the

right slope, though it becomes looser as the number of antennas increases.

On the other hand, assuming white primary signals, Fig. 2.5(b) shows the

behavior of the probability of detection (in linear scale) around the point at which it

equals 1/2. The P̄D(ζ̄) curves for different detectors in Rayleigh fading, obtained by

Monte Carlo simulation, are compared to the corresponding piecewise linear approx-
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Figure 2.6: Comparison of the different detectors. (a) Daher-Adve diversity order
d. (b) Minimum operational SNR.

imations from the previous sections. These match the empirical curves reasonably

well around P̄D ≈ 1
2 .

Daher-Adve diversity.

From Fig. 2.5(b) it is apparent that the detection performance around P̄D ≈ 1
2 can

be accurately described using two parameters: the minimum operational SNR ζ̄∗

and the Daher-Adve diversity order d.

Figure 2.6 shows the analytical approximations for the diversity order and the

minimum operational SNR ζ̄∗ as a function of the number of antennas L, for white

primary signals in the same set-up as in Fig. 2.5(b). From Figs. 2.6(a) and (b) the

performance advantage of the MRC detector is clear. The diversity order of this

centralized detector grows almost linearly with the number of antennas, whereas

that of the ED is approximately proportional to
√
L. As for the SC detector, it is

difficult to find analytical bounds for its diversity order in terms of L. By comparison

with ED, it is seen in Fig. 2.6(a) that it increases at a rate no larger than
√
L. It is

conjectured that the diversity order of the OR detector is logarithmic in L, similarly

to the OR-based detector analyzed in Daher and Adve (2010). It must be noted

that the detectors studied in Daher and Adve (2010) are based on a different model
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Detector Test Asympt. Daher-Adve
diversity diversity

SC / OR TSC = 1
Kσ2 max1≤m≤L yHmCym L O

(√
K log(Lb̄2)

)‡
GED TGED = 1

KLσ2

∑L
i=1 rHi Cri L O

(√
KLb̄2

)
EGC TEGC = 1

KLσ2

∑L
n=1

∑L
m=1 |yHmCyn| L –

MRC TMRC = 1
Kσ2λmax(YHCY) L O

(√
KLb̄2

)
Table 2.1: Summary of the proposed multiantenna detectors under known noise
statistics in independent Rayleigh fading. ‡ Conjecture.

from the one adopted in this chapter. Their model is adequate for radar systems,

but no so for spectrum sensing applications.

2.7 Conclusions

In this chapter we have presented a family of multiantenna detectors designed under

different approximations, establishing a connection with diversity combining tech-

niques for multiantenna receivers in communications. Moreover, the proposed detec-

tors exploit a priori information about the modulation and channelization schemes

employed by the primary network, summarized as the spectral shape of primary

transmissions.

In order to analyze the detection performance in fading environments we pro-

pose here two different diversity analyses. The first is based on the notion of diversity

taken from communications, hence asymptotic in the SNR, whereas the second was

borrowed from the radar literature and defines detection diversity as the slope of the

probability of detection (P̄D) versus the SNR curve at P̄D = 1/2. In terms of the

asymptotic definition of diversity order, all the proposed detectors extract full detec-

tion diversity from the receiver antennas in independent Rayleigh fading. However,

using the second definition we see how the more sophisticated detectors outperform

simpler approaches such as the selection combining detector. A summary with the

proposed detectors and their diversity orders is included in Table 2.1.

While some preliminary work on the topic of multiantenna detection was pre-

sented in López-Valcarce et al. (2009), the main content of this chapter is a joint work

with the Signal Processing for Communications Research Group (SPCOM, Technical
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Univ. of Catalonia UPC) under the national research project SPROACTIVE (refer-

ence TEC2007-68094-C02-01/TCM) and COMONSENS (CONSOLIDER-INGENIO

2010 CSD2008-00010). This work currently constitutes a joint journal paper sub-

mitted to the IEEE Transactions on Wireless Communications (Vazquez-Vilar et al.,

2011b). The theoretical results exposed in Section 2.5.2 (Daher-Adve diversity order

analysis) have been obtained in collaboration with the Philips Research Depertment

(Eindhoven, The Netherlands) and have resulted in a joint conference publication

(Vazquez-Vilar et al., 2011a).
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Appendix 2.A Statistical analysis for large data records

Let tij
.
= yHi Cyje

θij denote the phase-aligned spectrally weighted crosscorrelation

between antennas i and j, where θij
.
= arg{hi} − arg{hj}. For large K, we can

invoke the central limit theorem and assume that tij is Gaussian distributed. Under

this approximation, and using the fact that for zero-mean complex circular Gaussian

vectors x1, x2, u1, u2, and constant matrices A, B, it holds that

E[(xH1 Ax2)(uH1 Bu2)] =

tr
(
AE[x2x

H
1 ]
)

tr
(
BE[u2u

H
1 ]
)

+ tr
(
AE[x2u

H
1 ]BE[u2x

H
1 ]
)

(2.76)

(see e.g. Porat and Friedlander (1986)), then one finds that

E[tij ] = K(|hi||hj |b̄2 + σ211(i = j)), (2.77)

var{tij} = K
[
|hi|2|hj |2b̄4 + σ2(|hi|2 + |hj |2)b̄3 + σ4b̄2

]
, (2.78)

E[t2ij ]− E2{tij} = K
[
|hi|2|hj |2b̄4 + σ2(2|hi||hj |b̄3 + σ2b̄2)11(i = j)

]
(2.79)

and

E[tijt
∗
kl]− E[tij ]E[t∗kl] = K

[
|hi||hj ||hk||hl|b̄4

+ σ2 (|hj ||hl|11(i = k) + |hi||hk|11(j = l)) b̄3 + σ4b̄211(i = k)11(j = l)
]
. (2.80)

From (2.78)-(2.79), it follows that for i 6= j the real and imaginary parts of tij are

uncorrelated (E[<{tij}={tij}]− E[<{tij}]E[={tij}] = 0), with variances given by

var{<{tij}} = K

[
|hi|2|hj |2b̄4 +

1

2

(
(|hi|2 + |hj |2)σ2b̄3 + σ4b̄2

)]
, (2.81)

var{={tij}} =
K

2

[
(|hi|2 + |hj |2)σ2b̄3 + σ4b̄2

]
. (2.82)

2.A.1 Generalized Energy Detector

The GED statistic can be written as 1T t up to an irrelevant scaling factor, where

t
.
= [ t11 · · · tLL ]T . For large K, t is normally distributed; from (2.77)-(2.78), its
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mean and covariance are

E[t] = K
(
b̄2g + σ21

)
, (2.83)

cov{t, t} = K
(
b̄4ggH + σ4b̄2I + 2σ2b̄3 diag{g}

)
, (2.84)

where g
.
= [ |h1|2 |h2|2 · · · |hL|2 ]T is the vector of channel gains. Thus, TGED is

asymptotically Gaussian. Using (2.83)-(2.84), its the mean and variance are found

to be

µGED(ζ)
.
= E[TGED] = ζ

b̄2
L

+ 1, (2.85)

α2
GED(ζ)

.
= var{TGED} =

1

KL2

(
ζ2b̄4 + 2ζb̄3 + Lb̄2

)
. (2.86)

Therefore, for a given threshold γGED the probabilities of false alarm and detection

are respectively given by (2.26)-(2.27).

2.A.2 Selection Combining Detector

The statistic of the SC detector is TSC = 1
Kσ2 max1≤i≤L tii. For a given threshold

γSC, and L antennas, the false alarm probability is

P SC
FA (L) = 1− Pr

{
tii ≤ Kσ2γSC, 1 ≤ i ≤ L | H0

}
(2.87)

= 1−
L∏
i=1

Pr
{
tii ≤ Kσ2γSC | H0

}
(2.88)

= 1− [1− PFA(1)]L, (2.89)

where we have used the fact that under H0 the tii are independent, and PFA(1) de-

notes the false alarm probability of a single-antenna detector with the same threshold

γSC under the Gaussian approximation, which is found from (2.26):

PFA(1) = Q

(
γSC − 1√
b̄2K/K

)
, (2.90)

from which (2.32) follows. On the other hand, the probability of detection is

P SC
D (L) = 1− Pr

{
tii ≤ Kσ2γSC, 1 ≤ i ≤ L | H1

}
(2.91)
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Since the random variables tii are not independent under H1, (2.91) does not factor

out as in (2.88) in general (except if all but one of the channel coefficients are

zero, in which case the covariance matrix (2.84) becomes diagonal). Thus, the

computation of (2.91) involves the integration of a multivariate Gaussian with mean

and covariance given by (2.83)-(2.84). This can be done numerically using, e.g.,

Matlab’s mvncdf Gaussian integration package.

2.A.3 Equal Gain Combining detector

The statistic of the EGC detector can be rewritten as

TEGC =
1

KLσ2

L∑
i=1

L∑
j=1

|tij |. (2.92)

Note that |tii| = tii, 1 ≤ i ≤ L, which is asymptotically Gaussian distributed for

large K under both hypotheses. On the other hand, for i 6= j, tij is asymptotically

complex-valued Gaussian with independent real and imaginary parts.

Distribution of TEGC under H0

If hi = hj = 0, then the real and imaginary parts of tij , i 6= j, have both zero mean

and the same variance. Therefore |tij | is Rayleigh distributed with

E[|tij | |H0] =
σ2

2

√
Kπb̄2, (2.93)

var{|tij | |H0} = Kσ4
(

1− π

4

)
b̄2, (2.94)

for i 6= j. Note from (2.80) that if (i, j) 6= (k, l) then tij and tkl are uncorrelated

(and hence independent for large K) under H0, and therefore the different terms

|tij | in (2.92) become independent as well. Thus TEGC is the sum of L Gaussian- and

L(L− 1)/2 (since |tij | = |tji|) Rayleigh-distributed, independent random variables.

There is no simple closed-form expression for the resulting distribution, so we pro-

pose to use a Gaussian approximation to this end, based on the asymptotic mean
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and variance given by

E[TEGC] =
1

KLσ2

 L∑
i=1

Kσ2 +
L∑
i=1

L∑
j=1,j 6=i

σ2

2

√
πKb̄2

 (2.95)

= 1 +
L− 1

2

√
πb̄2
K

, (2.96)

var{TEGC} =
1

(KLσ2)2

 L∑
m=1

var{|tmm|}+

L∑
m=1

L∑
i=1,i>m

var{2|tmi|}

 (2.97)

=
1

(KLσ2)2

 L∑
m=1

Kσ4b̄2 +

L∑
m=1

L∑
i=1,i>m

4Kσ4(1− π

4
)b̄2

 (2.98)

=
1

KL

((π
2
− 1
)

+ L
(

2− π

2

))
b̄2, (2.99)

from which (2.36) follows.

Distribution of TEGC under H1

For i 6= j, tij asymptotically follows a complex normal distribution centered on the

real axis; its real and imaginary parts are uncorrelated and have different variances

in general. We can write

|tij | = |<{tij}|
√

1 + z2
ij , (2.100)

where zij
.
= ={tij}/<{tij}. Note that zij is the ratio of two uncorrelated Gaus-

sian random variables, and there is no closed-form expression for its distribution.

However, from Hayya et al. (1975), if the coefficient of variation of the denominator

(defined as the ratio of its standard deviation to its mean value) is less than 0.39,

there exists a transformation g(·) such that the distribution of g(zij) can be accu-

rately approximated by a standard Gaussian N (0, 1). In our case, the coefficient of

variation is

βij
.
=

√
var{<{tij}}
E[<{tij}]

=
1

K

√
|hi|2|hj |2b̄4 + 1

2

(
(|hi|2 + |hj |2)σ2b̄3 + σ4b̄2

)
|hi||hj |b̄2

. (2.101)
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Provided that hi 6= 0, hj 6= 0, then (2.101) goes to zero as K →∞. Thus, for large

enough K, the random variable

g(zij)
.
=

E[<{tij}]zij − E[={tij}]√
var{<{tij}}z2

ij + var{={tij}}
(2.102)

=
√
K

|hi||hj |b̄2zij√
‖hi|2|hj |2b̄4z2

ij + 1
2

(
(|hi|2 + |hj |2)σ2b̄3 + σ4b̄2

)
(1 + z2

ij)
(2.103)

is approximately zero-mean Gaussian with unit variance (Hayya et al., 1975). Since

the transformation g(z) in (2.103) is one-to-one, it follows that

Pr{z2
ij > ε} = 2Q(g(

√
ε)), (2.104)

which approaches zero exponentially fast as K →∞. Therefore, for K large enough,

it is reasonable to approximate |tij | ≈ |<{tij}| in (2.100). Moreover, with βij as

in (2.101), one has Pr{<{tij} < 0} = Q(β−1
ij ), which also goes to zero exponentially

with K.

In view of all these, if |hm| > 0 for m = 1, . . . , L, then for sufficiently large K

the terms |tij |, i 6= j, behave as correlated real-valued Gaussian random variables.

Thus TEGC becomes approximately Gaussian, with expected value

E[TEGC] ≈ 1

KLσ2

 L∑
i=1

L∑
j=1

E[<{tij}]

 =
‖h‖21
Lσ2

b̄2 + 1 (2.105)

and variance

var{TEGC} ≈
1

(KLσ2)2

∑
i,j,k,l

(E[<{tij}<{tkl}]− E[<{tij}]E[<{tkl}]) (2.106)

=
1

2(KLσ2)2

∑
i,j,k,l

<{(E[tijt
∗
kl]− E[tij ]E[t∗kl])

+ (E[tijt
∗
lk]− E[tij ]E[t∗lk])} , (2.107)

where we have used the fact that tkl = t∗lk. Using (2.80), one readily finds that

var{TEGC} ≈
1

K

((‖h‖21
σ2

)2
b̄4
L2

+ 2
‖h‖21
σ2

b̄3
L

+ b̄2

)
. (2.108)

Using (2.105) and (2.108), one obtains (2.37).
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2.A.4 Maximal Ratio Combining detector

The statistical analysis of the MRC detector amounts to finding the distribution of

the largest eigenvalue of the random matrix YHCY under each hypothesis. For

a general covariance matrix C, this remains an open problem. We consider here a

special case of practical interest: strictly bandlimited primary signals using a fraction

B of the total channel bandwidth, and with flat psd within their passband.

Using the asymptotic diagonalization (2.5) of the covariance matrix C,

λmax(YHCY) ≈ λmax(YHWΛWHY) (2.109)

= λmax(ȲHΛȲ) (2.110)

where Ȳ
.
= WHY. The ideal bandpass assumption implies that Λ has BK non-zero

diagonal entries, which are all equal to 1/B (since tr C = K). Therefore

λmax(YHCY) ≈ 1

B
λmax(ȲH

B ȲB) (2.111)

where ȲB is a BK × L matrix comprising the rows of Ȳ corresponding to the non-

zero diagonal elements of Λ. Note that ȲH
B ȲB is a complex Wishart matrix (Tulino

and Verdú, 2004), and thus under H0 the random variable

Φ
.
=

1

ν

(
λmax(YHCY)

σ2K
− µ

)
(2.112)

asymptotically (in K and L) follows a Tracy-Widom distribution (Karoui, 2005),

with scale and bias terms given respectively by

µ = (
√
BK − 1 +

√
L)2, (2.113)

ν = (
√
BK − 1 +

√
L)

(
1√

BK − 1
+

1√
L

)1/3

. (2.114)

On the other hand, under H1, ȲH
B ȲB follows a spiked population model (Baik

and Silverstein, 2006), i.e. only one of the eigenvalues of the true covariance matrix

E[ȲH
B ȲB] is different from 1. If we denote by δ1 the largest eigenvalue of the true
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covariance matrix, given by

δ1
.
= λmax

(
E[YHCY]

)
/(σ2K) (2.115)

= 1 + b̄2
‖h‖22
σ2

, (2.116)

we have that for δ1 > 1 +
√
L/K the distribution of TMRC = λmax(YHCY)/(σ2K)

is given by (Baik and Silverstein, 2006; Taherpour et al., 2010)

TMRC ∼ N
(
δ1 +

Lδ1

K(δ1 − 1)
, δ2

1/K

)
, (2.117)

asymptotically in both K and L, and (2.40) follows. Even though these results

are asymptotic in both K and L, they are remarkably accurate even for reasonably

moderate values of these parameters.

Appendix 2.B Asymptotic analysis of gL(x)

From the definition of the incomplete Gamma function (2.61) and using that gL(x) =

Γ(Lx,L+ 1) we have

gL(x) =
1

Γ(L)

∫ x

0

LL

eL
(
te1−t)L ∂t, (2.118)

where te1−t for t ≥ 0 is a quasi-concave function (Boyd and Vandenberghe, 2004).

Taking derivatives we have that

∂

∂t
(te1−t) = e1−t − te1−t. (2.119)

For t ≥ 0, (2.119) equals 0 if and only if t = 1. Hence, the maximum value of the

function te1−t is given by

max
t

(te1−t) = e0 = 1. (2.120)

Note that 0 ≤ te1−t < 1 for all t ≥ 0, t 6= 1.

Let us define now

fL(t) =
1

Γ(L)

(
L

e

)L
(te1−t)L, t ≥ 0, (2.121)
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so that gL(x) =
∫ x

0 fL(t)∂t. We show now that limL→∞ fL(t) = δ(t − 1), where

δ(x) denotes the Dirac delta function. First, note that the integral of fL(t) over the

positive orthant does not depend on L:∫ ∞
0

fL(t)∂t =
LL

Γ(L)

∫ ∞
0

tLe−Lt∂t =
Γ(L+ 1)

LΓ(L)
= 1. (2.122)

On the other hand, using Stirling’s formula n! ≈
√

2πn(n/e)n for n → ∞, one has,

for 0 ≤ z ≤ 1,

lim
L→∞

(
L

e

)L zL

Γ(L)
= lim

L→∞

(
L

e

)L LzL√
2πL

( e

L

)L
(2.123)

=
1√
2π

lim
L→∞

√
LeL log z, (2.124)

which equals 0 if 0 ≤ z < 1 and ∞ if z = 1. Hence limL→∞ fL(t) = δ(t− 1), so that

lim
L→∞

gL(x) =

∫ x

0
lim
L→∞

fL(t)∂t =

∫ x

0
δ(t− 1)∂t =

{
0, if x < 1,

1, if x > 1,
(2.125)

as was to be shown.
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3.1 Introduction

In the previous chapter we introduced a family of multiantenna detectors that exploit

certain spectral features of the primary signal. These detectors require knowledge of

the noise variance, so that the threshold to which the detection test is compared can

be computed for a given desired probability of false alarm. However, if the actual

value of the noise variance is different from the nominal value, a critical SNR level,

denoted as “SNR wall”, appears (Tandra and Sahai, 2008). Primary signals below

this critical value become undetectable, even if the observation time goes to infinity.

This serious drawback motivates the search for detectors robust to noise uncertainty.

Exploiting the spectral shape of the primary signal or the availability of multi-

ple antennas constitutes a promising approach to overcome this problem. The basic

idea is to exploit the fact that the primary signal presents either temporal or spatial

correlation which differs from that of the noise process. For example, if the noise

process is assumed uncorrelated across antennas, spatial correlation will only appear

if primary signals are present; on the other hand, if the primary signal has certain

temporal correlation, it can be used to differenciate it from that of the white noise

process. Hence detectors can be designed based on spatial and/or temporal cor-

relation estimates, rather than on the received signal power. Several authors have

explored this strategy in order to enhance detection performance in cognitive radio

systems (see e.g. Taherpour et al. (2010); Wang et al. (2010); Zeng et al. (2008);

Alamgir et al. (2008); Lim et al. (2008); Zhang et al. (2010a)).

In this chapter we extend several of these detectors to a more sophisticated

scenario with important practical implications. In particular, under the Gaussian

hypothesis, we derive the generalized likelihood ratio test (GLRT) for the detection

of primary signals with arbitrary spatial rank when the (unknown) spatial noise is

uncorrelated across the different antennas. In a second step, we derive the GLRT

for the detection of spatially rank-1 primary signals with temporal correlation when

the noise covariance matrix is assumed to have arbitrary spatial structure.

The first case models practical scenarios with spatial rank of the received sig-

nals larger than one. This is the case, for example, if multiple independent users

(e.g. from adjacent cells) simultaneously access the same frequency channel. Alter-

natively, many state-of-the-art communication standards consider the simultaneous

transmission of different data streams through multiple antennas to achieve multi-

plexing gain and/or the use of space-time codes to enhance spatial diversity. For
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these systems, the signal received at the multiantenna sensor will exhibit a spa-

tial rank equal to the number of independent streams or the spatial size of the

code, respectively. Examples range from broadcasting standards, such as the Euro-

pean DVB-T2 (ETSI, 2009) which considers 2-antenna space-time Alamouti codes,

to point-to-multipoint standards, such as IEEE 802.11n (IEEE Computer Society,

2009), IEEE 802.16 (IEEE Computer Society and the IEEE Microwave Theory and

Techniques Society, 2009) or LTE (3GPP, 2009), which support up to four transmit

antennas.

On the other hand, a noise covariance matrix with arbitrary spatial structure

can occur in scenarios in which the spectrum sensor experiences strong co-channel

interference, originating either in the secondary network it belongs to, or in a dif-

ferent one. In this case, the secondary contributions can be modeled as temporally

white noise with arbitrary and unknown spatial covariance. Note that if no struc-

ture is imposed to the spatial covariance of the noise process, we must resort to

additional information in order to detect the primary signal. To this end we will

assume that the temporal correlation matrix of the primary signal is available to the

spectral monitor as a priori information. As we have seen in the previous chapter,

this is a reasonable assumption provided that the channelization and modulation

parameters of the primary system are fixed and public.

3.2 Problem formulation

We present here a general model of a multiantenna spectrum monitoring system of

primary signals with spatial rank that can be larger than one. This model will be

particularized when required.

3.2.1 System model

The sensor has L antennas with their respective RF chains. The same primary

channel is selected at all antennas, downconverted to baseband, and asynchronously

sampled. Primary transmission is comprised of P independent streams which may

present certain temporal correlation. The noise is assumed to have spatial rank

equal to the number of antennas L and is assumed to be temporally white.

The spectrum monitor acquires K samples from the lth antenna arranged in a
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K × 1 vector yl, which can be written as

yl = Shl + Ngl, (3.1)

where the K×P matrix S
.
= [s1 s2 · · · sP ] is comprised of P primary signal streams,

hl denotes the P × 1 channel vector from the primary system to the lth receiver

antenna, N
.
= [n1 n2 · · ·nL] represents the K×L noise matrix, and the L×1 vector

gl will conform the noise correlation among the different antennas.

Note that the model above assumes that the channel from the primary trans-

mitter to the spectrum monitor is frequency-flat in the RF channel bandwidth, and

that it remains constant for the duration of the sensing time. Because of the reasons

presented in the Section 1.3.1 we restrict our analysis to both signal and noise fol-

lowing a zero-mean Gaussian distribution. Without loss of generality, and since any

existing spatial correlation can be absorbed into the vectors hl and gl we assume

that the signal streams s1, s2, . . . , sP (respectively noise streams n1,n2, . . . ,nL) are

mutually independent. Additionally we assume that the primary streams present

a certain temporal correlation (equal for all of them) while the noise is temporally

white. Then we have that

E[sps
H
q ] =

{
C if p = q,

0 if p 6= q,
(3.2)

E[npn
H
q ] =

{
IK if p = q,

0 if p 6= q.
(3.3)

Again we will assume that the detector has certain information on the spectral shape

of the primary signal, which translates into the a priori knowledge of the temporal

correlation C, wich is assumed to be normalized so that tr{C} = K. Note that given

this model, any noise contribution with spatial rank equal or larger than L can be

represented, from the receiver point of view, by just L independent streams. Hence,

it suffices to consider L noise streams. Moreover, in this chapter we will assume that

the L × L noise conforming matrix defined as G
.
= [g1 g2 · · ·gL] is nonsingular, so

that the received noise is spatially full-rank. This ammounts to requiring that the

noise spatial covariance matrix, defined as Σ2 .
= GHG, is nonsingular. Note that

this applies to any system of practical interest since the thermal noise contribution is

independent accross antennas. Moreover, if this were not the case we could trivially

detect the presence of primary users by monitoring the noise-free dimensions1.

1Being one possibility to check the rank of the empirical spatial covariance matrix of the received
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The received signal can be compactly written in matrix form as

Y = SH + NG, (3.4)

where we have defined the K ×L received signal matrix Y
.
= [y1 y2 · · ·yL], and the

P × L channel matrix H = [h1 h2 · · ·hL].

3.2.2 Hypothesis testing problem

If we define y
.
= vec(Y), we have that under the Gaussianity assumption, y ∼

CN (0,R) with

R .
= (Σ2)T ⊗ IK + (HHH)T ⊗C. (3.5)

Then, we may write the hypothesis testing problem for primary user detection as

H1 : y ∼ CN (0,R1),

H0 : y ∼ CN (0,R0),
(3.6)

where

R1 = (Σ2)T ⊗ IK + (HHH)T ⊗C, (3.7)

R0 = (Σ2)T ⊗ IK . (3.8)

Generalized likelihood ratio test

As there are unknown parameters under both hypotheses, the Neyman-Pearson de-

tector is not implementable. A sensible approach is to use the Generalized Likelihood

Ratio Test (GLRT) since it results in simple detectors with good performance (Mar-

dia et al., 1979). In the GLRT, the unknown parameters are substituted by their

Maximum Likelihood (ML) estimates under each hypothesis:

T
.
=

maxR1 f(Y |R1)

maxR0 f(Y |R0)

H1

≷
H0

γ, (3.9)

signal. In absence of primary users it will feature a rank smaller than L (given the noise covariance
singularity assumption). On the other hand, when a primary signal is present, unless this signal is
aligned with the noise subspace, the perceived spatial rank of the received signal will increase.
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where γ is a suitable threshold and the parametrized probability density function of

the data is given by

f(y |R) =
exp{−yHR−1y}

πLK detR . (3.10)

Here it is understood that the maximization operations in (3.9) are with respect

to the structure of R1 and R0 in (3.7) and (3.8) respectively. Thus, the unknown

parameters are Σ2 under H0 and {H,Σ2} under H1.

3.3 Detection of rank-P signals in spatially uncorrelated

noise

In this section we consider the case of white primary signals, i.e. C = IK . Note that

under this assumption both noise and signal are temporally iid, and the likelihood

is given by the product of the individual pdfs, i.e.,

f(Y |R) =
1

πLK det(R)K
exp

{
−K tr

(
R̂R−1

)}
, (3.11)

where

R
.
= Σ2 + HHH, (3.12)

R̂
.
=

1

K
YHY (3.13)

are, respectively, the actual and the sample spatial covariance matrices.

It is clear that, due to the fact that both signal and noise are assumed tempo-

rally white, the detectors can only exploit the structure of the spatial statistics.

3.3.1 Spatially uncorrelated iid noise process

If the L analog frontends are perfectly calibrated and the noise is assumed uncor-

related across antennas, we can model the spatial covariance matrix of the noise

process as a scaled version of the identity matrix

Σ2 = σ2I. (3.14)
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In order to derive the GLRT under this model, we need the maximum likelihood

(ML) estimates of the unknown parameters {σ2,H} under H1 and the ML estimate

of σ2 under H0. The ML estimate of the noise variance under H0 is straightforward

to obtain and is given by

σ̂2 =
1

L
tr
(
R̂
)
. (3.15)

In order to obtain the ML estimates under H1, we consider two cases depending on

the rank P .

Lemma 3.1. If P ≥ L − 1, the ML estimates of H and σ2, given by Ĥ and σ̂2,

satisfy ĤĤH + σ̂2I = R̂.

Proof. For P ≥ L − 1, R = HHH + σ2I has no additional structure besides being

positive definite Hermitian. In that case, the log-likelihood is maximized for R = R̂,

as shown in Magnus and Neudecker (1999).

Thus, for P ≥ L − 1, the GLRT has been derived in Mauchly (1940) and it is

the well-known Sphericity test

log T = KL log

 1
Ltrace

(
R̂
)

det1/L
(
R̂
)
 . (3.16)

Let R̂ = V diag (δ1, . . . , δL) VH be an eigenvalue decomposition (EVD) of the

sample covariance matrix, with δ1 ≥ δ2 ≥ · · · ≥ δL. Note that the argument of

the logarithm in (3.16) is the ratio of the arithmetic and geometric means of the

eigenvalues δ1, δ2, . . . , δL.

When P < L − 1, the low-rank structure of the primary signal can be further

exploited to improve the detection. In that case, to obtain the ML estimates under

H1, let HHH = UΨ2UH be an eigenvalue decomposition (EVD) of HHH, with

Ψ2 = diag(ψ2
1, ψ

2
2, . . . , ψ

2
P , 0, 0, . . . , 0), (3.17)

with ψ2
1 ≥ ψ2

2 ≥ · · · ≥ ψ2
P .

Lemma 3.2. For P < L − 1, the ML estimates of σ2, U and Ψ2 under H1 are
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respectively given by

σ̂2 =
1

L− P
L∑

k=P+1

δk, (3.18)

Û = V, (3.19)

ψ̂2
i = δi − σ̂2, i = 1, . . . , P. (3.20)

Proof. This result was first proved in Anderson (1963). In Appendix 3.A we include

an alternative and, in our opinion, simpler proof based on Majorization Theory.

Taking into account (3.15) and Lemma 3.2, the log-GLRT for P < L − 1 is

given, after some straightforward manipulations, by

log T = KL log

 1
L

∑L
i=1 δi(∏L

i=1 δi

)1/L

−K (L− P ) log

 1
L−P

∑L
i=P+1 δi(∏L

i=P+1 δi

)1/(L−P )

 . (3.21)

Note that the bracketed terms in (3.21) are functions of the ratio of the arithmetic

and geometric means of all eigenvalues, and the L − P smallest eigenvalues of R̂,

respectively. The first term is the statistic of the sphericity test (3.16), whereas the

second term can be seen as a test for the sphericity of the noise subspace, or as

a reference for sphericity due to finite sample size effects (since as K → ∞, then

R̂→ R and thus δi → σ2 for i = P+1, . . . , L, so that the second term in (3.21) goes

to zero). Thus, the log-GLRT may be seen as a sphericity ratio (quotient between

the sphericity statistics of the sample covariance matrix and its noise subspace).

Remark 3.1. The statistic in (3.21) generalizes the results in Besson et al. (2006);

Taherpour et al. (2010); Wang et al. (2010) obtained for the special case of P = 1.

3.3.2 Spatially uncorrelated non-iid noise process

When the analog frontends are perfectly calibrated it is possible to assume the

same noise variance at each of the antennas. In practice, however, tolerances in the

components of the different RF chains will result in deviations of the noise level

from antenna to antenna. In this section we derive the GLRT for the more involved

model of non-iid noises.

In this case, the only constraint on Σ2 is being diagonal with positive entries.
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The ML estimate of Σ2 underH0, was derived in Leshem and Van der Veen (2001a,b)

Σ̂
2

= diag
(

[R̂]1,1, . . . , [R̂]L,L

)
.
= D̂. (3.22)

Similarly to the case of iid noises, we study first the effect of the signal rank P on

the ML estimate of the covariance matrix under H1.

Lemma 3.3. If P ≥ L −
√
L, the ML estimates of H and Σ2 under H1 satisfy

ĤHĤ + Σ̂
2

= R̂.

Proof. The proof can be found in Leshem and Van der Veen (2001a); Ramı́rez et al.

(2010). It hinges on the fact that if P ≥ L −
√
L, then HHH + Σ2 has no further

structure beyond being positive definite Hermitian.

Using (3.22) and Lemma 3.3, and after some algebra, one finds that for P ≥
L −
√
L, the GLRT is given by the Hadamard ratio of the sample covariance ma-

trix (Wilks, 1935; Leshem and Van der Veen, 2001a,b):

T 1/K =
det
(
R̂
)

∏L
i=1[R̂]i,i

. (3.23)

On the other hand, if P < L−
√
L, the low-rank structure of the signal covari-

ance matrix can be further exploited. In order to simplify the derivation of the ML

estimates under H1, let R̂Σ
.
= Σ−1R̂Σ−1 (the whitened sample covariance matrix)

and HΣ
.
= HΣ−1. We can rewrite the log-likelihood as

log f
(
Y |HΣ,Σ

2
)

= −LK log π −K log det
(
HH

ΣHΣ + I
)

−K log det
(
Σ2
)
−Ktr

[
R̂Σ

(
HH

ΣHΣ + I
)−1
]
. (3.24)

Let HH
ΣHΣ = GΦ2GH be the EVD of HH

ΣHΣ. The ML estimates of G and Φ2 are

given next.

Lemma 3.4. Let

R̂Σ = Q diag (γ1, . . . , γL) QH (3.25)

be the EVD of R̂Σ, with γ1 ≥ · · · ≥ γL. The ML estimates of G and Φ2 =
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diag (φ1, . . . , φL) (which are functions of Σ2) are

Ĝ = Q, (3.26)

φ̂2
i =

{
γi − 1, i = 1, . . . , P,

0, i = P + 1, . . . , L.
(3.27)

Proof. Once R̂ and H have been prewhitened, the problem reduces to the iid case

and, therefore, the proof follows the same lines as those in Lemma 3.2.

Finally, replacing the ML estimate of HH
ΣHΣ into (3.24) we obtain

log f
(
Y |Σ2

)
= −K

(
+L log π + P + log det

(
R̂
)

+
L∑

i=P+1

[γi − log γi]

)
. (3.28)

To the best of our knowledge, the maximization of (3.28) with respect to Σ2

does not admit a closed-form solution if P < L −
√
L. We present two different

approaches: an alternating optimization scheme and a closed-form GLRT detector

obtained in the limit of asymptotically small SNR.

Alternating optimization

The ML estimation problem in (3.24) can be written as

minimize
HΣ,Σ

tr
(
R̂Σ−1R−1

Σ Σ−1
)
− log det

(
Σ−2

)
+ log det RΣ, (3.29)

subject to RΣ = IL + HH
ΣHΣ,[

Σ2
]
i,i
> 0.

While this optimization problem is non-convex, it is possible to partition the free

variables in two different sets to obtain an alternating optimization scheme. Then,

we will alternatively perform the minimization over each set of parameters while the

remaining ones are held fixed. Since at each step the value of the cost function can

only decrease, the method is guaranteed to converge to a (local) minimum (Bezdek

and Hathaway, 2003).

From (3.29), we note that the individual minimization with respect to Σ (con-

sidering HΣ fixed) and with respect to HΣ (considering Σ fixed) can be easily writ-

ten as convex problems individually, and, therefore, they can be efficiently solved.
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Algorithm 1: Iterative estimation of HΣ and Σ via alternating optimization.

Input: Starting point α(0) and R̂.
Output: ML estimates of HΣ and Σ.
Initialize: n = 0
repeat

Compute Σ−1
(n) = diag(α(n))

Obtain R̂
(n+1)
Σ = Σ−1

(n)R̂Σ−1
(n) and its EVD

Compute H
(n+1)
Σ from (3.30) (fixed Σ−1

(n))

Solve (3.32) to obtain α(n+1) (fixed H
(n+1)
Σ )

Update n = n+ 1

until Convergence

Minimization with respect to HΣ. For fixed Σ, the optimal HΣ minimizing

(3.29) is given (up to a right multiplication by a unitary matrix) by Lemma 3.4:

ĤΣ = [q1 · · · qP ] (diag (γ1, . . . , γP )− IP )1/2 , (3.30)

where [q1 · · · qP ] are the first P columns of the matrix Q featuring in the EV

decomposition (3.25) of R̂Σ = Σ−1R̂Σ−1, and γ1, . . . , γP are the corresponding

eigenvalues.

Minimization with respect to Σ. For fixed HΣ, the minimization problem

in (3.29) reduces to

minimize
Σ

tr
(
R̂Σ−1R−1

Σ Σ−1
)
− log det

(
Σ−2

)
(3.31)

subject to [Σ]i,i ≥ 0.

Defining the vector α
.
=
[
[Σ−1]1,1, . . . , [Σ

−1]L,L

]T
, the trace term in (3.31) can be

reorganized to obtain an equivalent minimization problem given by

minimize
α

αT (R̂T �R−1
Σ )α−

L∑
i=1

logα2
i (3.32)

subject to αi ≥ 0.

Note that, given the trace term in (3.31), the matrix R̂T�R−1
Σ must be positive

semidefinite since the trace of the product of two positive (semi)definite matrices

is nonnegative. Hence, the problem (3.32) is convex with respect to the parameter
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vector α and, therefore, it can be efficiently solved using any convex optimization

solver.

The proposed alternating minimization algorithm is summarized in Alg. 1.

Once the estimates of ĤΣ and Σ̂ under H1 are available, together with Σ̂ under

H0 (given by (3.22)), they can be substituted into the GLRT in order to obtain

the desired test statistic. Although the alternating minimization approach does

not guarantee that the global maximizer of the log-likelihood is found, we will show

through numerical experiments how the proposed iterative scheme outperforms other

detectors that can be applied under the model considered in this section.

Low SNR approximation of the GLRT

The usefulness of the detector given in Alg. 1 in practical settings may be hindered

by its complexity. In this context, simpler closed-form detectors become of practical

interest. Now, we derive a closed-form expression for the GLRT in the low SNR

regime, of particular interest in CR applications. As the SNR goes to zero, the co-

variance matrix will become close to diagonal, and thus it is possible to approximate

the ML estimate of Σ2 as Σ̂
2 ≈ D̂ defined in (3.22). Substituting this back into

(3.28), we obtain the final compressed log-likelihood:

log f (Y) = −LK log π − KP − K log det
(
R̂
)
− K

L∑
i=P+1

[βi − log βi] , (3.33)

where βi is the i-th largest eigenvalue of the sample spatial coherence matrix Ĉ =

D̂−1/2R̂D̂−1/2. Then, the asymptotic log-GLRT is

log T ≈ K
P∑
i=1

[βi − log βi]−KP. (3.34)

Alternatively, (3.34) can be rewritten as

log T ≈ −KP −K log
P∏
i=1

βie
−βi
H0

≷
H1

η, (3.35)

and, thus, the test statistic is seen to be given by the product of the P largest eigen-

values of Ĉ, each equalized by an exponential term. Note that βe−β is maximum

at β = 1. Hence, the statistic
∏P
i=1 βie

−βi measures, in some sense, how far the
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vector of the P largest eigenvalues [β1 · · · βP ] is from the vector of all ones. Note

that (3.34) yields a closed-form test, in contrast with the iterative scheme presented

in the previous section.

Remark 3.2. When P = 1, the test statistic depends only on β1 = λmax(Ĉ) ≥
tr{Ĉ}/K = 1. Since the function xe−x is monotonous for x ≥ 1 it follows than an

equivalent test statistic is given by

λmax(Ĉ)
H1

≷
H0

η′, (3.36)

which recovers the detector proposed in López-Valcarce et al. (2010) for P = 1.

3.3.3 Numerical results and discussion

In this section we evaluate the performance of the proposed algorithms under dif-

ferent scenarios, by means of Monte Carlo simulations. Unless otherwise specified,

the noise level at each antenna is fixed for each experiment, and for each Monte

Carlo realization the entries of the channel matrix H are independently drawn from

a Gaussian distribution (thus obtaining a Rayleigh fading scenario) and scaled so

that the SNR is constant during the experiment:

SNR (dB) = 10 log10

tr(HHH)

tr(Σ2)
. (3.37)

We evaluate two detectors derived under the iid noise assumption: the pro-

posed GLRT statistic in (3.21) denoted here by iid-GLRT, and the sphericity test or

GLRT for non-structured primary signals (Mauchly, 1940) (denoted as Sphericity).

In addition, three detectors derived for uncalibrated receivers (Σ2 diagonal with

positive entries) are also evaluated: the proposed alternating optimization scheme

from Algorithm 1 denoted here as alterntng-GLRT 2, the asymptotic closed-form de-

tector in (3.34) (asympt-GLRT ), the Hadamard ratio test (Wilks, 1935) or GLRT

for unstructured primary signals (3.23) (Hadamard). Additionally, we also include

two heuristic detectors for comparison: the detector based on statistical covariances

2Given the observed convergence properties, the iterations are stopped when the cost im-
provement between iterations is less than 10−5 with a maximum of 100 allowed iterations. As
starting point we use an estimate given by the scaled low SNR asymptotic solution α0 =√
L/(L− P )

[
[D̂]−1

1,1, . . . , [D̂]−1
L,L

]T
.
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Figure 3.1: Misdetection probability versus P assuming (a) iid noise and (b) non-iid
noise.

(Zeng and Liang, 2009b, Alg. 1) (Covariance) given by

∑L
i=1

∑L
j=1

∣∣∣[R̂]ij

∣∣∣∑L
i=1

∣∣∣[R̂]ii

∣∣∣
H1

≷
H0

ηCov , (3.38)

where ηCov is a suitably chosen threshold, and that of Eqn. (32) in Lim et al. (2008)

given by

TLim = log

[
P∏
i=1

δi
δL

] 1
P

− 1

P

P∑
i=1

δi
δL

H1

≷
H0

ηLim , (3.39)

where δ1 ≥ · · · ≥ δL are the eigenvalues of the sample covariance matrix R̂ and ηLim

denotes the threshold.

Detection performance for rank-P primary signals

First we compare the performance of the different schemes in terms of the spatial

rank of the signal. Figure 3.1 shows the misdetection probability for fixed PFA =

0.01 in a scenario with L = 6 antennas for primary signals with rank P = 1, . . . ,

5, for iid and non-iid noises. The iid scenario assumes SNR = −6 dB, K = 128

and noise level at all the antennas fixed to 0 dB while the non-iid scenario considers
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SNR = −4 dB, K = 64 and noise power at each antenna fixed to 0,−1, 1, 0,−1 and

0 dB respectively. Note that in both scenarios, as P increases the covariance matrix

becomes less structured. This effect translates into the performance degradation for

all the detectors under study with increasing P .

From Figs. 3.1 (a) and (b) we can see that for both iid and non-iid noises

the corresponding GLRT detectors consistently provide the best performance for all

values of P . While the GLRTs for P = 1 present poor performance if the actual

rank of the signal is larger than one, the Sphericity and Hadamard ratio tests (which

do not assume any structure on the primary signal) degrade for strong structure, i.e.

small P . It is interesting to note, however, that as the rank of the signal grows (for

P ≥ 4) the Sphericity and Hadamard ratio tests offer similar performance to that

of the rank-based detectors at a lower computational cost. Regarding the heuristic

detectors, the covariance based detector (Zeng and Liang, 2009b) presents virtually

the same performance as the Hadamard ratio test and it was not included in the

plot for clarity. On the other hand, the poor performance of the detector of (Lim

et al., 2008) for all values of P is likely rooted in the heuristic estimation of the noise

variance.

Finally, it is interesting to note that for P > 1, the advantage of the itera-

tive scheme alterntng-GLRT over the asymptotic GLRT decreases. This can be

explained from the fact that, as the total SNR is divided among a growing number

of dimensions, the effective SNR per dimension decreases and one gets closer to the

asymptotic regime for which asympt-GLRT was derived.

Noise mismatch effect on detection performance

We now investigate the effect of a noise level mismatch at the different antennas on

the different detectors. In order to focus on this effect we fix P = 1. Figure 3.2

shows the corresponding receiver operating characteristic (ROC) curves in a sce-

nario with iid noises and with non-iid noises. In Fig. 3.2(a) we can see that for

an scenario with iid noises (noise powers at each antenna equal to 0 dB) the iid-

GLRT test, corresponding to the GLRT under this model, yields the best detection

performance, whereas the detectors designed for disparate noise variances suffer a

noticeable penalty. From the detectors designed for uncalibrated receivers, it is seen

that the GLRT based schemes, both asymptotic and iterative, behave similarly and

outperform the Hadamard ratio detector. The heuristic detector based on statisti-

cal covariances (Zeng and Liang, 2009b) presents almost the same performance as
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Figure 3.2: ROC curves (SNR= −8 dB, P = 1, L = 4, K = 128) (a) without noise
power mismatch and (b) with noise power mismatch.

the Hadamard ratio test, while the detector of (Lim et al., 2008) suffers a penalty

compared to the GLRT for the same model. Fig. 3.2(b) shows the ROC curves for

a similar scenario, but with different noise variances across the antennas, now given

by 0, −1, 1.5 and −0.5 dB. Note that the performance of the detectors designed for

uncalibrated receivers has not changed with respect to that in Fig. 3.2(a), whereas

that of the detectors based on the iid noise assumption is severely degraded.

Asymptotic GLRT performance for finite SNR values

Although the asymptotic GLRT detector (asympt-GLRT ) given by (3.34) is appeal-

ing due to its computational simplicity, it is not clear how much can be gained

when the iterative scheme (alterntng-GLRT ) is used in order to implement the ex-

act GLRT. Fig. 3.3 shows the missed detection probability of the detectors versus

the SNR in a scenario similar to that of the previous subsection (P = 1, L = 4,

K = 128, different noise levels at each of the antennas fixed to 0, −1, 1.5 and −0.5

dB respectively). The probability of false alarm is fixed to PFA = 0.01 and 0.1. In

Fig. 3.3 it is seen that, as expected, for very low SNR values the asymptotic detector

presents the same performance as the alternating minimization scheme. However, as

the SNR increases, the GLRT outperforms the detector derived for asymptotically
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Figure 3.3: Misdetection probability versus SNR for different detectors. Same sce-
nario as in Fig. 3.2(b), with PFA = 0.01 and 0.1.

low SNR, as it could be expected. Note, however, that the performance loss of the

asymptotic detector is rather small, and therefore it offers a good tradeoff between

performance and complexity.

3.4 Detection of rank-1 signals in spatially correlated

noise

In the previous section we assumed the noise process uncorrelated across antennas.

While this accurately models the thermal noise effects, other contributions such as

cochannel interference will present spatial correlation. In this section no assumptions

are made about Σ2 other than to have full rank.

Under the Gaussianity assumption, if we do not impose any constraint on the

the spatial covariance of the noise process, we must resort to additional information

(other than spatial) in order to detect the primary signal. To this end, in this

section, we assume that the primary signal presents certain temporal correlation

which translates into C 6= IK . The matrix C is assumed to be available to the

spectral monitor as a priori information. In this section we will restrict our study

to primary signals of rank one, thus, H = hH with h an L× 1 vector and S = s is
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K × 1. Then we have that the received signal reduces to

Y = shH + NG. (3.40)

In the following we will find useful to define the maximum achievable SNR as

ρ
.
= hHΣ−2h = ‖hΣ‖22, (3.41)

where the prewhitened channel is given by

hΣ
.
= Σ−1h. (3.42)

Note that ρ = hHΣ−2h is the maximum SNR that can be obtained at the output

of a linear combiner (beamformer), i.e. if we let x = Yv = shHv + NGv with v

the L× 1 beamformer, then the SNR of x is given by

ζ
.
=

E[vHhsHshHv]

E[vHGHNHNGv]
=

vHhhHv

vHΣ2v
, (3.43)

which attains its maximum value ζ = hHΣ−2h for v = Σ−2h.

As in the previous section h and Σ2 = GHG are modeled as deterministic and

unknown. However, as a preliminary step before the derivation of the GLRT for this

problem, we study the optimal detector assuming a priori knowledge of h and Σ2.

3.4.1 Genie-aided detectors

If h and Σ2 are assumed known the optimal detector is given by the Neyman-Pearson

test. Let us consider the whitened received signal, defined as

yΣ
.
= (Σ−T ⊗ I) y, (3.44)

as the new input to the detector. It is easy to see that in this case the system model

corresponds to the one considered in Chapter 2 when σ2 = 1. Hence, following

similar steps the optimal NP test can be found to be

TNP = yHΣ
[
(hΣhHΣ)T ⊗C

] [
ILK + (hΣhHΣ)T ⊗C

]−1
yΣ (3.45)

where we have defined the whitened channel as hΣ = Σ−1h. Using the definition of

the Kronecker product and the Matrix Inversion Lemma, we have that the inverse
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[ILK + (hΣhHΣ)T ⊗C]−1 can be rewritten as3

[ILK + (hΣhHΣ)T ⊗C]−1 = ILK − (hΣhHΣ)T ⊗C(ρ), (3.46)

where we defined

C(ρ)
.
= C1/2(IK + ρC)−1C1/2. (3.47)

Note that C(0) = C, whereas C(ρ) ≈ 1/ρIK for ρ → ∞. Applying this result to

(3.45) we obtain

TNP = yHΣ
[
(hΣhHΣ)T ⊗C

] [
ILK − (hΣhHΣ)T ⊗C(ρ)

]
yΣ (3.48)

= yHΣ
[
(hΣhHΣ)T ⊗C− (hΣhHΣhΣhHΣ)T ⊗ (CC(ρ))

]
yΣ (3.49)

= yHΣ
[
(hΣhHΣ)T ⊗C− (hΣhHΣ)T ⊗ (ρCC(ρ))

]
yΣ (3.50)

= yHΣ
[
(hΣhHΣ)T ⊗ (C(IK − ρC(ρ)))

]
yΣ (3.51)

= yHΣ
[
(hΣhHΣ)T ⊗

(
C(IK + ρC)−1

)]
yΣ (3.52)

where in (3.50) we have used that hHΣhΣ = hHΣ−2h = ρ and in (3.52) we made use

of the identity IK − ρC(ρ) = (IK + ρC)−1.

We now apply the property

tr(ATBHCD) = vec(B)H(A⊗C) vec(D) (3.53)

in (3.52) to obtain, after some straighforward manipulations,

TNP = hHΣYH
ΣC(IK + ρC)−1YΣhΣ (3.54)

= hHΣ−2YHC(IK + ρC)−1YΣ−2h (3.55)

where we have defined YΣ
.
= vec(yΣ) = YΣ−1.

Note that v = Σ−2h corresponds to the optimum beamformer, which maxi-

mizes the SNR at its output x = Yv. Then the NP test can be written as

TNP = xHC(IK + ρC)−1x (3.56)

≈ xHWΛ(IK + ρΛ)−1WHx, (3.57)

where have made use of the asymptotic EVD of the covariance matrix C ≈WΛWH ,

3Intermediate steps can be found in Appendix 3.B.
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first introduced in (2.5). By examining (3.57) the structure of the NP test becomes

clear. First, the received signal is fed through the optimal spatial beamformer

x = Yv. This signal is then transformed into the frequency domain by applying the

FFT transform WH and fed through the optimal Wiener filter

F (eω) =

(
Sss(e

ω)

1 + ρSss(eω)

)1/2

, (3.58)

before the energy of the resulting signal is compared against a threshold. That is,

the optimal NP detector relies on two key components. The first is the optimum

beamformer v which maximizes the received SNR by discarding the noise-only spa-

tial dimensions. In second place we have an optimum Wiener filter which acts as

a matched filter in the temporal domain. At this point it is instructive to consider

the following asymptotic cases, in which the structure of this filter simplifies:

• In the high SNR regime, ρ→∞, i.e., F (eω)→ ρ−1/2 and the detector amounts

to comparing the energy at the output of the optimum beamformer ‖x‖2 =

xHx with a given threshold.

• In the low SNR regime, ρ → 0, so that C(IK + ρC)−1 → C, and the test

reduces to comparing xHCx against a threshold.

However, neither h nor Σ2 can be assumed known and need to be estimated.

The ML estimation of these parameters under both Hypothesis conducts to the

GLRT detector.

3.4.2 GLRT detector

We now proceed to the derivation of the GLRT based on (3.40), as presented in

(3.9).

ML parameter estimation under H0

Under H0 the signal covariance is given by R0 = (Σ2)T ⊗ IK where Σ2 is unstruc-

tured.

Lemma 3.5. Under H0, the ML estimate of the (unstructured) noise covariance

matrix is given by

Σ̂
2

= R̂ =
1

K
YHY. (3.59)
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Proof. Under H0 the log-likelihood reduces to

log f(Y |Σ) = −LK log π −K log det(Σ2)−K tr
(
R̂Σ−2

)
, (3.60)

which is maximized for Σ2 = R̂ (Magnus and Neudecker, 1999).

ML parameter estimation under H1

Under H1, the log-likelihood is given by

log f(y |R1) = −LK log π − log det(R1)− yHR−1
1 y, (3.61)

with

R1 = (Σ2)T ⊗ IK + (hhH)T ⊗C. (3.62)

Note that (3.61) offers little information about the ML estimates of Σ2 and

h. However, from the structure of R1 in (3.62) it is apparent that spatial and

temporal correlations are separable in terms of the Kronecker product. Using this

fact, we derive next a simpler expression for (3.61) which will allow us to reduce the

optimization problem in Σ2 and h to a scalar optimization problem.

First, the inverse of R1 can be written as

R−1
1 =

[
(Σ2)T ⊗ IK + (hhH)T ⊗C

]−1
(3.63)

=
[
(Σ−1)T ⊗ IK

] [
ILK + (Σ−1hhHΣ−1)T ⊗C

]−1 [
(Σ−1)T ⊗ IK

]
(3.64)

= (Σ−2)T ⊗ IK − (Σ−2hhHΣ−2)T ⊗C(ρ) (3.65)

where in the last step we used (3.46). Now applying the property (3.53) some

straightforward algebra yields

yHR−1
1 y = tr{Σ−2YHY −Σ−2hhHΣ−2YHC(ρ)Y}. (3.66)

On the other hand, using a generalization of Sylvester’s determinant identity4

4det(A + UVH) = det(A) det(I + VHA−1U).
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to Kronecker products, we can rewrite the determinant term in (3.61) as

log det(R1) = log det
(
(Σ2)T ⊗ IK + (hhH)T ⊗C

)
(3.67)

= K log det(Σ2) + log det(IK + ρC). (3.68)

Substituting (3.68) and (3.66) into the log-likelihood (3.61) yields

log f(y |hΣ,Σ) = −LK log π −K log det Σ2 − log det(IK + ρC)

− tr
{
Σ−2YHY

}
+ tr

{
hΣhHΣΣ−1YHC(ρ)YΣ−1

}
. (3.69)

Defining a new parameter space

In order to maximize (3.69) we will find useful to replace the parameter space

{hΣ,Σ
−2} by a more convenient form. First, using the following identity: IK −

ρC(ρ) = (IK + ρC)−1, we may reorganize the terms in (3.69) to obtain

log f(y | ρ, h̄Σ,Σ
−2) = −LK log π −K log det Σ2 − log det(IK + ρC)

− tr
{(

IL − h̄Σh̄HΣ
)
Σ−1YHYΣ−1

}
− tr

{
h̄Σh̄HΣΣ−1YH(IK + ρC)−1YΣ−1

}
.

(3.70)

where we have introduced the unit-norm vector h̄Σ
.
= hΣ/‖hΣ‖2.

This step is important in what follows because it divides the spatial contribution

of the prewhitened received signal YΣ−1 in two different terms: one orthogonal and

one collinear to the prewhitened channel hΣ, respectively.

We now define the two quasi-orthogonal contributions to the inverse of the

spatial covariance matrix of the noise Σ−2 = W⊥ + W‖ as

W⊥
.
= Σ−1

(
IL − h̄Σh̄HΣ

)
Σ−1 = U⊥∆⊥UH

⊥ , (3.71)

W‖
.
= Σ−1h̄Σh̄HΣΣ−1 = δ‖u‖u

H
‖ , (3.72)

where U⊥∆⊥UH
⊥ denotes the economy-size eigendecomposition of the matrix W⊥

(of rank L− 1), and the economy-size eigendecomposition of the rank-1 matrix W‖

is given by δ‖u‖u
H
‖ . Then we have the following result:

Lemma 3.6. The log-likelihood (3.70) can be rewritten in terms of a new parameter
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space given by {h̄, ρ,U⊥,∆⊥,u‖, δ‖} as

log f(y | ρ, h̄, δ‖,u‖,∆⊥,U⊥) =

− LK log π +K log det ∆⊥ +K log δ‖ +K log |h̄Hu‖|2 − log det(IK + ρC)

− tr{U⊥∆⊥UH
⊥YHY} − tr{δ‖u‖uH‖ YH(IK + ρC)−1Y}, (3.73)

with h̄
.
= h/‖h‖2.

Proof. We have that U⊥ is an L× (L−1) semiunitary matrix. Its nullspace is given

by the direction h̄ since

W⊥h̄ = Σ−1
(
IL − h̄Σh̄HΣ

)
Σ−1h̄ (3.74)

=

(
Σ−2 −Σ−2 hhH

hHΣ−2h
Σ−2

)
h

‖h‖2
(3.75)

=
1

‖h‖2

(
Σ−2h−Σ−2h

hHΣ−2h

hHΣ−2h

)
= 0. (3.76)

As a result [U⊥ h̄] defines a unitary matrix and the full eigenvalue decomposition

of W⊥ is given by W⊥ = [U⊥ h̄]∆̃⊥[U⊥ h̄]H , where we defined

∆̃⊥
.
=

[
∆⊥

0

]
. (3.77)

Now, the determinant of Σ−2 can be rewritten as

det Σ−2 = det(W⊥ + W‖) (3.78)

= det
(

[U⊥ h̄]∆̃⊥[U⊥ h̄]H + u‖δ‖u
H
‖

)
(3.79)

= det
(
∆̃⊥ + [U⊥ h̄]Hu‖δ‖u

H
‖ [U⊥ h̄]

)
(3.80)

= det(∆̃⊥) + δ‖u
H
‖ [U⊥ h̄] adj(∆̃⊥) [U⊥ h̄]Hu‖ (3.81)

= δ‖u
H
‖ [U⊥ h̄] [eL det(∆⊥)eTL] [U⊥ h̄]Hu‖ (3.82)

= δ‖ uH‖ h̄ det(∆⊥) h̄Hu‖ (3.83)

= δ‖ |h̄Hu‖|2 det(∆⊥), (3.84)

where in (3.81) we have used that (see e.g. (Lancaster and Tismenetsky, 1985, p.

65)) det(X+yzT ) = det(X)+zT adj(X)y where adj(·) denotes the adjugate matrix,

and in (3.82) we have used that det(∆̃⊥) = 0 and that the adjugate matrix of a
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diagonal matrix with the i-th diagonal entry equal to zero, is the zero matrix except

for the (i,i)-th component.

Substituting (3.71), (3.72), (3.84) in the likelihood expression given in (3.70)

we obtain the desired result.

That is, in order to maximize (3.70) with respect to {ρ, h̄Σ,Σ
−2}, we ex-

pressed the log-likelihood in terms of an alternative set of parameters, namely

{h̄, ρ,U⊥,∆⊥,u‖, δ‖}. Note that the number of degrees of freedom of the two sets

of parameters is the same. The first set of parameters presents L2 degrees of free-

dom in the Hermitian matrix Σ−2, 2L − 1 in the unitary vector h̄Σ and 1 in the

effective SNR ρ, that is, a total of L2 + 2L degrees of freedom. On the other hand,

[U⊥ h̄] defines an unitary matrix with L2 − L degrees of freedom, {u‖, δ‖} define

a complex vector with 2L degrees of freedom, and ∆⊥ and ρ present L − 1 and 1

degrees of freedom respectively, adding up to a total of L2 + 2L degrees of freedom.

Additionally, it is possible to establish a biunivocal mapping between the two sets

of parameters. Given Σ−2, h̄Σ, the matrices W⊥ and W‖ can be computed using

(3.71)-(3.72), and viceversa, given W⊥, W‖, we may compute Σ−2, h̄Σ as

Σ−2 = W⊥ + W‖, h̄Σ =
Σu‖

‖Σu‖‖2
. (3.85)

Hence, the maximization can be carried out over the new set of parameters given

by {h̄, ρ,U⊥,∆⊥,u‖, δ‖}.

Compressing the log-likelihood

We must now maximize the log-likelihood with respect to the unknown parameters.

Let us define to this end the “orthogonal component” of the observations as

(YHY)⊥
.
= (IL − h̄h̄H)YHY(IL − h̄h̄H). (3.86)

We recall from (3.76) that W⊥h̄ = 0, which in turn implies that U⊥h̄ = 0. It then

follows that UH
⊥YHYU⊥ = UH

⊥ (YHY)⊥U⊥. Consider now an economy-size EVD

of the rank-(L− 1) matrix (YHY)⊥:

(YHY)⊥ = UY⊥∆Y⊥UH
Y⊥. (3.87)
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Observe that (YHY)⊥h̄ = 0, and therefore UY⊥h̄ = 0. Since both U⊥, UY⊥ are

L× (L−1) matrices with orthonormal columns, and both of them are orthogonal to

the same vector h̄, it follows that U⊥, UY⊥ span the same subspace. Hence, there

must exist an (L− 1)× (L− 1) unitary matrix UΩ such that

U⊥ = UY⊥UΩ. (3.88)

Using the definition of UΩ in (3.88), the log-likelihood function can be written as

log f(y | ρ, h̄,u‖, δ‖,∆⊥,UΩ) =

− LK log π +K log det ∆⊥ +K log δ‖ +K log |h̄Hu‖|2 − log det(IK + ρC)

− tr{UΩ∆⊥UΩ∆Y⊥} − δ‖uH‖ YH(IK + ρC)−1Yu‖. (3.89)

The only term depending on UΩ is − tr{UΩ∆⊥UΩ∆Y⊥}. For the diagonal el-

ements of ∆Y⊥ sorted in non-increasing order and the diagonal elements of ∆⊥

sorted in non-decreasing order (to be checked later) the term − tr{UΩ∆⊥UΩ∆Y⊥}
is maximized with respect to UΩ for (Fraikin et al., 2008)

ÛΩ = IL−1. (3.90)

Now, the maximization of (3.89) with respect to δ‖ and ∆̂⊥ is straightforward and

yields

δ̂‖ = K(uH‖ YH(IK + ρC)−1Yu‖)
−1, (3.91)

∆̂⊥ = K∆−1
Y⊥. (3.92)

Note that indeed since the diagonal elements of ∆Y⊥ are sorted in non-increasing

order, the diagonal elements of ∆⊥ are sorted in non-decreasing order. Hence the

assumption in obtaining (3.90) was right. Substituting (3.90), (3.91) and (3.92) into

(3.89), we obtain the compressed log-likelihood function

log f(y | ρ, h̄,u‖) = −LK log π + LK logK − LK +K log |h̄Hu‖|2

− log det(IK + ρC)−K log
[
uH‖ YH(IK + ρC)−1Yu‖

]
−K log det(∆Y⊥). (3.93)

In order to proceed now, the following result will be useful.

Lemma 3.7. Let A be an L× L invertible matrix, and let G be an unitary matrix
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partitioned as G = [g1 G⊥] where g1 is L× 1 and G⊥ is L× (L− 1). Then it holds

that

det(GH
⊥AG⊥) = gH1 A

−1g1 det(A). (3.94)

Proof. The proof can be found in Appendix 3.C.

Observe that, since UH
Y⊥UY⊥ = IL−1, one has

∆Y⊥ = UH
Y⊥(YHY)⊥UY⊥ (3.95)

= UH
Y⊥(YHY)UY⊥, (3.96)

where the second step follows from the fact that UY⊥h̄ = 0. Since the matrix

[h̄ UY⊥] is unitary, we can apply the result from Lemma 3.7 to obtain

det(∆Y⊥) = (h̄H(YHY)−1h̄) det(YHY). (3.97)

Therefore, the log-likelihood (3.93) reads as

log f(y | ρ, h̄,u‖) =

−LK log π + LK logK − LK +K log |h̄Hu‖|2 − log det(IK + ρC)

−K log
[
uH‖ YH(IK + ρC)−1Yu‖

]
−K log

[
h̄H(YHY)−1h̄

]
−K log det(YHY).

(3.98)

Maximizing (3.98) with respect to h̄ and u‖ amounts to minimizing

h̄H(YHY)−1h̄uH‖ YH(IK + ρC)−1Yu‖

|h̄Hu‖|2
. (3.99)

To this end, we can apply the following result:

Lemma 3.8. Let A1 and A2 be two L× L Hermitian matrices, and let

J(u1,u2)
.
=
uH1 A1u1u

H
2 A2u2

|uH1 u2|2
. (3.100)

The minimum of J is given by the smallest eigenvalue of the matrix A1A2 (which
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is also the smallest eigenvalue of A2A1), and it is attained, when

u?1/c1 = eigenvector of A2A1 associated to its smallest eigenvalue, (3.101)

u?2/c2 = eigenvector of A1A2 associated to its smallest eigenvalue, (3.102)

with c1 and c2 two arbitrary nonzero complex scalars.

Proof. The proof can be found in Appendix 3.D.

Therefore, the optimum value of (3.99) is given by

χ
.
= λmin

(
(YH(IK + ρC)−1Y)(YHY)−1

)
, (3.103)

whereas the ML estimates of h̄ and u‖, up to a complex scaling factor, are respec-

tively given by

ˆ̄h = eigenvector of (YH(IK + ρC)−1Y)(YHY)−1 associated to λmin, (3.104)

û‖ = eigenvector of (YHY)−1(YH(IK + ρC)−1Y) associated to λmin, (3.105)

where with some abuse of notation we used λmin to denote the smallest eigenvalue

of the corresponding matrix. Consider now the singular value decomposition (SVD)

of the data matrix

Y = UYSYVH
Y (3.106)

where UY is K × L with orthonormal columns; SY is L × L diagonal, with the

singular values of Y; and VY is L×L unitary. Then, it is easily seen that χ can be

written as

χ = λmin

(
UH

Y(IK + ρC)−1UY

)
. (3.107)

With this, the compressed log-likelihood under H1 can be finally written as

`1
.
= −LK(1 + log

π

K
)−K log det YHY

+K max
ρ≥0

(
log

λ−1
min

(
(YH(IK + ρC)−1Y)(YHY)−1

)
det1/K(IK + ρC)

)
, (3.108)

which must be maximized only over the scalar parameter ρ.
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GLRT detector

From Lemma 3.5 the compressed log-likelihood under the hypothesis 0 is given by

`0 = max
Σ2

log f(y |R0) (3.109)

= −LK(1 + log
π

K
)−K log det (YHY). (3.110)

Therefore, the GLRT statistic (3.9) is found to be

T = e`1−`0 = max
ρ≥0

λ−Kmin

(
UH

Y(IK + ρC)−1UY

)
det(IK + ρC)

, (3.111)

whose computation involves a maximization with respect to a scalar parameter only.

It is interesting to note that the dependence of the GLRT statistic T with the data

is via UY only. Hence this is a sufficient statistic for this problem, and the GLRT

discards the spatial information contained in {SY,VY}.

To the best of our knowledge, there is no closed-form solution to the maximiza-

tion of

t(ρ)
.
=
λ−Kmin(UH

Y(IK + ρC)−1UY)

det(IK + ρC)
, ρ ≥ 0, (3.112)

in the general case. We conjecture that t(ρ) is a quasi convex function on ρ, and

therefore its maximization can be efficiently carried out by numerical means (Boyd

and Vandenberghe, 2004).

In the next subsections we focus on two particular cases of practical significance

for which the maximization with respect to ρ (and therefore the GLRT statistic)

can be obtained in closed form. First, we consider the case of bandpass signals with

constant psd within the passband. Then we will study the case of arbitrary spectra

in the low SNR regime, i.e. when the SNR goes to zero.

GLRT for ideally flat bandpass signals

Using the asymptotic EVD of the covariance matrix C ≈ WΛWH that we intro-

duced in (2.5), we have that, for large K the GLRT statistic is given by

T = max
ρ≥0

λ−Kmin(UH
YW(IK + ρΛ)−1WHUY)

det(IK + ρΛ)
. (3.113)
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We say that a signal is ideally flat bandpass if its psd takes only two values,

either zero or a certain constant. This translates into the diagonal of the matrix

Λ which presents BK nonzero values, with B denoting the occupied bandwidth

fraction. Moreover, due to the normalization of C, namely tr C = K, we have that

the nonzero elements of Λ are equal to 1/B. Using these properties of the matrix

Λ, it is easy to see that, for ideally flat bandpass signals, the test can be written as

T
1/K
flat = max

ρ≥0

λ−1
min(UH

YW(IK − ρ
1+ρ/BΛ)WHUY)

(1 + ρ/B)B
(3.114)

=

[
min
ρ≥0

(
1− ρ

1 + ρ/B
λmax(UH

YWΛWHUY)

)
(1 + ρ/B)B

]−1

(3.115)

=

[
min
ρ≥0

(
1− ρ

1 + ρ/B
λmax

)
(1 + ρ/B)B

]−1

, (3.116)

where with some abuse of notation we defined λmax
.
= λmax(UH

YCUY). By taking

the derivative of the function to minimize, it is straightforward to find that the

minimum in ρ ≥ 0 is obtained at

ρ? =


0, if 0 < λmax ≤ 1;

λmax−1
1/B−λmax

, if 1 < λmax ≤ 1/B;

∞, if λmax > 1/B.

(3.117)

However, it is easily shown that λmax ≤ 1/B. To see this, write Λ = 1
BJ2, where J

is a diagonal matrix with ones in the positions where Λ has nonzero values. Then

λmax(UH
YCUY) =

1

B
max
x 6=0

‖JWHUYx‖2
‖x‖2 (3.118)

But it is clear that ‖JWHUYx‖2 ≤ ‖WHUYx‖2 = xHUH
YWWHUYx = xHx =

‖x‖2. Hence λmax ≤ 1/B.

Therefore the test results in

T
1/K
flat =


B

1−B
(

1
B − λmax

)(
1−B
1

λmax
−B

)B
for 1 ≤ λmax ≤ 1/B,

1 otherwise,

(3.119)

which in the region 1 ≤ λmax ≤ 1/B can be shown to be non-decreasing in λmax.

Hence, an equivalent asymptotic GLRT detector for flat bandpass signals is given



80 Chapter 3. Multiantenna Detection under Unknown Noise Statistics

by

T ′
.
= λmax(UH

YCUY)
H1

≷
H0

γ′. (3.120)

Note that this is a closed-form detector that can be implemented without much

complexity, and it is thus adequate for practical systems.

Asymptotic GLRT in the low SNR regime

We study now the behavior of the GLRT statistic T from (3.111) when the SNR

is small. This low SNR regime is of interest in cognitive radio scenarios, in which

spectrum sensors must provide reliable decisions regarding the presence of primary

transmissions which may be very weak, due to signal fading and shadowing.

Using the definition of t(ρ) in (3.112) we have that the GLRT statistic can be

written as

T = max
ρ≥0

t(ρ). (3.121)

Consider now the following first-order Taylor approximations around ρ = 0:

(IK + ρC)−1 = IK − ρC + o(ρ), (3.122)

det(IK + ρC) = 1 + ρ tr{C}+ o(ρ), (3.123)

where the “little-o” notation indicates a function that goes to zero faster than ρ as

ρ→ 0, i.e. f(ρ) ∈ o(ρ) if limρ→0
f(ρ)
ρ = 0. Now note that

λmin(UH
Y(IK + ρC)−1UY) = λmin(UH

Y(IK − ρC)UY + o(ρ)) (3.124)

= λmin(UH
Y(IK − ρC)UY) + o(ρ) (3.125)

= 1− ρ λmax(UH
YCUY) + o(ρ), (3.126)

where the second step follows from the fact that, if A(ρ) /∈ o(ρ), then

lim
ρ→0

1

ρ
[λmin(A(ρ) + o(ρ))− λmin(A(ρ))]

= min
x 6=0

[
lim
ρ→0

xHA(ρ)x

ρxHx
+ lim
ρ→0

xHo(ρ)x

ρxHx

]
−min

x 6=0

[
lim
ρ→0

xHA(ρ)x

ρxHx

]
(3.127)

= 0. (3.128)



3.4 Detection of rank-1 signals in spatially correlated noise 81

Therefore one has

log t(ρ) = −K log
(
1− ρλmax(UH

YCUY) + o(ρ)
)
− log (1 + ρ tr{C}+ o(ρ))

(3.129)

= Kρ

[
λmax(UH

YCUY)− tr{C}
K

]
+ o(ρ), (3.130)

where we have made use of the fact that log(1 + aρ) = aρ + o(ρ). Consider the

hypothetical scenario in which the parameter ρ were known. In that case, the GLRT

statistic is directly t(ρ). In low SNR, (3.130) shows that this GLRT is equivalent to

the test

λmax(UH
YCUY)− tr{C}

K

H1

≷
H0

γ′′, (3.131)

which does not make use of the value of ρ. That is, for sufficiently low SNR,

knowledge of ρ becomes irrelevant, and the GLRT can be rephrased as

T ′ = λmax(UH
YCUY)

H1

≷
H0

γ′, (3.132)

whether ρ is known or unknown. Note that this is the same test as (3.120), which

was derived for a specific signal spectrum with general SNR.

Remark 3.3. The fact that the test T ′ is the GLRT for these two cases of particular

interest suggest that it is likely to offer good performance in other scenarios as well.

Indeed, in Section 3.4.4 numerical results will be presented that confirm this point.

3.4.3 Asymptotic performance analysis

In this section we derive the analytical performance of the proposed detector in

the asymptotic regime when K →∞. In the Section 3.4.4 numerical results will be

presented, showing that this asymptotic distribution approximates well the empirical

data even for moderate values of K.

Asymptotic distribution in the weak signal regime

While the GLRT approach to signal detection is not necessarily optimal, it usually

offers good detection performance (Mardia et al., 1979). Moreover, the asymptotic

distribution of the GLRT statistic under both hypotheses in the weak signal regime
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is known under certain regularity conditions (Kay, 1998). If we denote by real-

valued θ the set of unknown parameters under the hypothesis H1 which are fixed to

θ = θ0 under H0, and by φ the set of real-valued unknown parameters free under

both hypotheses, the asymptotic distribution of the GLRT statistic T is given by

2 log T ∼
{

χ2
Q under H0,

χ′2Q(λ) under H1,
(3.133)

where χ2
Q denotes a central chi-squared distribution with Q degrees of freedom,

χ′2Q(λ) denotes a non-central chi-squared distribution with Q degrees of freedom and

non-centrality parameter λ.

Theorem 3.1. The asymptotic (as K → ∞) distribution of the GLRT test statistic

T given in (3.111), under H0 and under H1 as θ → θ0, is given by (3.133), with

parameters

Q = 2L− 1, (3.134)

λ = 0. (3.135)

Proof. The value of Q is given by (Kay, 1998) the cardinality of the set of (unknown)

parameters fixed under H0, given by θ. In our problem this set corresponds to the

real elements of the vector h fixed to h = 0 under H0. However, since this vector

features in the likelihood function as hhH we may fix one of its components to be

real without loss of generality. Hence, we obtain a total number of Q = 2L− 1 free

real degrees of freedom.

Now, the value of λ is given by (Kay, 1998)

λ = (θ1 − θ0)T
[
[F (θ0, φ)]θ,θ − [F (θ0, φ)]θ,φ[F (θ0, φ)]−1

φ,φ[F (θ0, φ)]φ,θ

]
(θ1 − θ0),

(3.136)

where θ1 is the true value of the parameter vector θ, θ0 corresponds to the fixed

value of the parameter vector θ under the hypothesisH0, F (θ′, φ′) denotes the Fisher

Information Matrix of the estimation problem evaluated at (θ′, φ′) and [·]α′,β′ denotes

the submatrix corresponding to rows and the columns relative to the parameters α′

and β′ respectively.
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We may rearrange the L2 real components of Σ−2 in a L× L matrix K as

[K]ij
.
=


<{[Σ−2]ij} for j > i,

1
2 [Σ−2]ij for i = j,

={[Σ−2]ij} for j < i.

(3.137)

Then, we may define the spaces for nuisance and non-nuisance parameters, respec-

tively, as

φ
.
= {vec(K)}, (3.138)

θ
.
= {a1, . . . , aL, b1, . . . , bL−1}, (3.139)

with a = [a1 · · · aL]T
.
= <{hΣ} and b = [b1 · · · bL−1 0]T

.
= ={hΣ}.

Using this set of parameters, tedious but straightforward algebra yields

Fθi,θj
.
= E

[
−∂

2 log f

∂θi∂θj

]
= 0, (3.140)

Fθi,φj
.
= E

[
−∂

2 log f

∂θi∂φj

]
= 0, (3.141)

and from (3.136) finally we obtain λ = 0.

Remark 3.4. Theorem 3.1 applies under the assumptions that (i) the data record

K is long enough, and (ii) the value of the set of parameters θ under H1 is close to

θ0. Under the model considered here, the asymptotic result under H1 is too coarse

in order to offer an useful approximation, since for λ = 0 the distributions under

both H0 and H1 are equal. However, as we will see in Section 3.4.4 by means of

simulations Theorem 3.1 models accurately the statistic under H0 and can be used

to approximate the distribution under H1 as we will see next.

Asymptotic analysis under H1

We present now a result concerning the asymptotic value of the statistic T as K →∞
regardless of the value of θ, which will then be used to approximate the distribution

of the statistic under H1.

Theorem 3.2. Consider the GLRT statistic T from (3.111). Then one has

lim
K→∞

E
[
|T − T̃ (ρ0)|2

]
= 0, (3.142)
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where ρ0
.
= hHΣ−2h the true value of the SNR, and

T̃ (ρ0)
.
=

(
tr{IK + ρ0C}/K

(det(IK + ρ0C))1/K

)K
. (3.143)

Proof. The proof is included in Appendix 3.E.

Remark 3.5. The asymptotic behavior of T given by T̃ (ρ0) in (3.143) corresponds to

the K-th power of the sphericity ratio of the temporal covariance matrix IK + ρ0C,

i.e., a metric which measures how far the received signal is from temporally white

noise.

Note that, by virtue of the asymptotic approximation (2.5) of the covariance

matrix of a wide-sense stationary process, the limit of (T̃ (ρ0))1/K is seen to be

lim
K→∞

(T̃ (ρ))
1
K =

1
2π

∫ π
−π [1 + ρ0Sss(e

ω)] ∂ω

exp
{

1
2π

∫ π
−π log [1 + ρ0Sss(eω)] ∂ω

} (3.144)

where Sss(e
ω) is the psd of the signal {sk}. The right hand-hand side of (3.144) is

the inverse of the spectral flatness measure (SFM) associated to the power spectrum

1 + ρ0Sss(e
ω) (Gray Jr. and Markel, 1974). Its minimum value is 1 for ρ0 = 0 (no

signal) and it increases monotonically with ρ0 towards its asymptotic value, given

by the inverse of the SFM associated to Sss(e
ω) (Dugre et al., 1980). It follows

that the primary signal maximizing T̃ (ρ) for a given ρ > 0 concentrates its energy

in a single frequency point, since in this case the spectral flatness measure (SFM)

is minimum. This is not surprising, since these peaky signals are easier to detect in

the presence of noise.

From (3.133) we have that under H1, the asymptotic mean of the statistic is

given by E[2 log T ] = Q+ λ. On the other hand, using the result in Theorem 3.2 it

is easy to see that

lim
K→∞

E[2 log T ] = lim
K→∞

2 log T̃ (ρ) (3.145)

= lim
K→∞

2K log
tr{IK + ρ0C}/K

(det(IK + ρ0C))1/K
. (3.146)

Combining these two results, we have that for sufficiently large K, λ >> Q and we
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Figure 3.4: Distribution of the statistic −2 log T for L = 4 and K = 128. (a) Under
H0 (b) Under H1.

may approximate λ ≈ 2 log T̃ (ρ). This fact suggests the use of

λsph
.
= 2 log T̃ (ρ) (3.147)

= 2K log
tr{IK + ρ0C}/K

(det(IK + ρ0C))1/K
(3.148)

as centrality parameter of the distribution underH1. In Section 3.4.4 it will be shown

that this approximation offers a very accurate characterization of the distribution

of the statistic for the SNR range of interest.

3.4.4 Numerical results and discussion

In this section we numerically study the performance of the proposed detectors via

Monte Carlo simulations and test the accuracy of the analytical approximations. In

each experiment we fix the empirical SNR ρ = hHΣ−2h, while the actual channel h

and the noise spatial covariance matrix Σ2 are randomly generated at each Monte

Carlo realization5.

First, Fig. 3.4 compares the asymptotic analytical distributions with the simu-

5At each realization Σ2 = GHG with G an L × L matrix with independent circular Gaussian
entries. The vector channel h presents independent circular Gaussian components scaled to obtain
a fixed value of ρ = hHΣ−2h.
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lation results of the exact GLRT T given in (3.111) optimized6 over ρ and denoted

here as iterative GLRT. The setup considered here is L = 4, K = 128, for the detec-

tion of a flat bandpass signal occupying half of the band. The covariance matrix is

normalized as tr{C} = K. We observe an excellent agreement between the empirical

results and the asymptotic distributions even for moderate values of K.

In the next subsections, we compare the exact GLRT T , iterative GLRT, with

the closed-form GLRT T ′ from (3.120), denoted here asymptotic GLRT, which has

been shown to coincide with the GLRT for vanishing SNR or for rectangular psd of

the primary signal.

It is interesting to note that most of the proposed detectors in the literature

cannot deal with the strong interference model considered in this section, since the

full-rank spatial covariance matrix of the noise always masks the presence of the

primary signal when the temporal correlation structure of the latter is ignored. In

order to compare the proposed detectors against a suitable benchmark, and inspired

by the GED derived in Chapter 2, we consider a generalized energy detector which

assumes the noise level, i.e., the trace of Σ2, to be available to the spectral monitor.

Then, the detector compares

TED =
tr{YHCY}

tr{Σ2} (3.149)

against a threshold. Since any primary signal will increase the energy observed by

the system, the expected TED under H1 will also be increased.

Detection performance in low SNR.

In Fig. 3.5 we show the empirical performance of the proposed detectors versus the

analytical curves for a scenario with L = 4, K = 512, ρ = 0.2 (natural units) and

two different primary psd. One corresponds to a DVB-T television signal7 (ETSI,

2004) with bandwidth B = 7.61 MHz quantized to 9-bit precision. This channel

was downshifted to baseband and asynchronously sampled at fs = 16 MHz, thus in

this case the occupied bandwidth fraction is 48%. A second curve shows the same

scenario with a QAM primary signal shaped as a square root of a raised cosine filter

with rolloff factor equal to 1 and sampled at twice the baud rate, thus occupying

6Implemented using a gradient descent algorithm, initialized at ρ = 1, initial stepsize µ = 100,
decreased to µ = µ/4 when the descent direction changes sign and stop condition |∂κ(ρ)/∂ρ| < 1e−5
(with a maximum number of iterations equal to 100).

78K mode, 64-QAM, guard interval 1/4, inner code rate 2/3.
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Figure 3.5: ROC curve showing the detection performance for OFDM and square
root raised cosine signals when ρ = 0.15, L = 2 and K = 512.

the whole Nyquist bandwidth.

As can be seen from Fig. 3.5, in these harsh SNR conditions, the energy detector

offers a poor detection performance compared to the proposed schemes. Moreover,

since we are in the low SNR regime, both the iterative and the asymptotic GLRT

detectors show virtually the same performance, for both rectangular and squared

root raised cosine primary signals. It is interesting to note the good match between

the empirical results and the analytical curves, even for this moderate value of K.

Fig. 3.5 also shows the effect of primary signal shaping. As it could be expected

from the analytical results in the results in (3.133) and Theorem 3.2, the proposed

detectors work noticeably better for less spectrally flat primary signals. The reason

is that for fixed ρ, the DVB-T signal presents a smaller spectral flatness measure

than the squared root raised cosine primary signals.

Detection performance versus SNR.

We now turn to study the loss incurred by the closed-form asymptotic GLRT de-

tector T ′ from (3.120) with respect to the exact GLRT T given in (3.111) as the

SNR increases. To this end, Fig. 3.6 shows the probability of detection achieved8

by the two detectors versus the average per antenna SNR = 10 log10(ρ/L) for fixed

PFA = 0.05 and the two primary signal types presented in the previous section.

8Each point was computed using 106 Monte Carlo iterations.
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Figure 3.6: PD performance versus SNR for fixed PFA = 0.05, L = 4 and K = 128.

The remaining system parameters are L = 4 and K = 128. First, we note that

the asymptotic analytical results match reasonably well the empirical results for the

SNR range of interest. In second place, it can be seen that for the DVB-T signal

both the asymptotic GLRT detector and the exact iterative scheme offer the same

performance, since the asymptotic GLRT coincides with the GLRT for rectangular

spectra. However, with other kinds of power spectra (such as the squared root raised

cosine), the asymptotic GLRT presents a performance penalty which increases with

the SNR. This penalty, nevertheless, is not large, which makes the asymptotic GLRT

detector a good candidate in settings in which computational complexity is an issue.

3.5 Conclusions

In this chapter we have studied the problem of multiantenna detection of primary

signals in the presence of noise with unknown statistics. We derived the GLRT

detectors under different assumptions on the noise spatial covariance matrix.

First, we considered the problem of detecting vector-valued rank-P signals when

the noise is assumed uncorrelated across the antennas. These detectors are robust

to a mismatch in noise levels across the antennas and exploit the rank-P structure of

the primary signals, including as particular cases several previous schemes derived

either for P = 1 or for large P . Then, we considered the case of noise with arbitrary

spatial structure. In this case a certain temporal structure is required for the primary
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signal in order to make it distinguishable from the noise, and indeed the detection

performance of the GLRT has been shown to be closely related to the sphericity

ratio of the temporal covariance matrix IK + ρ0C. The different GLRTs for the

problem of multiantenna detection under unknown noise statistics are summarized

in Table 3.1, with special emphasis on the cases treated in this chapter.

The content of this chapter is mainly based in two journal articles derived

from the preliminary work presented at the 2nd International Workshop on Cog-

nitive Information Processing (CIP 2010) (López-Valcarce et al., 2010). The the-

oretical results exposed in Section 3.3 (rank-P signal detection in presence of un-

correlated noises) have been obtained in collaboration with the Advanced Signal

Processing Group (GTAS, University of Cantabria) under the national research

project COMONSENS (CONSOLIDER-INGENIO 2010 CSD2008-00010), and con-

stitutes a joint journal paper to appear in IEEE-TSP (Ramı́rez et al., 2011). The

derivation and performance of the GLR detector under correlated noise (Section

3.4) constitute a joint work with the Signal Processing for Communications Re-

search Group (SPCOM, Technical Univ. of Catalonia UPC) under the national

research project SPROACTIVE (reference TEC2007-68094-C02-01/TCM) and CO-

MONSENS in preparation to be submitted to IEEE-TSP as a joint paper (Sala

et al., 2011).
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Noise structure Signal structure

Temporally Spatially Temporally Spatially

White Uncorrelated iid White Unstructured

Sphericity Ratio Test

T
1
KL =

1
L

trace(R̂)
det1/L(R̂)

White Uncorrelated iid White Rank-P

‡ Noise subspace sphericity test

log T
1
KL = log

[
1
L

∑L
i=1 λi

(
∏L
i=1 λi)

1/L

]
− L−P

L log

[
1

L−P
∑L
i=P+1 λi

(
∏L
i=P+1 λi)

1/(L−P )

]
with λi the ordered eigenvalues of R̂.

White Uncorrelated non-iid White Unstructured

Hadamard Ratio Test

T
1
K =

det(R̂)∏L
i=1[R̂]i,i

White Uncorrelated non-iid White Rank-P

‡ No closed-form solution. Alternating optimization scheme in Section 3.3.2.

Asymptotic low SNR GLRT:

log T
1
K ≈ −P − log

∏P
i=1 βie

−βi

with βi the ordered eigenvalues of the sample spatial coherence matrix Ĉ.

White Unstructured C Rank-1

‡ No closed-form solution:

T
1
K = maxρ

λ−1
min(UH

Y(IK+ρC)−1UY)

(det(IK+ρC))1/K
.

Asymptotic low SNR GLRT (exact for square psd):

T ′
.
= λmax(UH

YCUY).

Table 3.1: Summary of the GLRT for multiantenna detection under unknown noise
statistics. ‡ Proposed.
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Appendix 3.A Proof of Lemma 3.2

Since the EVD of R is R = U(Ψ2 + σ2I)UH , the log-likelihood is given by

log f
(
Y |H, σ2

)
= −LK log π−K log det

(
Ψ2 + σ2I

)
−Ktr

[
UHR̂U

(
Ψ2 + σ2I

)−1
]
,

(3.150)

which, letting A = UHR̂U, can be rewritten as follows:

log f
(
Y |H, σ2

)
= −LK log π −K

P∑
i=1

log
(
ψ2
i + σ2

)
−K(L− P ) log σ2

−K
P∑
i=1

[A]i,i
ψ2
i + σ2

− K

σ2

L∑
i=P+1

[A]i,i. (3.151)

Now (3.151) is maximized with respect to ψ2
i and σ2 for

σ̂2 =
1

L− P
L∑

i=P+1

[A]i,i, (3.152)

ψ̂2
i = [A]i,i − σ̂2, i = 1, . . . , P. (3.153)

Now, substituting (3.152) and (3.153) in (3.151), it becomes

log f
(
Y |H, σ2

)
= −LK (log π + 1)−K

P∑
i=1

log[A]i,i

−K(L− P ) log

(
1

L− P
L∑

i=P+1

[A]i,i

)
, (3.154)

which has to be maximized subject to A = UHR̂U and UHU = IL. It is easy

to check that (3.154) is a Schur-convex (Jorswieck and Boche, 2007) function of

[A]i,i, i = 1, . . . , L. Consequently, (3.154) is upper bounded by the i-th largest

eigenvalue of A (Jorswieck and Boche, 2007), since the vector of eigenvalues ma-

jorizes any vector comprised by the diagonal entries of a given matrix. This upper

bound is attained by choosing Û = V, so that A is diagonal. From this result, the

proof follows.
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Appendix 3.B Detailed computation of (ILK+(hΣhHΣ)T⊗
C)−1

Let us define g = h∗Σ and let C1/2 be a Hermitian square root of C, i.e. C =

C1/2C1/2, CH/2 = C1/2. Making use of the matrix inversion lemma we have that

(ILK + ggH ⊗C)−1

= (ILK + (g ⊗C1/2)(gH ⊗C1/2))−1 (3.155)

= ILK − (g ⊗C1/2)(IK + (gH ⊗C1/2)(g ⊗C1/2))−1(gH ⊗C1/2) (3.156)

= ILK − (g ⊗C1/2)(IK + ‖g‖2C)−1(gH ⊗C1/2) (3.157)

Substituting back g = h∗Σ and noting that ‖g‖2 = hHΣ−2h = ρ we obtain

(ILK + (hΣhHΣ)T ⊗C)−1 = ILK − (hΣhHΣ)T ⊗ (C1/2(IK + ρC)−1C1/2). (3.158)

Appendix 3.C Proof of Lemma 3.7

Assume that we have a square invertible matrix A and an unitary matrix G. We

partition the unitary matrix G as G = [g1 G⊥], where g1 represents the first column

and G⊥ the remaining ones. The inverse of GHAG can be written as a function of

its determinant and adjugate matrix as

(GHAG)−1 =
adj(GHAG)

det(GHAG)
, (3.159)

that can be rewritten as

GH(A)−1G =
adj(GHAG)

det(A)
. (3.160)

Let now e1
.
= [1 0 · · · 0]. Now we multiply both sides of the eq. (3.160) by eH1 on

the left and e1 on the right to obtain

gH1 (A)−1g1 =
eH1 adj(GHAG)e1

det(A)
, (3.161)
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where we have made use that Ge1 = g1. Note that

eH1 adj(GHAG)e1 = [adj(GHAG)]11 (3.162)

= det(GH
⊥AG⊥). (3.163)

Plugging (3.163) into (3.161) we obtain the desired result:

det(GH
⊥AG⊥) = gH1 (A)−1g1 det(A). (3.164)

Appendix 3.D Proof of Lemma 3.8

The function we want to minimize takes the form

J(u1,u2)
.
=
uH1 A1u1u

H
2 A2u2

|uH1 u2|2
, (3.165)

where u1 and u2 represent any two vectors and A1 and A2 are two given Hermitian

matrices. Then we can formally state the problem as

{u?1,u?2} = arg min
{u1,u2}

J(u1,u2) (3.166)

Note that J(u1,u2) is invariant to scalings in u1, u2. Then, the minimization (3.166)

is equivalent to

arg min
{u1,u2}

uH1 A1u1u
H
2 A2u2, subject to |uH1 u2|2 = c2, (3.167)

where c2 is a positive constant. In order to solve (3.167) we construct the Lagrangian

L = uH1 A1u1u
H
2 A2u2 − χ(|uH1 u2|2 − c2), (3.168)

where χ denotes the Lagrange multiplier associated to the constraint. Now, from

∇uH1 L = 0 and ∇uH2 L = 0 we obtain, respectively:

uH2 A2u2 ·A1u1 = χuH2 u1 · u2, (3.169)

uH1 A1u1 ·A2u2 = χuH1 u2 · u1. (3.170)
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Note the symmetry between (3.169) and (3.170). By solving for the Lagrange mul-

tiplier from these two equations we have that

χ =
uH1 A1u1u

H
2 A2u2

|uH1 u2|2
, (3.171)

that is, the Lagrange multiplier coincides with the quantity we are minimizing. We

substitute now the value of u2 from (3.170) and χ from (3.171) into (3.169) to obtain

the simplified equality

A2A1u1 = χu1, (3.172)

and, by symmetry of the problem, it is easy to see that

A1A2u2 = χu2. (3.173)

Hence the minimum of J(u1,u2) is achieved at

J(u?1,u
?
2) = λmin(A1A2) = λmin(A2A1) (3.174)

u?1 = eigenvector of A2A1 associated to its smallest eigenvalue, (3.175)

u?2 = eigenvector of A1A2 associated to its smallest eigenvalue. (3.176)

Appendix 3.E Proof of Theorem 3.2

First, note that the GLRT test statistic (3.111), can be rewritten as

T = max
ρ

λ−Kmin

(
(YHY)−1(YHD(ρ)Y)

)
det(IK + ρC)

, (3.177)

with D(ρ)
.
= (IK + ρC)−1.

From the signal model (3.40) we have that

1

K
E[YHAY] =

1

K
E[hsHAshH ] +

1

K
E[GHNHANG] (3.178)

= h
1

K
tr{E[ssH ]A}hH + GH 1

K
tr{E[NNH ]A}G (3.179)

=
tr{CA}
K

hHh +
tr{IKA}

K
GGH . (3.180)
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Now, noting that YHAY/K is a consistent estimator of its mean as K → ∞, the

following asymptotic equivalence can be established

YHAY

K

var−→ tr(CA)

K
hhH +

tr(A)

K
Σ2, (3.181)

where we use the symbol
var−→ to denote stochastic convergence in variance, i.e.

aK
var−→ bK ⇐⇒ lim

K→∞
E{|aK − bK |2} = 0, (3.182)

so that in the matrix case
var−→ applies componentwise.

Applying this result to the GLRT test statistic (3.177), in the limit we obtain

T
var−→ max

ρ≥0

λKmin

(
[tr(C)hhH + tr(IK)Σ2]−1 [tr(CD(ρ))hhH + tr(D(ρ))Σ2]

)
det(IK + ρC)

.

(3.183)

The minimum eigenvalue featuring in the numerator of the right-hand side of

(3.183) is computed next. For a given eigenvalue δ with associated eigenvector v

the following equality holds

(
tr(C)hhH +KΣ2

)−1 (
tr(CD(ρ))hhH + tr(D(ρ))Σ2

)
v = δv. (3.184)

Now, multiplying both sides of this equation by Σ−2
(
tr(C)hhH +KΣ2

)
on the left

we obtain

s tr(CD(ρ))Σ−2h + tr(D(ρ))v = δ
(
s tr(C)Σ−2h +Kv

)
, (3.185)

with s
.
= hHv an scalar. Note that both sides of (3.185) present the same structure,

namely they are the sum of a contribution parallel to Σ−2h with a contribution

parallel to the eigen vector v. Then it is easy to see that for ρ > 0 one eigenvector

corresponds to v = v1
.
= Σ−2h/‖Σ−2h‖2. Moreover, every other eigenvector v = v⊥

must fulfill s = hHv⊥ = 0. If not, s 6= 0 and the first term of the sum would

result in a contribution parallel to v1, i.e., it would be not orthogonal to v1. Then,

the eigenvalues associated to the eigenvectors v⊥ are equal and given by δ⊥ =

tr(D(ρ))/K. On the other hand, the eigenvalue associated to v1 is given by

δ1 =
tr{(IK + ρ0C)(IK + ρC)−1}

tr{IK + ρ0C}
, (3.186)
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with ρ0
.
= hHΣ−2h the true value of the effective SNR. Since C is positive definite

and ρ > 0 it follows that δ1 is decreasing with ρ0, i.e. for ρ0 ≥ 0, δ1 is upper bounded

by

δ1 ≤
tr{(IK + 0C)(IK + ρC)−1}

tr{IK + 0C} = δ⊥. (3.187)

Hence, λmin = δ1 is the smallest eigenvalue in (3.184) with v1 its associated eigen-

vector. Substituting (3.186) into (3.183) we obtain

lim
K→∞

T = max
ρ

1

det(IK + ρC)

(
tr{IK + ρ0C}

tr{(IK + ρ0C)(IK + ρC)−1}

)K
. (3.188)

We will now show that the ρ maximizing the asymptotic GLRT is the true parameter

ρ = ρ0. Using the eigendecomposition of C = UH
CΛCUC we may isolate all the

terms in (3.188) depending in ρ as

ζ(ρ)
.
= log det(IK + ρΛC) +K log tr{(IK + ρ0ΛC)(IK + ρΛC)−1}. (3.189)

Now, if we denote by λ1, . . . , λK the elements of the diagonal matrix ΛC, we have

that the first and second derivatives of ζ(ρ) with respect to ρ are given by

∂ζ(ρ)

∂ρ
=

K∑
i=1

λi
1 + ρλi

−K
(

K∑
i=1

1 + ρ0λi
1 + ρλi

)−1 K∑
i=1

λi(1 + ρ0λi)

(1 + ρλi)2
, (3.190)

∂2ζ(ρ)

(∂ρ)2
= −

K∑
i=1

λ2
i

(1 + ρλi)2
−K

(
K∑
i=1

1 + ρ0λi
1 + ρλi

)−2

×( K∑
i=1

λi(1 + ρ0λi)

(1 + ρλi)2

)2

− 2

(
K∑
i=1

1 + ρ0λi
1 + ρλi

)(
K∑
i=1

(1 + ρ0λi)λ
2
i

(1 + ρλi)3

) , (3.191)

respectively. Evaluating these derivatives at ρ = ρ0 we obtain:

∂ζ(ρ)

∂ρ

∣∣∣∣
ρ=ρ0

= 0, (3.192)

∂2ζ(ρ)

(∂ρ)2

∣∣∣∣
ρ=ρ0

=
K∑
i=1

(
λi

1 + ρ0λi

)2

− 1

K

(
K∑
i=1

λi
1 + ρ0λi

)2

(3.193)

= xTx− xT1

1T1
, (3.194)
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where we have defined

x
.
=

[
λ1

1 + ρ0λ1
· · · λK

1 + ρ0λK

]T
. (3.195)

From (3.192) we have that the first derivative equals zero at ρ = ρ0, while from

(3.194), using Cauchy-Schwarz inequality, it follows that ∂2ζ(ρ)/(∂ρ)2 ≥ 0 when

evaluated at ρ = ρ0. Hence ρ = ρ0 is a minimum of ζ(ρ). Finally, substituting the

optimum value ρ = ρ0 into (3.188) we obtain the desired result.
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4.1 Introduction

Cognitive Radios must monitor a wide frequency band comprising a large number

of channels (say Nch). In principle, different strategies are possible. For example,

the spectrum monitor may select one channel at a time, downconvert it to baseband

and perform spectral sensing on this single channel. To this end, we may use any of

the multiantenna schemes presented in the previous chapters which enable spectral

sensing in a single primary channel. On the other hand, it is desirable to process

the whole bandwidth of interest simultaneously in order to increment the agility and

detection performance of the system. However, the requirements on dynamic range

and linearity for the analog stage, as well as on the sampling rate and resolution of

the analog to digital converter (ADC) determine the maximum bandwidth that can

be simultaneously processed.

In order to avoid this drawbacks and make wideband processing practical we

may divide the band of interest into subbands comprising M < Nch primary channels

and process them sequentially. Hence, by suitably choosing M we obtain a trade-off

between detection performance and complexity of the analog stage. However, in

some cases, the large bandwidth involved makes Nyquist-rate wideband monitoring

impractical, due to power consumption and digital processing constraints. In this

scenario an analog to information (A2I) converter could be used in place of the

classical ADC in order to obtain a sub-Nyquist sampling rate.

In this chapter we will assume that the primary network employs FDMA with

known channelization and we will restrict our analysis to single-antenna secondary

systems. Under these assumptions we consider the problem of detecting primary

users when the analog to digital converter acquires a subband comprising M ≤ Nch

primary channels. This wideband approach provides more information about the

background noise level, a parameter that must be estimated in practice. We will

first consider a spectral monitor employing a conventional ADC without any further

assumptions on the primary network activity on the band. Under this model we

will derive the GLRT for the detection of a given channel of the band in cases of

practical interest. As a second step, we will further elaborate the model to consider

an A2I converter and certain a priori information on the primary activity of the

band. Under this model we will show a connection between a Bayesian approach to

primary user detection and compressed sensing (CS) theory.
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4.2 Problem formulation

The primary network uses Frequency Division Multiple Access (FDMA), with fixed

channelization known to the spectrum monitor. Several primary channels are sensed

simultaneously, by selecting a wide band containing M of such channels, downcon-

verting it to baseband and sampling the resulting analog signal through an analog

to digital or through an analog to information converter.

The baseband analog signal at the receiver after wideband filtering is given by

r(t) =
M∑
m=1

σmsm(t) + σn(t), (4.1)

where n(t) is a zero-mean, circular complex Gaussian noise with unit variance, as-

sumed to be frequency flat in the captured bandwidth; σ2 is the background noise

power; sm(t) is the (noiseless) primary signal in channel m, normalized to have unit

variance (E[|sm(t)|2] = 1); and σ2
m is the power of the primary signal in the mth

channel.

Following the motivation exposed in the previous chapters, the primary trans-

missions {sm(·)} will be assumed Gaussian distributed. Note that this assumption

applies specially to this wideband set-up, since the secondary synchronization loop

cannot be simultaneously locked to the parameters of multiple primary networks.

As a result, possibly existing signal structure, such as pilots or cyclostationary fea-

tures, degrades strongly due to synchronization errors. Then, the signals {sm(·)} will

be modeled as wide-sense stationary, zero mean circular Gaussian processes. Since

{sm(·)} correspond to different primary transmissions, they are assumed statistically

independent.

4.2.1 Wideband acquisition

We restrict our study to linear ADC and A2I converters, that is, converters that

can be represented in matrix form from an oversampled version of the analog signal

r(t). For compactness we define s0(t)
.
= n(t) and σ2

0
.
= σ2. The finite discrete

representation of (4.1) at Nyquist rate using the obvious vector notation can be

written as

y =

M∑
m=0

σmsm, (4.2)



102 Chapter 4. Wideband Spectrum Sensing

where y and sm with m = 0, . . . ,M are now N × 1 circular Gaussian vectors,

with zero mean and covariance matrix Cm
.
= E[smsHm]. Due to the normalization

and stationarity of the original processes {sm(·)}, Cm is Toeplitz with ones on the

diagonal; whereas C0 = I, since the noise is assumed white.

If we define the K ×N compression matrix Φ, with K ≤ N , we can write the

signal available to the digital spectrum monitor as

ỹ
.
= Φy =

M∑
m=0

σms̃m, (4.3)

with s̃m
.
= Φsm.

4.2.2 Signal model

If the channels from the primary transmitters to the monitor are frequency flat1,

then the Cm are known, and they summarize the knowledge about the primary

network (channelization and spectral shape of transmissions) available to the spec-

trum monitor. Since si, sj with 1 ≤ i 6= j ≤ M correspond to different primary

transmissions, they are regarded as statistically independent, and also independent

of the background noise s0. Hence, under this model the observation ỹ is zero-mean

circular Gaussian with covariance

R̃(σ)
.
= E[ỹỹH ] =

M∑
i=0

σ2
i C̃i (4.4)

where C̃i
.
= ΦCiΦ

H . Note that in (4.4) we have made explicit the dependence of

R̃ with the vector of unknown parameters

σ
.
= [ σ2

0 σ2
1 · · · σ2

M ]T . (4.5)

Under the Gaussian model, second-order statistics capture all relevant informa-

tion about the problem. In order to ensure identifiability of the parameter vector σ

from (4.4), it is assumed that the {Cm}Mm=0 are linearly independent. (As it turns

out, this condition amounts to requiring that the psds of the signals {sm(t)}Mm=0, de-

noted by {Sm(eω)}Mm=0, be linearly independent). Were this not the case, it would

1The effect of unknown frequency selective channels on the proposed detectors will be considered
later using a realistic channel model by means of simulations.
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be impossible to distinguish among primary users with linearly dependent emission

masks. This assumption is clearly valid in FDMA scenarios, which are the focus of

the current chapter2.

4.2.3 Hypothesis testing problem

The problem is to determine the subset of idle channels in {1, . . . , M}. This could

be cast as an Hypothesis Testing Problem with 2M different hypotheses; however,

multiple hypothesis testing in the presence of unknown parameters is a difficult

problem (Kay, 1998), so we consider instead successive detection of the M channels,

one by one. For the m-th channel, the problem becomes:

Hm0 : σ2
m = 0 (primary is absent in channel m), (4.6)

Hm1 : σ2
m > 0 (primary is present in channel m). (4.7)

This is a composite problem, since the probability density function (pdf) f of the

observations under the two hypotheses depends on the vector of unknown parameters

σ. We consider the Generalized Likelihood Ratio Test (GLRT)

TGLRT
.
=

maxσ|Hm0 f(ỹ |σ)

maxσ|Hm1 f(ỹ |σ)
(4.8)

=
f(ỹ | σ̂ML,0)

f(ỹ | σ̂ML,1)

Hm0
≷
Hm1

γ′, (4.9)

with γ′ a threshold, and σ̂ML,j the ML estimate of σ under Hmj .

Conditioned on σ, the observations are Gaussian distributed:

f(ỹ |σ) =
exp

{
−ỹHR̃−1(σ)ỹ

}
πK det R̃(σ)

. (4.10)

Note that σ̂ML,1 is the maximizer of (4.10) w.r.t. σ subject to σ2
m ≥ 0 for 0 ≤

m ≤ M , whereas σ̂ML,0 is obtained by fixing σ2
m = 0 and maximizing (4.10) w.r.t.

the remaining parameters in σ under the same constraint. Consequently, one has

f(ỹ | σ̂ML,1) ≥ f(ỹ | σ̂ML,0), so that the test statistic in (4.8) satisfies 0 ≤ TGLRT ≤ 1.

2Linear independence of emission masks may not hold if, for example, different primary users
share the same bandwidth using Code Division Multiple Access.
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4.3 Wideband spectrum sensing at Nyquist rate

In the first place we will assume that a conventional ADC is used and the input

signal to the spectral monitor is acquired at Nyquist rate, i.e., Φ = IK , ỹ = y and

C̃i = Ci for i = 0, 1, . . . ,M . Therefore, and for clarity of exposition, we will drop

the ·̃ superscript in the rest of this section.

The GLRT under this scenario will allow us to study the signal features which

can be exploited for detection purposes. Interestingly, the noise level estimation

process will depend not only on the guard bands between channels, but also on the

signal level found at channels perceived as “weak”.

4.3.1 GLRT detection

We proceed now with the derivation of the GLRT. To this end we first need to obtain

the ML estimate of σ under both hypotheses.

Note from (4.10) that the unknown parameter vector σ appears in the pdf

through the covariance matrix R(σ) only. Therefore the problem reduces to the

estimation of a covariance matrix with structure given by (4.4) with σ2
m ≥ 0 for

m = 0, . . . ,M , and thus it fits in the framework addressed in Burg et al. (1982).

Here we follow a slightly different approach to derive the conditions on the uncon-

strained ML estimate, which will lead to a simplified closed-form estimator which is

asymptotically efficient for certain cases of practical interest.

Unconstrained ML estimation

ML estimation amounts to minimizing the negative of the log-likelihood function

L(y;σ)
.
= ln det R(σ) + yHR−1(σ)y. (4.11)

The partial derivatives of L(y;σ) w.r.t. σ2
i are

∂L(y;σ)

∂σ2
i

= − tr{R−1(σ)Ci}+ yHR−1(σ)CiR
−1(σ)y. (4.12)

Neglecting the positivity constraints σ2
j ≥ 0, the unconstrained ML estimate of σ

satisfies ∂L/∂σ2
i = 0 for 0 ≤ i ≤ M . In view of (4.12), the natural approach to

solving these equations seems to be the diagonalization of the matrices involved. To
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this end we will make use of the asymptotic diagonalization of Toeplitz matrices

introduced in (2.5).

As K →∞, the following approximation holds:

Cm ≈WΛmWH , m = 0, 1, . . . ,M, (4.13)

where W denotes the K × K orthonormal IDFT matrix, Λm
.
= diag(λm), and

λm
.
= [λ

(m)
0 λ

(m)
1 · · · λ(m)

K−1]T with

λ
(m)
k

.
= Sm(e

2πk
K ), 0 ≤ k ≤ K − 1. (4.14)

Substituting (4.13) into (4.4), it follows that, as K →∞,

R ≈W∆(σ)WH , with ∆(σ)
.
=

M∑
i=0

σ2
iΛi. (4.15)

Note that ∆(σ) = diag{[ δ0(σ) δ1(σ) · · · δK−1(σ) ]} contains uniformly spaced

samples of the psd of the observations, given by

δk(σ)
.
=

M∑
j=0

σ2
jλ

(j)
k , 0 ≤ k ≤ K − 1. (4.16)

With this asymptotic diagonalization of y, we can substitute (4.15) back into (4.12)

to obtain

∂L(y;σ)

∂σ2
i

≈ − tr
{
∆−1(σ)Λi

}
+ vH∆−1(σ)Λi∆

−1(σ)v, (4.17)

where

v
.
= WHy = [v0 v1 · · · vK−1]T (4.18)

is the DFT of the observations.

Then, equating (4.17) to zero, we find that as K → ∞ the unconstrained ML

estimate σ̂ML will satisfy

K−1∑
k=0

λ
(i)
k

δk(σ̂ML)
=

K−1∑
k=0

|vk|2λ(i)
k

δ2
k(σ̂ML)

, 0 ≤ i ≤M. (4.19)
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While in general it is not possible to obtain σ̂ML in closed form3 from the

conditions (4.19), it is possible to obtain approximate closed-form solutions as we

will see next.

Unconstrained Least Squares estimation

The left-hand side of (4.19) can be rewritten as

K−1∑
k=0

λ
(i)
k

δk
=

K−1∑
k=0

δkλ
(i)
k

δ2
k

(4.20)

=
M∑
j=0

σ2
j

(
K−1∑
k=0

λ
(j)
k λ

(i)
k

δ2
k

)
. (4.21)

Substituting (4.21) into (4.19), one obtains, in matrix form,

LH∆−2(σ̂ML)Lσ̂ML = LH∆−2(σ̂ML)p, (4.22)

where the K × (M + 1) matrix L and the K × 1 vector p (the periodogram) are

respectively defined as

L
.
= [ λ0 λ1 · · · λM ], (4.23)

p
.
= [ |v0|2 |v1|2 · · · |vK−1|2 ]T (4.24)

= [ p0 p1 · · · pK−1 ]T . (4.25)

Note that the periodogram p is an asymptotically unbiased estimate of the psd

of the observations (Stoica and Moses, 2005), and therefore p?
.
= limK→∞ E[p] =

Lσ, with σ the vector of true parameters. Thus, asymptotically, the expected value

of p lies in the subspace spanned by the columns of L. The linear independence

assumption on the psds {Si(ejω), 0 ≤ i ≤ M} implies that L has full column rank,

so that L†L = IM+1 with L† denoting the pseudoinverse of L. Then it holds that

LL†p? = LL†Lσ = Lσ = p?, (4.26)

3These nonlinear equations can be solved numerically by efficient fixed-point iterative algo-
rithms (Burg et al., 1982; López-Valcarce and Vazquez-Vilar, 2009).
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which suggests the approximation p ≈ LL†p. Substituting this in (4.22),

σ̂ML ≈
[
LH∆−2(σ̂ML)L

]−1
LH∆−2(σ̂ML)LL†p

= L†p
.
= σ̂LS. (4.27)

The LS subscript refers to the fact that this estimate is the solution to the uncon-

strained Least Squares problem minσ̂ ‖Lσ̂−p‖22. The rows of L† can be interpreted

as matched filters that combine the power in the different frequency bins (the entries

of p) in order to estimate the variances in each channel. The LS estimate is asymp-

totically unbiased, with covariance given by cov(σ̂LS) = L† cov(p)(L†)H . Since the

asymptotic covariance of p is given by limK→∞∆2(σ) (Stoica and Moses, 2005),

one finds that

lim
K→∞

cov(σ̂LS) = lim
K→∞

L†∆2(σ)(L†)H . (4.28)

Cramér-Rao Lower Bound

Under the Gaussian model and assuming Φ = IK , the elements of the Fisher infor-

mation matrix (FIM) F (σ) are given by (see e.g. Kay (1993)):

[F (σ)]ij = tr

{
R−1(σ)

∂R(σ)

∂σ2
i

R−1(σ)
∂R(σ)

∂σ2
j

}
. (4.29)

The Cramér-Rao Lower Bound (CRLB) for any unbiased estimator of σ is then

given by var(σ̂2
i ) ≥ [F−1(σ)]ii. In our case, ∂R(σ)/∂σ2

i = Ci. Then, using the

asymptotic approximations (4.13) and (4.15),

[F (σ)]ij ≈ tr
{
∆−1(σ)Λi∆

−1(σ)Λj

}
(4.30)

=
K−1∑
k=0

λ
(i)
k λ

(j)
k

δ2
k(σ)

. (4.31)

Thus, the asymptotic FIM is given by

lim
K→∞

F (σ) = lim
K→∞

LH∆−2(σ)L. (4.32)

Comparing (the inverse of) (4.32) with (4.28), it is seen that in general the

LS estimate (4.27) does not necessarily achieve the CRLB. In Section 4.3.2 a par-

ticular setting will be discussed for which it can be shown that the LS estimate is
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asymptotically efficient, i.e. it achieves the CRLB as K →∞.

Quasi-GLRT detection

Let σ̂j = [ σ̂2
0j σ̂2

1j · · · σ̂2
Mj ]T denote an estimate (ML, LS, or other) of σ

under Hmj , j ∈ {0, 1}. Using these estimates in the detection test, we obtain an

approximation to the GLRT. Using the asymptotic diagonalization (4.15), we can

write

det R(σ̂j) ≈ det ∆(σ̂j) =
K−1∏
k=0

[
M∑
i=0

σ̂2
ijλ

(i)
k

]
, (4.33)

yHR−1(σ̂j)y ≈ vH∆−1(σ̂j)v =

K−1∑
k=0

pk∑M
i=0 σ̂

2
ijλ

(i)
k

. (4.34)

The resulting “Quasi-GLRT” (QGLRT) can be written as

log
f(y | σ̂0)

f(y | σ̂1)
≈

K−1∑
k=0

log

[∑M
i=0 σ̂

2
i1λ

(i)
k∑M

i=0 σ̂
2
i0λ

(i)
k

]
+
K−1∑
k=0

[
pk∑M

i=0 σ̂
2
i1λ

(i)
k

− pk∑M
i=0 σ̂

2
i0λ

(i)
k

]
(4.35)

.
= log T (4.36)

This detector can be implemented once all σ̂j are available, either by numerical

means (ML) or in closed form (LS). However, it is difficult in general to evaluate

the performance of this detector or to obtain some intuition about its operation. In

the next section we focus on a particular scenario whose structure will allow further

simplification of (4.35).

4.3.2 Orthogonal frequency-flat signals in white noise

For FDMA-based primary networks, the signals in different channels are orthogonal,

i.e. their psds have disjoint supports. In addition, the psd of a multicarrier signal is

approximately constant within its support. In this section, the QGLRT (4.35) will

be particularized to this setting.

Definition 4.1. A signal is frequency-flat bandpass if its psd takes only two levels:

zero or a given constant value.

Definition 4.2. Two signals s
(i)
k , s

(j)
k are non-partially overlapping if either their psds
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have disjoint supports, or the support of one of them contains that of the other.

For this class of signals, it turns out that the LS estimate (4.27) is asymptoti-

cally efficient:

Theorem 4.1. If the signals s
(i)
k and s

(j)
k are frequency-flat bandpass and non-partially

overlapping for any 0 ≤ i, j ≤ M , then the asymptotic covariance matrix (4.28) of

the unconstrained LS estimate equals the inverse of the asymptotic FIM (4.32).

Proof. See Appendix 4.A.

In the following we will assume that s
(i)
k , i = 1, . . . ,M , are frequency-flat band-

pass with disjoint frequency supports. Since s
(0)
k (white noise) is frequency-flat

bandpass covering the whole bandwidth, it follows that s
(i)
k , s

(j)
k are non-partially

overlapping for any 0 ≤ i, j ≤ M . This is a special case of the broader family of

non-partially overlapping frequency-flat bandpass signals, and will be denoted here

as orthogonal frequency-flat signals in white noise. For this class of signals, Theorem

4.1 motivates the use of LS estimates in the QGLRT.

QGLRT with unconstrained LS estimates

Let Wi denote the set of frequency bins within the support of Si(e
jω), i = 1,. . . ,

M , and let the set of “noise-only” frequency bins (comprising all guard bands in the

captured bandwidth) be

W0
.
= {k : k ∈ {0, 1, . . . ,K − 1} and k /∈ ∪Mi=1Wi}. (4.37)

We also define the fractional bandwidths wi
.
= |Wi|/K, 0 ≤ i ≤ M , such that

0 < wi < 1 and
∑M

i=0wi = 1. Since the signals are normalized to unit variance, it

follows that

[L]ki = λ
(i)
k =


1, i = 0,
1
wi
, k ∈ Wi, i = 1, . . . ,M,

0, otherwise.

(4.38)

The pseudoinverse of L is given in this case by

[L†]ik =


1

Kw0
, k ∈ W0, i = 0,

−wi
Kw0

, k ∈ W0, i 6= 0,
1
K , k ∈ Wi, i 6= 0,

0, k ∈ Wj , j 6= i, j 6= 0,

(4.39)
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as can be seen by checking that L†L = IM+1. Let us denote the averaged peri-

odogram over Wi by

qi
.
=

1

Kwi

∑
k∈Wi

pk, 0 ≤ i ≤M. (4.40)

The unconstrained LS estimate of σ under Hm1 is just L†p, and is given by

σ̂2
i1 =

{
q0, i = 0,

wi(qi − q0), i 6= 0.
(4.41)

On the other hand, the unconstrained LS estimate under Hm0 is such that the sub-

band corresponding to channel m is consolidated into the “noise-only” set:

σ̂2
i0 =


q0m, i = 0,

0, i = m,

wi(qi − q0m), i 6= 0, i 6= m,

(4.42)

where

q0m
.
= (w0q0 + wmqm)/(w0 + wm). (4.43)

If the estimates (4.41)-(4.42) are used in the QGLRT, then some straightforward

algebra shows that (4.35) reduces to

1

K
log T = (w0 + wm) log

(qw0
0 qwmm )

1
w0+wm

q0m
. (4.44)

The argument of the log in (4.44) is the weighted geometric to arithmetic mean ratio

of q0 and qm, with respective weights w0, wm. This ratio, which is a function of

qm/q0 alone, is always less than or equal to one, with equality iff q0 = qm. It is

monotonically increasing for qm/q0 < 1, and decreasing for qm/q0 > 1. Thus, the

QGLRT with unconstrained LS estimates decides that channel m is idle if qm/q0 ∈
[α, β], for some α < 1 < β depending on the threshold, and busy otherwise. This is

against intuition, since qm < q0 is always a reasonable indicator of an idle channel.

Note that if qm < q0, then the unconstrained LS estimate of σ2
m under Hm1 is

σ̂2
m1 = wm(qm − q0) < 0, which is against prior knowledge. This motivates the use

of constrained estimators in the QGLRT.
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QGLRT with constrained LS estimates

The constrained LS estimate of σ for orthogonal frequency-flat signals in white noise

is given next.

Theorem 4.2. Let L be given by (4.38). The minimizer of ‖Lσ̂ − p‖22 subject to

σ̂2
i ≥ 0, 0 ≤ i ≤M (i.e. the constrained LS estimate under Hm1 ), takes the following

form:

σ̂2
j1 =


w0q0+

∑
l∈U1

wlql

w0+
∑
l∈U1

wl
, j = 0,

0, j ∈ U1,

wj(qj − σ̂2
01), otherwise,

(4.45)

where U1
.
= {j : qj < σ̂2

01, j 6= 0}.

Analogously, the minimizer of ‖Lσ̂ − p‖22 subject to σ̂m = 0, σ̂2
i ≥ 0, i 6= m

(i.e. the constrained LS estimate under Hm0 ), is given by:

σ̂2
j0 =


w0q0+

∑
l∈U0

wlql

w0+
∑
l∈U0

wl
, j = 0,

0, j ∈ U0,

wj(qj − σ̂2
00), otherwise,

(4.46)

where U0
.
= {m} ∪ {j : qj < σ̂2

00, j 6= 0}.

Proof. See Appendix 4.B.

Note that (4.45)-(4.46) are implicit expressions, since they depend on the sets

U1, U0 whose definitions are in terms of σ̂2
01 and σ̂2

00 respectively. Nevertheless, these

estimates and sets can be easily obtained using the Algorithm 2. It is straightforward

to verify that this algorithm outputs sets U1, U0 and estimates {σ̂2
j1}, {σ̂2

j0} satisfy-

ing (4.45) and (4.46) respectively. This scheme successively includes the “weakest”

channel (i.e., the channel with smallest averaged periodogram over the correspond-

ing frequency support) into the computation of the noise variance estimate, until

this estimate falls below the estimated power levels of the remaining channels. Note

that the only difference of the estimation algorithm under the two hypotheses comes

from the initialization of the sets U1 and U0, with the latter always including the

m-th channel.

In order to obtain the QGLRT based on the constrained LS estimates above, we

distinguish two cases, depending on the strength with which channel m is perceived
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Algorithm 2: Constrained LS estimate under Hmk for k = 0, 1.

Input: Measured energies qj .
Output: Constrained LS estimates σ̂2

jk and Uk.
Initialize:

Set Uk =

{
{m} for k = 0,
∅ for k = 1.

repeat
Set σ̂2

jk = 0 for all j ∈ Uk.
Obtain the unconstrained estimates σ̂2

jk for j /∈ Uk:
σ̂2

0k =
w0q0+

∑
l∈Uk

wlql

w0+
∑
l∈Uk

wl

σ̂2
jk = wj(qj − σ̂2

0k), j /∈ Uk ∪ {0}
if obtained estimate is not feasible then

Let j? = arg minj /∈Uk∪{0}{qj},
update Uk ← Uk ∪ {j?}

until obtained estimate is feasible

relative to the noise level. Note that by construction, m ∈ U0, whereas m may or

may not belong to U1.

Case 1

m ∈ U1, so that channel m is perceived as “weak” under Hm1 . Then we have the

following.

Proposition 4.1. If m ∈ U1, then U1 = U0, so that the constrained LS estimates

under Hm1 and Hm0 are the same.

Proof. See Appendix 4.C.

Therefore, if m ∈ U1, then from (4.35) we have log T = 0, i.e. the QGLRT

declares channel m as idle.

Case 2

m /∈ U1, so that channel m is perceived as “not weak” under Hm1 . Then one has:

Proposition 4.2. If m /∈ U1, then U1 ⊂ U0.
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Proof. See Appendix 4.D.

Hence, if m /∈ U1, then U0 = U1 ∪ S for some set S with S ∩ U1 = ∅. For

j /∈ U0 ∪ {0}, it turns out that wj σ̂
2
01 + σ̂2

j1 = wj σ̂
2
00 + σ̂2

j0, and thus these indices do

not contribute to the QGLRT (4.35), which after some algebra is found to yield

1

K
log T = log

(σ̂2
01)

w0+
∑
j∈U1

wj ∏
j∈S q

wj
j(

σ̂2
00

)w , (4.47)

where w
.
= w0 +

∑
j∈U0 wj . Note that if S = {m}, then this ratio becomes a

monotonically decreasing function of qm/σ̂
2
01 ≥ 1. Hence, if U0 = U1 ∪ {m}, the

QGLRT can be written as

qm
σ̂2

01

Hm1
≷
Hm0

γ (Test 1). (4.48)

Remark 4.1. Test 1 compares the power measured in channel m to a threshold γσ̂2
01

proportional to the estimated noise power. Note that the noise power is estimated

using not only the guard bands (corresponding to W0), but also those channels

perceived as weak (i.e. each channel j for which the constrained LS power estimate

yields a zero value so that j ∈ U1).

If S 6= {m}, then the sets of weak channels estimated under Hm0 and Hm1 are

different and it is not possible to reduce (4.47) to a simple ratio of averaged powers.

A possible approach is to disregard the influence of the weak channels with indexes

j ∈ S, obtaining (4.48). Another possibility is to take these channels into account

in order to obtain a new estimate of the noise power

σ̂2
02

.
=
w0q0 +

∑
j∈U0,j 6=mwjqj

w0 +
∑

j∈U0,j 6=mwj
, (4.49)

and then use (4.49) in the following test:

qm
σ̂2

02

Hm1
≷
Hm0

γ (Test 2), (4.50)

which reduces to (4.48) if S = {m}.
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4.3.3 Statistical analysis

The detectors from Section 4.3.2 are based on the random variables qi, 0 ≤ i ≤ M .

Note that v = WHy is Gaussian with a diagonal (asymptotic) covariance matrix

∆(σ). For orthogonal frequency-flat signals in white noise, the diagonal of ∆(σ)

is piecewise constant, and in particular, its elements are constant over the bins

corresponding to the i-th channel (this also applies to the set of “noise-only” bins).

Hence, qi is the sum of square magnitudes of zero-mean Gaussian random variables,

asymptotically uncorrelated and with the same variance. Thus, for large K, qi

becomes chi-squared distributed with Kwi degrees of freedom; in turn, as K →∞,

this distribution converges to a Gaussian distribution: qi ∼ N (µi, α
2
i ). Moreover,

qi, qj are asymptotically uncorrelated for i 6= j, since the two sets of bins used for

their computation are disjoint. In terms of the SNR in channel i, defined as

ρi
.
= σ2

i /(wiσ
2
0), (4.51)

the mean and variance of qi are given by

µi
.
=

{
σ2

0, i = 0,

σ2
0(1 + ρi), i > 0,

(4.52)

α2
i
.
=

{
σ4
0

Kw0
, i = 0,

σ4
0

Kwi
(1 + ρi)

2, i > 0,
(4.53)

as can be readily found from the definition of qi in (4.40).

Single-channel detection with guard bands

As a first step, we analyze the case M = 1, for which all of the proposed detectors

boil down to the same test. This test can be expressed as z
.
= q1−γq0 ≷H1

H0
0, where

γ > 1 is a threshold and the statistic z follows a Gaussian distribution:

z ∼ N
(
σ2

0(1 + ρ1 − γ),
σ4

0

K

[
(1 + ρ1)2

w1
+
γ2

w0

])
. (4.54)

Since σ2
0 > 0, the probabilities of false alarm and detection can be respectively

written as PFA = Pr{(z/σ2
0) > 0 | ρ1 = 0} and PD = Pr{(z/σ2

0) > 0 | ρ1 > 0}. These

probabilities do not depend on the noise power σ2
0, as expected. In order to set the

threshold γ, two approaches are possible:
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Threshold for fixed PFA. In view of (4.54), it is readily found that, for

PFA ≤ 0.5,

γ(PFA) =

1 +

√
1−

(
1− [Q−1(PFA)]2

Kw0

)(
1− [Q−1(PFA)]2

Kw1

)
1− [Q−1(PFA)]2

Kw0

, (4.55)

where Q(·) is the complementary Gaussian cumulative distribution function, and

Q−1(·) denotes its inverse. The resulting probability of detection for an SNR ρ1 is

then given by

PD = Q

√Kw0
γ(PFA)− (1 + ρ1)√
γ2(PFA) + w0

w1
(1 + ρ1)2

 . (4.56)

Threshold for fixed PD. In the context of cognitive radio systems, a false

alarm results in a missed opportunity of using an idle channel, and therefore PFA is

related to the throughput efficiency of the secondary system. However, this parame-

ter is irrelevant to the primary network. On the other hand, a missed detection may

result in the secondary user accessing a channel in use, thus producing interference

to the primary system. Regulatory bodies are likely to require a minimum detec-

tion performance to avoid collisions with primary (licensed) users (FCC, 2008), i.e.

PD ≥ P ?D at some target SNR ρ?1. The threshold γ is then determined for P ?D ≥ 0.5

as

γ(P ?D; ρ?1) = (1 + ρ?1)

1−
√

1−
(

1− κ
Kw0

)(
1− κ

Kw1

)
1− κ

Kw0

, (4.57)

with κ
.
= [Q−1(P ?D)]2. This yields

PFA = Q

√Kw0
γ(P ?D; ρ?1)− 1√
γ2(P ?D; ρ?1) + w0

w1

 . (4.58)

Multichannel detection

Single-channel spectrum sensing, as described in the previous subsection, exploits

the presence of upper and lower guard bands to estimate the noise power. In prac-

tice, these guard bands will likely appear distorted, due to the transition bands of
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the analog filter used for channel extraction. This may preclude the use of those

frequency components for noise variance estimation. When M > 1 channels are

simultaneously captured, the guard bands between adjacent channels remain undis-

torted, and therefore this problem is alleviated.

Without loss of generality, let m = M , so that the channel under scrutiny is the

M -th one. In order to simplify the presentation, we restrict our analysis to the case

in which all channels have the same bandwidth4: w1 = w2 = · · · = wM . Whereas

finding analytical expressions for the performance of the QGLRT detector (4.47)

seems intractable, an analysis of the simplified tests (4.48) and (4.50) is included in

the Appendix 4.E.

The resulting distribution of the statistics (4.48) and (4.50) in the multichannel

setting does not present a simple expression as when considering a single chan-

nel. Nevertheless, the probability of detection and probability of false alarm of the

proposed Tests 1 and 2, can be written as the integral of a multivariate Gaussian

distribution over the positive orthant. Therefore, for Tests 1 and 2 PFA and PD can

be found for a given scenario without resorting to Monte Carlo simulations.

While no a priori assumptions have been made about the occupancy of the

band in the derivation of these detectors, as it turns out, in a multichannel scenario

their performance depends on the a priori probability of any given channel being in

use by the primary network. This probability, or activity factor, will be denoted by

a in what follows. In the next section we will see that in practical implementations

of the proposed schemes it is possible to deal with unknown values of the activity

factor a by considering worst case scenarios.

4.3.4 Numerical results and discussion

We evaluate now the performance of the proposed detectors (QGLRT (4.47), Test

1 (4.48) and Test 2 (4.50)), both theoretically and via Monte Carlo simulations. For

the primary system we consider a terrestrial digital TV broadcast network using

8K-mode DVB-T modulation5. The channel spacing is 8 MHz with a 7.61 MHz

signal bandwidth, which is one of the options considered in the DVB-T standard

(ETSI, 2004) resulting in w1 = · · · = wM = 0.95125/M , w0 = 0.04875. A band

4The analysis can be readily modified in order to account for channels with different bandwidths,
although the notation becomes somewhat cumbersome.

5For Monte Carlo simulation, the modulation parameters of the DVB-T signals were: 64-QAM,
guard interval 1/4, inner code rate 2/3.
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Figure 4.1: False alarm and missed detection performance in a setting with M = 4
channels. (a) Test 1 (analytical). (b) Test 2 (analytical). (c) QGLRT (empirical).

comprising M of such DVB-T channels is downconverted to baseband and sampled

at Nyquist rate, i.e. 8M MHz.

Influence of channel occupancy

In the first experiment we consider a setting with M = 4 channels and K = 2048

samples. The SNR of the channel to detect is set to −5 dB. The detectors were

analyzed for activity factors of a = 0.1, 0.5 and 0.9. In the simulations, the SNRs

of the active channels (other than that under scrutiny) were generated following a

log-normal distribution with mean 0 dB and dB-spread equal to 1 dB.

In order to investigate the issue of threshold selection, we plot in Fig. 4.1 the

misdetection and false alarm probabilities of the three schemes, as a function of the

detection threshold. For Tests 1 and 2, the analytical method of Appendix 4.E was

used, whereas for the QGLRT (4.47), PD and PFA were obtained empirically. It is

seen that, in the region of interest (small probability of misdetection), and for fixed

thresholds, the detection performance of the three tests improves as a decreases.

This is reasonable, since lower primary activity results in more channels perceived

as weak and this can be exploited in order to improve the noise variance estimates.

Hence, in order to satisfy PD ≥ P ?D for a given target P ?D when the activity factor is

unknown, the threshold must be set assuming the worst case a = 1.

Once the threshold has been fixed in order to satisfy the detection requirements,
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Figure 4.2: Complementary ROC curves in a setting with M = 8 channels, for
activity factor (a) a = 0.1 and (b) a = 0.9.

the behavior of PFA in terms of a is different for the three schemes. Whereas the

false alarm rate of the QGLRT worsens as a decreases, for Test 1 PFA is almost

insensitive to variations in a. Interestingly, for Test 2 a region exists for which both

PD and PFA improve with decreasing a. Thus, by setting the threshold for a given

target PD ≥ P ?D assuming a = 1, performance guarantees in terms of PFA (missed

opportunities for transmission) can be given for Tests 1 and 2.

Next we consider a setting with M = 8 channels, with the remaining parameters

kept at the same values as in the previous experiment. Fig. 4.2 shows the comple-

mentary Receiver Operating Characteristics (ROC) curves for the three detectors

and different activity factors. As expected, the QGLRT-based detector outperforms

the other two suboptimal schemes. Tests 1 and 2 perform similarly for high ac-

tivity factors, although Test 2 presents an advantage as a decreases. Note that in

the extreme case of a = 1 there are no idle channels, and thus S = ∅ in the con-

text of Sec. 4.3.2, which in turn implies that the three tests become approximately

equivalent for a→ 1.

In Fig. 4.2 a good agreement is observed between analytical and empirical

results for Tests 1 and 2, with just a slight mismatch for high activity settings

(a = 0.9) which can be explained as follows. In the derivation of the analytical

expressions in Appendix 4.E it was assumed that busy channels do not affect the
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Figure 4.3: Detector performance with frequency selective channels.

distribution of the statistics for these detectors. This assumption is more likely to

be violated as the percentage of busy channels (i.e. the activity factor a) increases.

Impact of frequency selectivity

Simulations were carried out in order to gauge the effect of unknown multipath

propagation conditions in the performance of the proposed detectors. The multipath

channels were generated according to the WINNER Phase II Model (Hentilä et al.,

2007) with Profile C1 (Suburban). The central frequency is 800 MHz, and it is

assumed that each of the signals at the M = 8 different channels arrives from a

different transmitter. The locations of the transmitters and of the spectrum monitor

were randomly selected on a square of dimension 15× 15 km.

Figure 4.3 shows the ROC curves of the three detectors under frequency-flat

and frequency-selective channels, for a setting with K = 2048, SNR = −5 dB and

a = 0.5. As can be seen, performance remains essentially unaltered under multipath

conditions. This can be explained by the structure of the proposed detectors: the

linear combinations of different frequency bins effectively averages out the effects of

frequency-selective channels.
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Figure 4.4: Analytical performance of Test 2 as a function of the number of channels
M . The sample size is given by K = 128M2. (a) Probability of misdetection. (b)
Probability of false alarm.

Influence of the number of channels

Consider a setting in which the operating band consists of Nch channels of B Hz

each, which the spectrum monitor must scan in a total time of T s. To this end, the

band is subdivided into subbands of M < Nch channels each, which are sequentially

analyzed. The observation time for each of the MB Hz-wide subbands is thus

MT/Nch s. Hence, sampling at the Nyquist rate fs = MB Hz, the number of

samples available for processing each subband of M channels is K = M2(BT/Nch).

Thus, at the expense of a linear increase of fs in terms of M , a quadratic increase

of K is obtained, so that a favorable trade-off between detection performance and

ADC cost/resolution can be achieved.

Assuming BT/Nch = 128, Fig. 4.4(a) shows the analytical probability of misde-

tection of Test 2 versus SNR for different values of M . For each M , the thresholds

are computed in order to achieve PD = 0.9 at a target SNR = −5 dB assuming

full occupancy (worst case). With this design, having more channels in the subband

is seen to improve detection performance for SNRs at and above the target value,

for all values of a, thus offering additional interference guarantees to the primary

system.
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Fig. 4.4(b) shows the corresponding false alarm rate in terms of M . It is

seen that PFA decreases exponentially with the number of channels included in the

subband. A reduction in PFA increases the opportunities of accessing the spectrum

and therefore the global throughput of the secondary system.

4.4 Compressed spectrum sensing

In the previous section we have seen that the detection performance in a wideband

setting heavily depends on the activity factor a, which was assumed unknown. We

now consider a more elaborated model that includes general A2I converters and cer-

tain a priori knowledge on the primary activity summarized in the activity factor a.

Note that this parameter could be established without much difficulty from empir-

ical measurements in the bands of interest, or estimated online from the observed

activity in the band. We recall the signal model from (4.3),

ỹ
.
= Φy =

M∑
m=0

σms̃m, (4.59)

where Φ denotes a K×N compression matrix. Then we can define the set of active

channels as

A =
{
m | σ2

m > 0, 0 ≤ m ≤M
}
. (4.60)

It is assumed that the noise is always present, and thus 0 ∈ A always. For the signal

channels, we model the sparsity of the system with each event m ∈ A following

an independent Bernoulli distribution: Pr{m ∈ A} = a for m = 1,. . . , M , with a

assumed known to the receiver. In this respect, a gives an indication of the average

occupancy of the frequency band and can be estimated beforehand; in a CR context,

it is expected that a � 1. Additionally no assumption is made on σ2
m given that

channel m is active.

4.4.1 Estimation from compressed measurements

In order to implement the GLRT (4.8) we need to obtain the ML estimate of the

vector σ. However, as mentioned in the previous section there exists no closed-

form solution (Burg et al., 1982) for the ML estimation of the structured covariance
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matrix

R̃(σ) =
M∑
i=0

σ2
i C̃i. (4.61)

Instead we will follow a Bayesian approach to the estimation of the parameter vector

σ which will result in an efficient estimator in the low SNR regime that asymptoti-

cally achieves the Cramér-Rao lower bound.

MAP estimation

To explicitly introduce sparsity in our derivation we formulate the joint estimation

problem of finding the sparsity pattern A together with the power vector σ. Using

Bayes’ rule we can state the maximum a posteriori (MAP) estimation of {σ,A} as

{σ̂, Â} =arg max
σ,A

f(A,σ|ỹ) (4.62)

=arg max
σ,A

f(ỹ|A,σ)f(σ|A)f(A) (4.63)

=arg max
σ(A),A

f(ỹ|A,σ(A))f(A). (4.64)

where in the last step we made use of the fact that the a priori distribution f(σ|A)

is modeled as non-informative for those active components of σ with the sparsity

pattern imposed by A (denoted here as σ(A)). That is, σ(A) has zeros at the

positions specified by {0, . . . ,M} − A, but no prior is assumed for the remaining

components.

Substituting (4.10) and the Bernoulli distribution

f(A) = a|A|(1− a)M−|A| (4.65)

into (4.64), and disregarding constant additive terms, we obtain the following equiv-

alent minimization problem:

{σ̂, Â} =arg min
σ,A

{
log det(R̃(σ(A))) + ỹHR̃−1(σ(A))ỹ − |A| log

a

1− a

}
. (4.66)

Remark 4.2. It is interesting to note that the weighting factor associated to |A|
depends only on a, that is, the probability that a channel is active. When a = 1/2,

the cardinality term disappears and the optimization procedure reduces to an ML

optimization with respect to f(ỹ|σ). On the other hand, when a given band presents
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a low (or high) occupancy rate, thus a→ 0 (a→ 1), the weight of |A| tends to −∞
(+∞). In this case, as intuition suggests, the optimal estimate Â becomes the empty

(or full) set of channels, independently of the values of f(ỹ|σ(A)).

The expression (4.66) is a mixed discrete/continuous maximization problem,

i.e., A can only take one out of 2M values, whereas for fixed A the maximization

is performed over the continuous parameter vector σ(A). Therefore this optimiza-

tion problem, as it is, is NP-hard and needs to be simplified in order to conduct

to practical spectrum reconstruction algorithms. An approximate MAP estimator

that performs close to the constrained CRLB was proposed in Vazquez-Vilar et al.

(2010a). However, this approach requires a complex iterative implementation that

hinders its practical application.

Here we will follow a slightly different approach, which will make clear the con-

nection between the proposed Bayesian framework and classical compressed sensing

theory. As we will see next, a series of simplifications of (4.66) conduct to a psd

estimator equivalent to Basis Pursuit (BP) denoising (Tropp, 2006) of the one-shot

compressed covariance estimate ỹỹH . To this end, we resort first to the Taylor

expansion of log det(R̃(σ)) and R̃−1(σ) around the true vector of power levels σ?,

which will then be particularized for the low SNR regime.

Low SNR approximation

To simplify notation, let us define R̃?
.
= R̃(σ?) =

∑M
i=0(σ?i )

2C̃i, where σ? is the

vector of true power levels. Then for σ → σ? we have that

log det(R̃(σ)) ≈ log det(R̃?) +
M∑
m=0

(σ2
m − (σ?m)2) tr{R̃−1

? C̃m}

− 1

2

M∑
i=0

M∑
j=0

(σ2
i − (σ?i )

2)(σ2
j − (σ?j )

2) tr{R̃−1
? C̃iR̃

−1
? C̃j}, (4.67)

R̃−1(σ) ≈ R̃−1
? −

M∑
m=0

(σ2
m − (σ?m)2)R̃−1

? C̃mR̃−1
?

+

M∑
i=0

M∑
j=0

(σ2
i − (σ?i )

2)(σ2
j − (σ?j )

2)R̃−1
? C̃iR̃

−1
? C̃jR̃

−1
? . (4.68)

Substituting (4.67) and (4.68) into (4.66), disregarding the terms not depending
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on σ we obtain the approximation

σ̂ ≈arg min
σ

{1

2

M∑
i=0

M∑
j=0

σ2
i σ

2
j tr{R̃−1

? C̃iR̃
−1
? C̃j} −

M∑
m=0

σ2
m tr{R̃−1

? C̃mR̃−1
? ỹỹH}

−
M∑
i=0

M∑
j=0

σ2
i σ

2
j tr{R̃−1

? C̃iR̃
−1
? C̃jK

2}+ 2
M∑
m=0

σ2
m tr{R̃−1

? C̃mK2}

− ‖σM1 ‖0 ln
a

1− a
}
, (4.69)

where we defined K2 .
= R̃−1

? (R̃? − ỹỹH), σM1
.
= [σ2

1 · · ·σ2
M ]T so that ‖σM1 ‖0 = |A|

and used that R̃? =
∑M

m=0(σ?m)2C̃m.

For vanishing SNR at each of the channels σ2
m << σ2

0 for m = 1, . . . ,M , we

have that asymptotically R̃? → (σ?0)2I. Substituting the low SNR approximation

R̃? ≈ (σ?0)2I and rearranging terms we have that the optimization problem (4.69) is

equivalent to

σ̂ ≈arg min
σ

1

2(σ?0)4

∥∥∥∥∥ỹỹH −
M∑
i=0

σ2
i C̃i

∥∥∥∥∥
2

2

−
∥∥∥∥∥
(

I−
M∑
i=0

σ2
i

(σ?0)2
C̃i

)
K

∥∥∥∥∥
2

2

+ γ0

∥∥σM1 ∥∥0
,

(4.70)

where we defined the regularization weight γ0
.
= ln((1− a)/a) and made use of the

definition of the Matrix Frobenius Norm ‖A‖2 .
= tr (AAH). Note that the only

dependence of (4.70) on the (unknown) actual power vector σ? is through (σ?0)2 and

the matrix K. If we neglect the term depending on K, (4.70) reduces to

σ̂ ≈ arg min
σ

1

2(σ?0)4

∥∥∥∥∥ỹỹH −
M∑
i=0

σ2
i C̃i

∥∥∥∥∥
2

2

+ γ0

∥∥σM1 ∥∥0
(4.71)

= arg min
σ

∥∥∥∥∥ỹỹH −
M∑
i=0

σ2
i C̃i

∥∥∥∥∥
2

2

+ γ′0
∥∥σM1 ∥∥0

, (4.72)

where we have defined γ′0
.
= 2(σ?0)4γ0.

Remark 4.3. There exists a strong resemblance between the equation (4.72) and the

classical compressed sensing theory. The latter considers the problem of estimating a

sparse vector from a set of mixed measurements, yielding to a norm-0 regularization

similar to (4.72). While this minimization problem is NP-hard, several efficient

alternatives have been proposed by relaxing it to obtain a convex formulation. One
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example is the Dantzig Selector (DS) first presented in Candes and Tao (2007),

which under certain assumptions can be shown to be equivalent (James et al., 2009)

to the closely related BP denoising (Tropp, 2006). If we particularize BP denoising

in our case we obtain

σ̂ ≈arg min
σ

∥∥∥∥∥ỹỹH −
M∑
i=0

σ2
i C̃i

∥∥∥∥∥
2

2

+ γ1

∥∥σM1 ∥∥1
. (4.73)

Note that the problem is now convex and can be efficiently solved using any of the

existing convex optimization packages. However, while for the pseudo norm `0 the

weighting factor γ′0 can be computed from the actual noise power and from the a

priori probability of occupancy (which in principle could be estimated), the regular-

ization factor γ1 corresponding to the `1-norm needs to be determined numerically

for different system parameters. Then, if γ1 is suitably chosen, basis pursuit de-

noising performance will be close to the optimal MAP estimator in the low SNR

regime.

Bayesian matching pursuit

While the use of the convex formulation in (4.73) may be interesting in some cases,

it requires to solve a convex optimization problem at each spectral monitoring itera-

tion. This may not be practical in certain devices which present stringent complexity

and power limitations. Here we propose an approximate solution of (4.72) based on

a low complexity iterative greedy algorithm.

First note that the optimization (4.72) can be rewritten as

{σ̂, Â} ≈arg min
σ(A),A

∥∥∥∥∥ỹỹH −
∑
i∈A

σ2
i C̃i

∥∥∥∥∥
2

2

+ γ′0|A|. (4.74)

Then we have that:

Proposition 4.3. For fixed A = {l(1), . . . , l(|A|)}, so that [σ̂(A)]m = 0 for m /∈ A,

the unconstrained solution to the optimization problem (4.74) is given by

[σ̂(A)]l(i) = [θ̂]i (4.75)
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with

θ̂ = B−1
A bA, (4.76)

where

[BA]ij
.
= tr

{
C̃l(i)C̃l(j)

}
, (4.77)

[bA]i
.
= ỹHC̃l(i)ỹ, (4.78)

for i, j = 1, . . . , |A|.

Proof. See Appendix 4.F.

Corollary 4.1. Given the true sparsity pattern A, the LS estimator given in (4.76)-

(4.78) is asymptotically efficient in the limit as σ? → [(σ?0)2 0 · · · 0]T , i.e. for low

SNR on all channels.

Proof. See Appendix 4.G.

This asymptotic efficiency guarantees that, given that the true sparsity pattern

is found, the LS estimator will present a good performance in the low SNR regime.

Moreover, in the limit the mean squared error of the LS estimator will achieve the

CRLB.

Substituting (4.76) back in (4.74) and disregarding the terms not depending on

A, we have that the best estimate Â is given by

Â ≈arg min
A

µ(A), (4.79)

where µ(A)
.
= γ′0|A| − bHAB−1

A bA.

In principle the solution of (4.79) needs to be found by performing an exhaus-

tive search over A. Note that this implies to evaluate (4.77)-(4.78) for each of the 2M

possible combinations. Instead we propose a Bayesian matching pursuit (Schniter

et al., 2008) algorithm that iteratively estimates the set of active channels, as de-

scribed in the Algorithm 3.

This suboptimal greedy solution finds the right set of active channels with high

probability, as shown later by means of numerical simulations, offering a performance

close to the more complex convex optimization methods. The idea is to construct
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Algorithm 3: Bayesian matching pursuit.

Input: Measured signal ỹ.
Output: Estimated set of active channels Â.
Initialize: Set Â0 = {0}
for n = 1 to Mmax do

m? =arg max
m/∈Ân−1

µ(Ân−1 ∪ {m})

Ân = Ân−1 ∪ {m?}
Â =arg max

Ân
µ(Ân)

the active set estimate Â sequentially: starting with the “only noise” set Â = {0}, at

each step a new active channel is added to Â in order to maximize the corresponding

metric µ(Â). This procedure is repeated Mmax times where Mmax ≤M determines

the maximum number of active channels which could be possible declared as active

by the algorithm. The parameter Mmax is then related to the number of iterations,

and hence to the complexity, of the algorithm. If no complexity constraints exist

we may fix Mmax = M , which allows the system to declare all channels as busy.

On the other hand, if we know that the band is sparsely occupied, Mmax can be

chosen from the activity factor a so that Pr{|A| ≤ Mmax} is above a certain value.

The final estimate Â is given by the partial solution Ân with maximum a posteriori

log-likelihood function.

4.4.2 Quasi-GLRT detection

Once the estimates {σ̂, Â} have been computed under both hypotheses, either by

using convex optimization methods or by using the proposed greedy iterative algo-

rithm, the detection can be performed based on the GLRT scheme in (4.8).

If we denote by σ̂0, σ̂1, the corresponding estimates under the hypothesis H0,

respectively H1, we define the following Quasi-GLRT statistic

Tcs
.
=
f(ỹ | σ̂0)

f(ỹ | σ̂1)

Hm0
≷
Hm1

γcs, (4.80)

with γcs a threshold and f(ỹ |σ) given as in (4.10).
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Figure 4.5: Complementary ROC curves in a setting with M = 16 channels, K/N =
128/2048, for an activity factor (a) a = 0.1 and (b) a = 0.3.

4.4.3 Numerical results and discussion

In the following we analyze the performance of two detection schemes based on Tcs:

• Greedy detector based on the iteration given in Algorithm 3 and the efficient

estimator of Proposition 4.3.

• Convex optimization based detector. The sparsity pattern is computed by

solving (4.73) with γ1 = γ0. Once the sparsity pattern has been found the

actual estimate is taken as the feasible minimizer of (4.73) for γ1 = 0. This

last step is required to reduce the distortion introduced by the regularization

term in the optimization procedure.

To evaluate this detection schemes we consider terrestrial digital TV broadcast

networks using 8K-mode DVB-T modulation with parameters as in Section 4.3.4.

As compression matrix Φ we consider a random pinning matrix corresponding to K

randomly selected rows of the N ×N identity matrix.
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Figure 4.6: Example of reconstruction of a mixed analog/digital broadcasting tele-
vision band.

Detection performance

Figure 4.5 shows the complementary ROC curves of this two detection schemes for

a scenario with M = 16 channels, N = 1024 and K = 128 compressed samples,

i.e. compression ratio equal to 8. The channel under scrutiny presents an SNR of

3 dB when active, while the other channels’ SNR, when active, follows a lognormal

distribution of mean 0 dB and standard deviation of 1 dB. In Fig. 4.5 we can see

that the proposed greedy iteration shows a similar performance to the more complex

convex optimization scheme for both activity factors a = 0.1 and a = 0.3.

It is interesting to note that the compressed sampling schemes present a penalty

with respect to a detector (Test 2 from (4.50)) using K = 128 samples at Nyquist

rate. This is due to the fact that the compression process mixes different frequency

channels increasing the apparent noise level. However, in some cases, sampling at

Nyquist rate may be infeasible and detectors based on CS present practical impor-

tance.

Spectrum reconstruction

We now show the spectrum reconstruction capabilities of the proposed Greedy esti-

mation method in a real environment. To this end we captured part of the Spanish

TV broadcast band (112 MHz bandwidth, comprising 14 channels with PAL/DVB-

T signals just before the analog switch off). The a priori covariance matrices were

generated using the channelization information of the PAL/DVB-T broadcast net-

work, while the occupancy probability was considered a = 0.3. The compression

procedure has been simulated in Matlab using a 512×2048 random pinning matrix.

No knowledge is fed to the reconstruction algorithm about the particular modula-
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tion (PAL or DVB-T) encountered at a given channel. Fig. 4.6 shows the psd of the

band (obtained using a large number of uncompressed samples) together with the

reconstruction obtained by the proposed method using just K = 512 samples. Even

this reduced number of samples allows the estimation of 29 power levels needed for

the reconstruction (14 DVB-T + 14 PAL + noise level).

4.5 Conclusions

The wideband approach to spectrum sensing provides a means to trade off detection

performance and ADC complexity. In practice, primary networks using FDMA

exhibit guard bands between adjacent channels which can be used to estimate the

noise power to build detectors robust to noise level uncertainty. In addition, the

frequency bins of those channels perceived as weak can be used for this task as well.

These ideas are exploited by three novel detectors derived starting from a GLRT

approach. In this way, the noise uncertainty problem that plagues the popular

Energy Detector is largely alleviated.

Assuming a more general A2I converter and that the activity factor of the band

can be obtained beforehand, we established a connection between the MAP approach

to parameter estimation and classical compressed sensing theory. Moreover, based

on the MAP formulation we derive a simpler Greedy iterative algorithm performing

close to the convex optimization methods usually employed to solve the compressed

sensing formulation.

A key part of the primary user detection schemes derived in this chapter is

the estimation of the unknown parameters, namely noise and signal levels. Some

preliminary work along this lines was presented in López-Valcarce and Vazquez-

Vilar (2009); Vazquez-Vilar et al. (2010a). The first part of this chapter, wideband

primary user detection at Nyquist rate, is based on the journal article submitted to

IEEE-TSP (Vazquez-Vilar and López-Valcarce, 2011).
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Appendix 4.A Proof of Theorem 4.1

For finite K, consider the matrix

A(σ)
.
= [LH∆−2(σ)L] · [L†∆2(σ)(L†)H ]. (4.81)

We will prove that, under the conditions of the Theorem, A(σ) = I. Then, taking

the limit as K → ∞ on both sides of (4.81), the desired result will be obtained, in

view of (4.28) and (4.32). To this end, consider the singular-value decomposition

L = UDVH , where U is K×(M+1) with orthogonal columns, D is (M+1)×(M+1)

diagonal with the nonzero singular values, and V is (M + 1)× (M + 1) unitary. The

pseudoinverse is thus L† = VD−1UH . Then

A(σ) = VDUH∆−2(σ)UUH∆2(σ)UD−1VH . (4.82)

As seen from (4.82), a sufficient condition for A(σ) = I is that UUH and ∆(σ)

commute. This we will show now.

Note that the columns of U constitute an orthonormal basis of R{L}, the

subspace spanned by the columns of L. Without loss of generality (since channel

indexing is arbitrary), assume that the columns of L are sorted such that if the

set of indices of nonzero entries of column j contains that of column i, then i < j.

Additionally, we assume that the rows of L are arranged such that these sets of

indices of nonzero entries contain only contiguous indices (frequency bins). This is

also without loss of generality, since one can always apply a permutation to the rows

of L to achieve this.

An orthogonal basis for R{L} can also be obtained by applying the Gram-

Schmidt orthogonalization procedure to the columns of L. It is straightforward to

show that this results in a basis Ũ = [ ũ0 ũ1 · · · ũM ] such that (i) any nonzero

entries of a given vector ũi are constant and in contiguous positions, and (ii) for any

ũi, ũj with i 6= j, the two sets of indices of their nonzero entries are disjoint. These

properties imply that ŨŨH is a block diagonal matrix, with each block on the

diagonal having all of its elements equal:

ŨŨH =


α01K01

T
K0

. . .

αM1KM1TKM

 = UUH , (4.83)
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where αi are scalars, Ki is the number of nonzero entries in ũi, and the last equality

in (4.83) stems from the fact that both UUH and ŨŨH are projection matrices

onto R{L}.

On the other hand, since the diagonal of ∆(σ) is a linear combination of the

columns of L, see (4.15), one has that

∆(σ) =


β0IK0

. . .

βMIKM

 , (4.84)

for some scalars βi. Given the structure of UUH and ∆(θ), it is readily seen that

they do commute.

Appendix 4.B Proof of Theorem 4.2

We shall prove (4.45), as the proof for (4.46) is analogous. The cost f(σ̂) = ‖Lσ̂ −
p‖22 is convex, and its gradient is given by

1

K
∇f(σ̂) =



1 1 1 · · · 1

1 w−1
1 0 · · · 0

1 0 w−1
2 · · · 0

...
...

...
. . .

...

1 0 0 · · · w−1
M


σ̂ −



w0q0 + · · ·+ wMqM

q1

q2

...

qM


. (4.85)

In addition, we have the linear inequality constraints gj(σ̂) = −σ̂2
j ≤ 0, 0 ≤ j ≤M ,

whose gradient is ∇gj(σ̂) = −ej , where ej is the j-th unit vector. A sufficient

condition for σ̂1 = [σ̂2
01 · · · σ̂2

M1]T to be the global optimum is that there exist

scalars µj ≥ 0, 0 ≤ j ≤M , such that

∇f(σ̂1) +

M∑
j=0

µj∇gj(σ̂1) = 0, (4.86)

µjgj(σ̂1) = 0, 0 ≤ j ≤M, (4.87)

which for this case amounts to saying that [∇f(σ̂1)]i = 0 if σ̂2
i1 > 0 and [∇f(σ̂1)]i ≥ 0

if σ̂2
i1 = 0. Now we show that the vector σ̂1 given by (4.45) satisfies these conditions.
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Note that σ̂2
01 > 0, and that U1 = {j : σ̂2

j1 = 0}. In view of (4.85),

1

K
[∇f(σ̂1)]0 = σ̂2

01 +

M∑
i=1

σ̂2
i1 − w0q0 −

M∑
i=1

wiqi (4.88)

= −w0(q0 − σ̂2
01) +

M∑
i=1

[σ̂2
i1 − wi(qi − σ̂2

01)] (4.89)

= −w0(q0 − σ̂2
01)−

∑
i∈U1

wi(qi − σ̂2
01) (4.90)

= −(w0q0 +
M∑
i∈U1

wiqi) + (w0 +
M∑
i∈U1

wi)σ̂
2
01 = 0, (4.91)

where the second line follows from w0 + · · ·+wM = 1; the third, from the definitions

of U1 and σ̂2
j1, and the last step, from the definition of σ̂2

01. On the other hand, for

1 ≤ j ≤M , using again the definitions of U1 and σ̂2
j1,

1

K
[∇f(σ̂1)]j = σ̂2

01 + w−1
j σ̂2

j1 − qj (4.92)

=

{
σ̂2

01 − qj ≥ 0, j ∈ U1,

0, j /∈ U1,
(4.93)

as was to be shown.

Appendix 4.C Proof of Proposition 4.1

If the constrained LS estimate under Hm1 results in σ̂2
m1 = 0 (i.e. m ∈ U1), then it

is clear that imposing σ̂2
m0 = 0 and then minimizing the LS cost under the same

constraints for the remaining variables will yield the same result. But this is exactly

the constrained LS estimate under Hm0 .

Appendix 4.D Proof of Proposition 4.2

Let U1 = {l(1), l(2), · · · , l(s)} such that ql(1) ≤ ql(2) ≤ · · · ≤ ql(s). The proof is by

induction, and is based on the constructive algorithm given in Algorithm 2. Note

that:

• ql ≤ σ̂2
01 for all l ∈ U1 (by definition of U1);
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• σ̂2
01 ≤ q0 (since σ̂2

01 is a convex combination of q0 and {ql, l ∈ U1});

• σ̂2
01 ≤ qm (since m /∈ U1).

The last two facts imply that σ̂2
01 ≤ q0m

.
= (w0q0 + wmqm)/(w0 + wm).

Now consider ql(1). In the process of constructing U0 given in Algorithm 2, the

first iteration results in σ̂2
00 = q0m. The unconstrained estimate with respect to the

remaining variables is not feasible, since ql < q0m for l ∈ U1. Therefore, index l(1)

is picked so that l(1) ∈ U0.

Suppose now that l(1),. . . , l(i) ∈ U0 for i < s. This means that the (i + 1)-th

iteration of the procedure from Algorithm 2 results in

σ̂2
00 =

w0q0 + wmqm +
∑i

t=1wl(t)ql(t)

w0 + wm +
∑i

t=1wl(t)
. (4.94)

Note that, since l(i+ 1) ∈ U1, it holds that

ql(i+1) <
w0q0 +

∑i
t=1wl(t)ql(t)

w0 +
∑i

t=1wl(t)

≤
w0q0 +

∑s
t=1wl(t)ql(t)

w0 +
∑s

t=1wl(t)
< qm. (4.95)

But (4.95) implies that ql(i+1) is smaller than the right-hand side of (4.94). Hence,

index l(i+ 1) is picked so that l(i+ 1) ∈ U0. By induction, it follows that U1 ⊂ U0.

Appendix 4.E Analysis of the detectors Test 1 and 2

Test 1 from (4.48) This test is given by z1 ≷
HM1
HM0

0, with z1
.
= qM − γσ̂2

01, γ > 1,

and σ̂2
01 a linear combination of q0 and {qj , j ∈ U1}, as in (4.45). Denote by It the

event of having t of the channels 1,. . . ,M − 1 not in use by the primary network, so

that Pr{It} =
(
M−1
t

)
aM−1−t(1− a)t. In addition, denote by Un the event |U1| = n.
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Then we can write

Pr{z1 > 0} =

M−1∑
t=0

Pr{It}Pr{z1 > 0 | It}

=

M−1∑
t=0

Pr{It}
M−1∑
n=0

Pr{z1 > 0, Un | It}

≈
M−1∑
t=0

Pr{It}
t∑

n=0

Pr{z1 > 0, Un | It}, (4.96)

where in the last step we have neglected the probability of a busy channel j 6= M

being included in the set U1 by the constrained LS estimate. This amounts to assum-

ing that busy channels have sufficiently high SNRs. Without this approximation,

Pr{z1 > 0} would depend on the SNRs of the (busy) channels other than channel

M , which is clearly undesirable. The accuracy of this assumption will be validated

by the simulation results.

Let us define the vectors

xn
.
=


q1

...

qn

− σ̂2
011n, x′t−n

.
=


qn+1

...

qt

− σ̂2
011t−n. (4.97)

Now, when computing (4.96), we can assume that the t idle channels are channels 1

through t (due to the equal bandwidth assumption), so that

Pr{z1 > 0} ≈
M−1∑
t=0

Pr{It}
t∑

n=0

(
t

n

)
Pr{z1 > 0, xn < 0, x′t−n > 0 | It}. (4.98)

Note that xn < 0, x′t−n > 0 imply that U1 = {1, · · · , n}, so that

σ̂2
01 =

∑n
l=0wlql∑n
l=0wl

. (4.99)

Now one has that

Pr{z1 > 0, xn < 0, x′t−n > 0 | It} =

Pr{[z1 − xTn (x′t−n)T ]T /σ2
0 > 0 | It}, (4.100)
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which is the integral of a (t + 1)-variate Gaussian distribution over the positive

orthant. The mean of this distribution is µ1 = [ (1−γ+ρM ) 0Tt ]T , and the covariance

matrix is found blockwise from the following, where w̄n
.
= w0 + nwM :

cov(z1, z1) =
σ4

0

K

(
(1 + ρM )2

wM
+
γ2

w̄n

)
, (4.101)

cov(xn,xn) =
σ4

0

K

(
1

wM
I− 1

w̄n
1n1

T
n

)
, (4.102)

cov(x′t−n,x
′
t−n) =

σ4
0

K

(
1

wM
I +

1

w̄n
1t−n1

T
t−n

)
, (4.103)

cov(z1,x
′
t−n) =

σ4
0

K

γ

w̄n
1t−n, (4.104)

cov(z1, xn) = 0, cov(xn,x
′
t−n) = 0. (4.105)

Thus, Pr{z1 > 0} is independent of σ2
0 and can be computed numerically using

any multivariate Gaussian integration package, such as Matlab’s mvncdf. Note that

PFA = Pr{z1 > 0 | ρM = 0}, whereas PD = Pr{z1 > 0 | ρM > 0}.

Test 2 from (4.50) This test is given by z2 ≷
HM1
HM0

0, with z2
.
= qM − γσ̂2

02,

γ > 1, and σ̂2
02 a linear combination of q0 and {qj , j ∈ U0, j 6= m}, as in (4.49).

Denote by Ũn the event |U0| = n. Then, similarly to (4.96),

Pr{z2 > 0} ≈
M−1∑
t=0

Pr{It}
t∑

n=0

Pr{z2 > 0, Ũn | It} (4.106)

=

M−1∑
t=0

Pr{It}
t∑

n=0

(
t

n

)
Pr{z2 > 0, x̃n < 0, x̃′t−n > 0 | It}, (4.107)

where now

x̃n
.
=


q1

...

qn

− σ̂2
001, x̃′t−n

.
=


qn+1

...

qt

− σ̂2
001. (4.108)

In this case, x̃n < 0, x̃′t−n > 0 imply that U0 = {1, · · · , n,M}, and thus σ̂2
00 =

(wMqM +
∑n

l=0wlql)/(wM +
∑n

l=0wl). The probability in (4.107) can be written

again as the integral of a (t + 1)-variate Gaussian distribution over the positive

orthant:

Pr{z2 > 0, x̃n < 0, x̃′t−n > 0 | It} =

Pr{[z2 − x̃Tn (x̃′t−n)T ]T /σ2
0 > 0 | It}. (4.109)



4.F Proof of Proposition 4.3 137

The mean of this distribution is in this case

µ2 =
[

(1− γ + ρM ) wMρM
w̄n+1

1Tn
−wMρM
w̄n+1

1Tt−n

]T
, (4.110)

whereas the covariance matrix can be found from

cov(z2, z2) =
σ4

0

K

(
(1 + ρM )2

wM
+
γ2

w̄n

)
, (4.111)

cov(x̃n, x̃n) =
σ4

0

K

[
1

wM
I +

(
wM ((1 + ρM )2 − 1)

w̄2
n+1

− 1

w̄n+1

)
1n1

T
n

]
, (4.112)

cov(x̃′t−n, x̃
′
t−n) =

σ4
0

K

[
1

wM
I +

(
wM ((1 + ρM )2 − 1)

w̄2
n+1

+
1

w̄n+1

)
1t−n1

T
t−n

]
, (4.113)

cov(z2, x̃n) =
σ4

0

K

(
γ − (1 + ρM )2

w̄n+1
− γ

w̄n

)
1n, (4.114)

cov(x̃n, x̃
′
t−n) =

σ4
0

K

wM ((1 + ρM )2 − 1)

w̄2
n+1

1n1
T
t−n, (4.115)

cov(z2, x̃
′
t−n) =

σ4
0

K

γ − (1 + ρM )2

w̄n+1
1t−n. (4.116)

Therefore, for Tests 1 and 2 PFA and PD can be found for a given scenario

without resorting to Monte Carlo simulation.

Appendix 4.F Proof of Proposition 4.3

For fixed A = {l(1), . . . , l(|A|)}, by definition, the components m /∈ A are given by

[σ(A)]m = 0. The remaining components can be arranged a vector θ so that

[θ]i = [σ̂(A)]l(i). (4.117)

Then, the optimization problem (4.74) with respect to θ reduces to a least squares

minimization problem. If we make use of the Frobenious Norm definition ‖G‖2 .
=

tr (GGH) we have that the error

εA(θ)
.
=

∥∥∥∥∥yyH −
∑
l∈A

σ2
l Cl

∥∥∥∥∥
2

2

(4.118)
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becomes:

εA(θ) = tr
{

(yyH)2
}
− 2

∑
m∈A

σ2
m tr

{
yHC̃my

}
+
∑
l∈A

∑
m∈A

σ2
l σ

2
m tr

{
C̃lC̃m

}
.

(4.119)

Using the definitions in the Proposition 4.3 the Least Squares Estimate of the pa-

rameter vector θ can be compactly written as

θ̂ =arg min
θ

εA(θ) (4.120)

=arg min
θ

θHBAθ − 2θHbA (4.121)

= B−1
A bA. (4.122)

Appendix 4.G Proof of Corollary 4.1

For fixed A = {l(1), . . . , l(|A|)}, so that [σ]m = 0 for m /∈ A and

[σ]l(i) = [θ]i, for i = 1, . . . , |A|, (4.123)

we say that an unbiased estimator θ̂ of the non-zero components of σ is efficient at

the true parameter vector θ? (see e.g. Scharf (1991)) if and only if

F (θ?)(θ̂ − θ?) = s(θ?, ỹ), (4.124)

where F (θ?) denotes the Fisher’s information matrix of the estimation problem

evaluated at θ? and s(θ?, ỹ) stands for the gradient of the log-likelihood function of

the estimation problem evaluated at θ? for an input vector ỹ.

Given {A,θ}, the observation ỹ is zero mean circular Gaussian with covariance

R̃(σ) as in (4.4). The elements of the Fisher information matrix (FIM) F (θ), of

size |A| × |A|, are given by (see e.g. Kay (1998)):

[F (θ)]ij = tr
{

R̃−1(σ)C̃l(i)R̃
−1(σ)C̃l(j)

}
, (4.125)

where we used that in our model ∂R̃(σ)/∂σ2
m = C̃m. On the other hand we have
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that

[s(θ, ỹ)]i =
∂

∂σ2
l(i)

log f(ỹ|σ) (4.126)

= − tr

{
R̃−1(σ)

∂R̃(σ)

∂σ2
l(i)

}
+ tr

{
R̃−1(σ)

∂R̃(σ)

∂σ2
l(i)

R̃−1(σ)ỹỹH

}
(4.127)

= − tr
{

R̃−1(σ)C̃l(i)

}
+ ỹHR̃−1(σ)C̃l(i)R̃

−1(σ)ỹ. (4.128)

Then the terms in (4.124) can be reorganized as follows

F (θ?)θ̂ = s(θ?, ỹ) + F (θ?)θ? (4.129)

= ỹHR̃−1(σ?)C̃l(i)R̃
−1(σ?)ỹ (4.130)

.
= f(θ?), (4.131)

where in (4.130) we made use of the problem structure, that allows us to write

[F (θ?)θ?]i = tr
{

R̃−1(σ)C̃l(i)R̃
−1(σ)R̃(σ)

}
(4.132)

= tr
{

R̃−1(σ)C̃l(i)

}
. (4.133)

Note that for the right sparsity pattern A, the LS estimator given in Proposition

4.3 must fulfill

BAθ̂ = bA, (4.134)

which resembles the efficiency condition given in (4.130). In fact, in the asymptotic

low SNR regime R̃−1(σ?)→ IK/(σ
?
0)2 and

F (θ?)→
1

(σ?0)4
BA, (4.135)

f(θ?)→
1

(σ?0)4
bA, (4.136)

which gives us the desired result.
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5.1 Introduction

The overlay1 hierarchical dynamic spectrum access (DSA) in which secondary users

are allowed to opportunistically access the spectrum on the basis of no-interference

1In the context of Cognitive Radio overlay/underlay paradigms present different meanings de-
pending on the field. For example, in the Information Theory community underlay transmission usu-
ally denotes a transmission causing minimum interference to licensed users while overlay paradigms
have the capability of overhearing and/or enhancing primary transmissions. Here we use the term
overlay to refer to schemes which avoid to interfere to the primary user, while underlay schemes are
allowed to transmit simultaneously to the licensed user once fixed an interference margin.
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to the primary (licensed) users presents stringent detection requirements. Hence,

powerful detectors, as those studied in the previous chapters become a key aspect

of CR systems employing this paradigm.

However, in certain cases primary users may be willing to tolerate certain level

of interference when their QoS is not affected and/or when they receive a certain

compensation (monetary or of other nature) for this interference. In this case the

secondary system may act in an underlay basis, i.e., secondary users transmit simul-

taneously with the primary system provided that they meet certain requirements on

the maximum interference seen by the primary user, denoted here as interference

cap (ICAP). In this scenario the detection of primary signals loses importance with

respect to interference management tasks, which may become non trivial depending

on the network configuration.

Various spectrum underlay and overlay architectures have been proposed and

investigated in recent years (see Kim et al. (2008); Le and Hossain (2008); Xing et al.

(2007); Fattahi et al. (2007); Etkin et al. (2007); Menon et al. (2008) and references

therein). The existing literature in underlay and overlay based secondary networks,

however, impose the burden of interference management mainly on the secondary

system. In particular, it is assumed that there is a maximum interference level that

the primary system is willing to tolerate, and the secondary powers/activity are to

be adjusted within this constraint. As opposed to this is the the concept of dynamic

spectrum leasing (DSL), first presented in Jayaweera and Li (2009).

A DSL scheme is characterized by the active role of the primary user, which

may interact with the secondary system in order to define the allowed interference

cap. This scheme allows the system to adapt to changing environmental conditions

which may lead to a better spectral utilization. In this chapter we will first in-

vestigate theoretically the performance improvement that can be expected from a

DSL based paradigm with respect to passive spectrum sharing schemes which do

not allow dynamic primary-secondary network interaction. The proposed analysis

results into a Stackelberg game formulation of the interactions between primary and

secondary systems. Once the performance advantage of DSL is demonstrated we

will present a game theoretical framework in order to model and analyze practical

DSL schemes. We will show certain conditions which guarantee the non-cooperative

game to converge and study the behavior of the proposed scheme under dynamic

environments.
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5.2 System model

We assume that there is one primary wireless communication system that owns the

license rights to the spectrum band of interest. The users in this primary system,

however, may not be using its spectrum completely all the time, or may be able to

tolerate a certain amount of additional co-channel interference without compromis-

ing required QoS constraints, leading to an inefficient utilization of radio spectrum.

For simplicity of exposition, we focus on a particular channel in the primary system

that is allocated to a single primary user (for example, as in FDMA). We assume

K secondary transmitters are interested in accessing this spectrum band of interest

to the maximum possible extent. The primary user is denoted as user 0, and the

secondary users are labeled as users 1 through K. While it is possible to extend this

framework to more complex scenarios, for ease of exposition we focus here on the

case that we have only one primary and one secondary receiver of interest.

The channel gain between the k-th transmitter (either primary or secondary)

and the common secondary receiver is denoted by hsk, and that between the k-

th transmitter and the primary receiver is denoted by hpk, for k = 0, 1, . . . ,K.

Throughout the analysis in this chapter we assume fading to be quasi-static, so that

the coefficients stay fixed for a certain duration of time after which they change

to a new set of values. It should be mentioned that quasi-static fading model is

frequently used in modeling many wireless communications environments (Molisch,

2005). Our model can also be complemented with a channel estimation and tracking

algorithm to cope with slowly time-varying situations and as we will show later, the

performance of the proposed DSL scheme is fairly robust against such time-varying

fading.

Signal model

A discrete-time representation of the received signals at the primary and secondary

receivers can be written as

rp[n] = h̃p0s0[n] +

K∑
k=1

h̃pk[n]s̃k[n] + σpnp[n]; (5.1)

rs[l] = h̃s0s̃0[l] +
K∑
k=1

h̃sk[l]sk[l] + σsns[l] (5.2)



144 Chapter 5. Dynamic Spectrum Leasing

where n and l represent the discrete sampling times at primary and secondary re-

ceivers respectively, h̃pk and h̃sk are the effective channels from k-th transmitter to

the primary and secondary receivers respectively. If sk(t) denotes the signal trans-

mitted by the k-th user, then sk[n] denotes a synchronously sampled and s̃k[n] an

asynchronously sampled version of sk(t). Finally np[n] nd ns[n] are iid Gaussian

processes normalized to have variance 1 so that σ2
p and σ2

s represent the noise power

levels at the primary and secondary receivers, respectively.

We denote the transmit power of the k-th user as pk
.
= E[|sk[n]|2]

.
= E[|s̃k[n]|2]

for k = 0, 1, . . . ,K. Note that this assumes that any deviations on the received

power due to front-end and bandwidth differences are absorbed into the effective

channel coefficients. Then it is straightforward to see that the actual interference

power generated by the secondary system at the primary user is given by

I0
.
=

K∑
k=1

|h̃pk|2pk. (5.3)

Interference cap

The primary user is assumed to adapt its interference cap (IC), denoted by Q0,

which is the maximum total interference the primary user is willing to tolerate from

secondary transmissions at any given time. By adjusting this interference cap Q0,

the primary user can control the total transmit power the secondary users impose on

its licensed channel. The motivation for the primary user can be, for instance, the

monetary reward obtained by allowing secondary users to access its licensed spec-

trum. In essence, then, the interference cap determines how much secondary user

activity the primary user is ready to allow, and thus its reward should be an increas-

ing function of the interference cap. However, we impose the realistic constraint that

the primary user should always maintain a target signal-to-interference-plus-noise

ratio (SINR) to ensure its required transmission QoS. Moreover, an unnecessarily

large interference cap by the primary user could hinder the performance of both sec-

ondary system and other primary transmitters (though, for simplicity, not included

in the current model) due to resulting high interference.
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Decoding strategy

If the secondary system is equipped with conventional matched-filter receivers at

any given time t, the primary user’s SINR γ0 and i-th secondary user SINR γi can

be respectively defined as

γ0
.
=
|h̃p0|2p0

I0 + σ2
p

, (5.4)

γi
.
=
|h̃si|2pi
Ii + σ2

s

, (5.5)

where the total interference seen by the secondary receiver in detecting the k-th

secondary signal is

Ii
.
=

K∑
k=0,k 6=i

|h̃sk|2pk. (5.6)

Then the maximum achievable rate per channel use, assuming secondary inter-

ference is treated as noise at the primary system, is given by

Rp ≤Wp log (1 + γ0) (5.7)

= Wp log

(
1 +
|h̃p0|2p0

I0 + σ2
p

)
(5.8)

where Wp represents the bandwidth employed by primary transmissions and the

transmitted power p0 is determined by the required quality of service (QoS) and the

interference cap selected.

We impose here the realistic constraint that the primary user should always

maintain a target signal-to-interference-plus-noise ratio (SINR) to ensure its required

transmission QoS. To that end, we introduce the primary user’s target SINR is

defined in terms of its assumed worst-case secondary interference:

γ̄0
.
=
|h̃p0|2p0

Q0 + σ2
p

. (5.9)

Note that, since Q0 is the maximum possible interference from secondary users the

primary user is willing to tolerate, γ̄0 represents the least acceptable transmission

quality of the primary user.
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Multiuser decoding. While Matched filter (MF) decoding is a popular de-

coding structure due to its simplicity and performs reasonably well in systems with

weak cross-channels, in an interference limited regime it is clearly suboptimal and

it is outperformed by joint decoding of multiple users. When evaluating the best

theoretical performance a DSL scheme can achieve, we may assume an optimal joint

maximum likelihood multiuser decoder (ML MUD) of Verdú (1998) at the secondary

user. Note that such decoder will give a fundamental limit against which practical

schemes based on matched filtering can be compared.

5.3 Performance gain of DSL based schemes

First we study the maximum performance gain we can expect from a DSL scheme

allowing a limited interaction between primary and secondary users. As opposed to

previous works we employ here performance metrics based on the multiuser sum-rate

attainable by the secondary system. We choose this performance metric because it

is a fundamental limit against which practical schemes can be compared, while it is

independent of particular DSL implementations.

While in principle the primary signal could be decoded at the secondary re-

ceiver, cognitive radio systems are expected to work in harsh SNR conditions. In

this regime primary signals cannot be reliably decoded at secondary receivers due to

SNR considerations and/or synchronization issues. Therefore we will treat primary

transmission purely as noise. Under these assumptions the maximum achievable

sum rate at the secondary receiver with total bandwidth Ws treating primary trans-

missions as noise is, see e.g. (Cover and Thomas, 2006, Sec. 15.3.6),

Rs < Ws log

(
1 +

∑K
k=1 |h̃sk|2pk
|h̃s0|2p0 + σ2

s

)
(5.10)

for each of the allowed secondary power assignments pk with k = 1, . . . ,K, which

are determined by the maximum interference allowed at the primary user I0 ≤ Q0

and secondary user individual power constraints pk < p̄k.

The rate region in (5.10) obtained with this decoding scheme is similar to the

one obtained in a Gaussian Multiple Access Channel, with the peculiarity that on

top of having individual power constraints secondary users have a weighted global

power constraint. The individual rates achieved by each secondary user will depend

on the particular coding/decoding strategy used.
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Figure 5.1: Secondary system 2-user rate region for different values of Q0.

From the constraint I0 ≤ Q0 and given the definition of I0, we have that the

term
∑K

k=1 |h̃sk|2pk in (5.10) is upper bounded by a monotonically increasing affine

function of Q0. Then it is apparent from (5.10) that, while the upper bound on the

secondary sum-rate is monotonically increasing with Q0, the growth rate decreases

with Q0 due to the logarithmic relation with
∑K

k=1 |h̃sk|2pk. Figure 5.1 shows an

example of the rate region obtained in a two user secondary system where the channel

from user 1 to primary is much weaker than the one from user 2 for different values

of Q0. While in general the region is increasing with Q0 the effect of the individual

power constraints of the secondary nodes translates into the partial saturation of

the achievable rate region.

5.3.1 Performance metric

Although performance evaluation of cognitive radio systems is important in com-

paring and ranking different paradigms, it has received only a limited attention in

the existing literature (Zhao et al., 2009). Even for the relatively simple model con-

sidered here, there exist several possible evaluation metrics: maximum achievable

sum-rates at primary and secondary systems Rp and Rs respectively, power dissi-

pated by a given user pk, interference generated at the primary user I0, probability

of undesirable primary interference conditions Pr{I0 > Q0}, fairness among users,

and spectral efficiency, among others. Therefore, an adequate utility function must

first be defined in order to compare DSL based paradigms with other schemes.
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While in our model a natural performance metric for the secondary system

should be an increasing function of the attained sum rate Rs, the primary user’s

utility needs further considerations. Since the primary user suffers from a (permit-

ted) interference I0 from the secondary system, in order to maintain its QoS the

primary user transmitted power p0 is increased with respect to an exclusive use of

the frequency band (I0 = 0). We denote this increment in the transmitted power

by ∆p0. Hence the primary user needs an incentive to allow secondary users to use

its managed spectrum. We assume here that the secondary system compensates the

primary user with a payment (monetary or of other nature) related to the generated

interference I0. As a result, the utility functions for primary and secondary systems

can be written as:

Up = up(I0,∆p0), (5.11)

Us = us(Rs, I0) (5.12)

where primary utility Up(·) is growing with I0 and decreasing with ∆p0, while sec-

ondary utility Us(·) increases with Rs. We additionally assume that when the in-

terference constraint is violated, that is, when I0 > Q0, the penalization imposed

by the primary system to the secondary system implies Up = ∞, Us = −∞. This

penalty discourages the secondary system from violating the allowed interference

cap.

5.3.2 Performance analysis

For a given interference cap Q0 the secondary utility Us is maximized for the sec-

ondary power vector p
.
= [p1p2 · · · pK ]T provided that

p?(Q0) = arg max
p
{us(Rs(p, Q0), I0(p))} (5.13)

subject to I0(p) ≤ Q0, p ≤ p̄

where we defined p̄
.
= [p̄1p̄2 · · · p̄K ]T and the operator ≤ when applied to vectors

denotes element by element comparison. Here we have explicitly shown the depen-

dence of Rs on Q0. We define the corresponding primary and secondary utilities as

U?p (Q0)
.
= Up(p

?(Q0), Q0) and U?s (Q0)
.
= Us(p

?(Q0), Q0), respectively.

If the primary user fixes a priori the interference cap Q0 in a time varying

environment its expected utility is given by E[U?p (Q0)], where the expectation is
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taken with respect to the channel realizations. On the other hand, in a DSL scheme

we allow the primary system to dynamically adjust the allowed interference cap Q0.

We can now compute the maximum achievable utility for both types of schemes:

Schemes with fixed Q0: If the primary user chooses the value of Q0 that

maximizes the expected utility and uses it for all channel realizations, its utility is

given by

Ūfixed
p = max

Q0

{E[U?p (Q0)]}. (5.14)

DSL schemes: On the other hand, in a DSL-based system, the primary will

choose the interference cap Q0 to maximize its own utility for each channel real-

ization. The best expected primary utility achievable in this dynamic environment

is

Ūdsl
p = E[max

Q0

{U?p (Q0)}]. (5.15)

It is easy to see from (5.14) and (5.15) that Ūdsl
p ≥ Ūfixed

p , where, for strictly mono-

tonic U?p (·), Ūdsl
p = Ūfixed

p if and only if the optimal Q0 is constant for all channel

realizations. In the next section we will use a simple example to show that indeed

the gain obtained by a DSL scheme can be significant.

Remark 5.1. In deriving (5.15) we implicitly formulated the interaction between the

primary and secondary systems as a Stackelberg game (Fugenberg and Tirole, 1991),

in which the primary user acts as Stackelberg leader and the secondary system acts

as follower. While this is a natural model for cognitive radio systems in which

the primary can always act unilaterally while secondary users have to adapt their

actions to the imposed constraint (Simeone et al., 2008), practical implementations

that achieve this behavior are a topic of further research. However, later in this

chapter, we will propose a simple theoretical framework based on non-cooperative

game theory that conducts to practical DSL schemes.
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5.3.3 Example

For illustration purposes, in this section we assume that the utilities associated with

primary and secondary users are respectively

Up = I0 − µP∆p0, (5.16)

Us = µRRs − I0 (5.17)

with the additional restriction that I0 ≤ Q0. That is, the primary system obtains

a reward proportional to the suffered interference I0 and charged to the secondary

system. Without loss of generality we assume here the payoff per unit of interference

equal to 1. The primary user has a cost associated with the extra power ∆p0 required

to maintain its desired QoS, priced at the rate of µP . The reward for the secondary

system is proportional to the achievable sum rate Rs priced at the rate of µR. Note

that whereas these utilities keep the spirit of (5.11) and (5.12), they are also simple

enough to obtain analytical results.

Assuming equality in (5.10) we may rewrite (5.17) as

Us = µRWs log

1 +

∑K
k=1

|h̃sk|2
|h̃pk|2

p̃k

σ2
s + |h̃s0|2p0

− K∑
k=1

p̃k (5.18)

where we have defined p̃k
.
= |h̃pk|2pk > 0.

In order to maximize Us with respect to p̃k we first note that for fixed
∑K

k=1 p̃k =

I0, Us is growing with respect to a convex combination of the (positive) ratios

|h̃sk|2/(I0|h̃pk|2). Hence, for a fixed I0, Us is maximized when all the allowed sec-

ondary interference I0 is allocated to the secondary transmitters with the largest

ratios |h̃sk|2/|h̃pk|2 up to their individual power constraints. Formally, if we define

the indexes of the sorted effective channels as {i1, i2, . . . , iK} such that

|h̃si1 |2
|h̃pi1 |2

≥ |h̃si2 |
2

|h̃pi2 |2
≥ · · · ≥ |h̃siK |

2

|h̃piK |2
, (5.19)

the optimal power assignment is given by

p̃?ik
.
=


|h̃pik |2p̄ik , δk < I0,

I0 − δk−1, δk−1 ≤ I0 ≤ δk,
0, elsewhere,

(5.20)
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where we defined δk
.
=
∑k

l=1 |h̃pil |2p̄il . Then we may define the instantaneous channel

ratio η as

η
.
=

∑K
k=1

|h̃sk|2
|h̃pk|2

p̃?k

I0
. (5.21)

Note that when the secondary individual power constraints are not active I0 ≤
|h̃pi1 |2p̄i1 , hence η reduces to the largest channel ratio pair: η = maxk{|h̃sk|2/|h̃pk|2}.
Otherwise η is a convex combination of the strongest channel ratio pairs.

Remark: While the simple utility (5.17) leads to an opportunistic access

scheme that does not take into account fairness among secondary users, in the general

setting Us could take a more complex form in order to guarantee fairness. However

this analysis lies out of the scope of the present work.

Using (5.21) and substituting (5.20) in (5.18), we have that

Us = µRWs log

(
1 +

ηI0

σ2
s + |h̃s0|2p0

)
− I0. (5.22)

Equating the derivative of (5.22) with respect to I0 to zero, we obtain the global

Us maximizer. Taking into account the additional constraint I0 < Q0, one obtains

that the optimal I0 is given by

I?0 (Q0) = min

(
Q0,WsµR +

σ2
s + |h̃s0|2p0

η

)
. (5.23)

From (5.9) we have that p0 = γ̄0(Q0 + σ2
p)/|h̃p0|2. Then it follows

U?p (Q0) = I?0 − µP∆p0 and (5.24)

U?s (Q0) = µRWs log

(
1 +

ηI?0
σ2
s + |h̃s0|2p0

)
− I?0 . (5.25)

It is interesting to note that both primary and secondary utilities depend only on

the channel of the secondary user with the smallest channel ratio |h̃pk|2/|h̃sk|2. This

comes from the fact that the secondary system’s sumrate is maximized when all the

allowed interference at the primary user is allocated to this single secondary user.

The maximal primary utility is achieved by a DSL system maximizing U?p (Q0).

Given the restriction I0 ≤ Q0 and since U?p is growing with I?0 and decreasing with
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Figure 5.2: Primary/secondary users average performance in a time varying envi-
ronment. (a) Primary user performance. (b) Secondary user performance.

Q0 it can be shown that U?p (Q0) is maximized when I?0 = Q0. Hence the optimal

instantaneous Q0 is given by

Q?0 =
ηWsµR − |h̃s0|

2

|h̃p0|2
γ̄0σ

2
p − σ2

s

η + |h̃s0|2
|h̃p0|2

γ̄0

. (5.26)

Note that, as can be seen from (5.26) above, the optimal strategy for the primary

user is heavily dependent on the scenario and thus cannot be fixed a priori. In

order to compute the expected gain in a dynamic environment for a DSL based

scheme over a paradigm with fixed Q0, given by Ūdsl
p − Ūfixed

p , we further need to

define a channel model and compute the average of (5.24) with respect to all channel

realizations. Although, in general, the expected gain cannot be computed in a closed

form, it can easily be evaluated numerically for any given set of parameters.

5.3.4 Numerical results

Here we show the performance gain that can be expected when the simple utilities

in (5.16)-(5.17) are used. We assume that channels from secondary transmitters h̃pk

and h̃sk are Rayleigh distributed with E[|h̃pk|2] = E[|h̃sk|2] = 1 for k = 1, . . . ,K while

the primary transmitter and primary and secondary receivers are assumed stationary

so that |h̃p0|2 = |h̃s0|2 = 1. The remaining system parameters are K = 3, p̄k = 100,

Q̄0 = 10, and σ2
p = σ2

s = 1. We employ normalized bandwidth Wp = Ws = 1, target

SINR γ̄0 = 1 and resource prizes initially set to µP = 0.1 and µR = 2.

Figure 5.2 shows the comparison between a DSL based scheme and a scheme in

which the allowed interference cap Q0 is fixed for the given set of system parameters.

In Fig. 5.2(a) we can see that even if a fixed system were to use the optimal Q0 ≈ 2.5,
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the primary utility attainable by a DSL based scheme is about 25% larger than the

one of the fixed scheme. On the other hand, if we look at the secondary utility

obtained by a DSL based scheme compared to a scheme with fixed Q0, as shown in

Fig. 5.2(b), we can see that while fixed schemes perform better than DSL for a small

range of Q0 values, for the optimal operating point of the fixed scheme (Q0 ≈ 2.5)

DSL performs slightly better than the fixed scheme. That is, in this setting both

primary and secondary users can benefit from the use of a DSL scheme. Moreover

in a DSL based scheme the allowed interference at the primary is computed on

line, and thus it does not need to be fixed a priori. Hence, DSL schemes can be

robust against inaccurate knowledge of the system parameters that may degrade

both primary and secondary performance at the expense of the extra complexity

required for dynamically setting the value of Q0. Note from Fig. 5.2 that a small

change in the Q0 value for the fixed scheme can significantly degrade the global

system performance.

However, as we pointed out above the advantage of DSL based schemes vanishes

if the optimal primary user action Q0 is independent from the channel realization.

If we assume high reward for the secondary system sum rate, that is µR = 100, the

best responses for both primary and secondary users turn out to be I0 = Q0 = Q̄0,

not depending on the channel realization. In this case DSL and fixed schemes with

Q0 = Q̄0 turn out to be equivalent achieving Up ≈ 8.99 and Us ≈ 235.

5.4 General formulation for practical DSL schemes

In the previous section we derived the expected performance gain that can be ob-

tained from a DSL based scheme. However in the resulting Stackelberg formulation

we assumed that both primary and secondary systems have perfect knowledge of all

system parameters, and thus they can optimize their performance by maximizing

their own utilities. Hence this scheme cannot be directly implemented in practice.

Next, we develop a general formulation which, we will see, leads to practical

DSL schemes. To this end we will make use of non cooperative game theory to

model the interactions among primary and secondary systems. We establish the

conditions under which the proposed game-theoretic formulation has a unique Nash

equilibrium to which both primary and secondary best-response adaptations would

converge and the performance of the system will be found to be the performance at

this Nash equilibrium.
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Naturally, any DSL system requires each system to know a certain amount

of information about the other system. However, it may arguably be desirable

to minimize the awareness the primary system needs to have on the secondary

operation. In this section, we show that indeed successful dynamic spectrum leasing

can be achieved still relegating most of the interference management burden to the

secondary system, with the primary system just broadcasting two parameter values

periodically, namely, its tolerable interference cap and the total interference it is

currently experiencing from the secondary transmissions. These are quantities that

are readily available at the primary users (or can be easily estimated). Additionally

we will assume in the following matched filter decoding in the secondary receiver,

which is more adequate for practical implementations.

5.4.1 Non-cooperative game model

Primary and secondary users interact with each other by adjusting their interference

cap and transmit power levels, respectively, in order to maximize their own utility.

Hence, game theory provides a natural framework to model and analyze this DSL

network. At a given time we may formulate the above system as in the following

non-cooperative game (K,Ak, uk(·)):

1. Players: K = {0, 1, · · · ,K}, where we assume that the 0-th user is the primary

user and k = 1, 2, · · · ,K represents the k-th secondary user.

2. Action space: P = A0 × A1 · · · × AK , where A0 = Q = [0, Q̄0] represents

the primary user’s action set and Ak = Pk = [0, p̄k], for k = 1, 2, . . . ,K,

represents the k-th secondary user’s action set. Note that Q̄0 and p̄k represent,

respectively, the maximum possible interference cap of the primary user and

the maximum transmission power of the k-th secondary user (as determined by

the system and regulatory considerations). We denote the action vector of all

users by a = [Q0, p1, · · · , pK ]T , where Q0 ∈ Q and pk ∈ Pk. It is customary to

denote the action vector excluding the k-th user, for k = 0, 1, . . . ,K, by a−k.

3. Utility function: We denote by u0 (Q0,a−0) the primary user’s utility func-

tion, and by uk (pk,a−k), for k = 1, 2, . . . ,K, the k-th secondary user’s utility

function.

One of the main features of the dynamic spectrum leasing approach is the

consideration of the coupling of primary system with the secondary-user system in
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terms of mutual interference. The primary user can then define its utility function

as:

u0 (Q0,a−0) =
(
Q̄0 − (Q0 − I0(a−0))

)
Q0 (5.27)

.
= u0 (Q0, I0) . (5.28)

Note that (5.28) assumes that the utility of the primary user is proportional to both

demand and its interference cap level Q0. The demand is taken to be decreasing

when the extra interference margin Q0− I0 increases. This discourages the primary

user to swamp all other transmissions (both primary and secondary), by setting too

large an interference cap which would lead to higher transmission power. It is also

worth noting that this u0 is continuous in a and concave in Q0.

The (selfish) objective of each secondary user is to maximize a given utility

function that depends on its own SINR (for example, throughput) without violating

the primary user interference cap. Any utility function in a reasonable communica-

tion system is of course a monotonically increasing function of the received SINR

γk. Observe from the expression of γ0 in (5.4) that as long as the secondary user

interference I0 is below the interference cap Q0 set by the primary user, the required

QoS of the primary user will be guaranteed. To ensure this the utilities of secondary

users must be fast decaying functions of I0 − Q0 when this difference is positive.

Motivated by these arguments we propose the following form for the secondary user

utility function:

uk (pk,a−k) = (Q0 − λsI0) g (γk) (5.29)

= (Q0 − λsI0) g

(
|h̃sk|2pk
Ik + σ2

s

)
(5.30)

where g(·) is a suitable, non-negative reward function, and λs is a positive weighting

coefficient. Note that in (5.29) the coefficient λs essentially controls how strictly

secondary users need to adhere to the primary user’s interference cap. The proposed

utility function (5.29) leaves the performance metrics of the secondary system to be

arbitrary by allowing for any reasonable reward function g(·) that will satisfy the

conditions to be set forth in the next section. Without loss of generality, we may

assume that the reward function g (γk) satisfies g(0) = 0 and g′(0) > 0, since when

the received SINR of a user vanishes no useful communication is possible for that

user.
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5.4.2 Nash equilibrium

In the following we investigate equilibrium strategies on the proposed DSL game

G = (K,Ak, uk). The most commonly used equilibrium concept in non-cooperative

game theory is the Nash equilibrium:

Definition 5.1. A strategy vector a = (a0, a1, · · · , ak) is a Nash equilibrium of the

primary-secondary user dynamic spectrum leasing game G = (K,Ak, uk) if, for every

k ∈ K, uk (ak,a−k) ≥ uk (a′k,a−k) for all a′k ∈ Ak.

In essence, at a Nash equilibrium no user has an incentive to unilaterally change

its own strategy when all other users keep their strategies fixed. Hence, the Nash

equilibrium can be viewed as a stable outcome where a game might end up when

non-cooperative users adjust their strategies according to their self-interests. In fact,

the best response correspondence of a user gives the best reaction strategy a rational

user would choose in order to maximize its own utility, in response to the actions

chosen by other users. That is, the user k’s best response rk : A−k −→ Ak is the

set

rk (a−k) =
{
ak ∈ Ak : uk (ak,a−k) ≥ uk

(
a′k,a−k

)
for all a′k ∈ Ak

}
. (5.31)

If we define the total interference from all secondary users to the primary user,

excluding that from the k-th user signal as I0,−k
.
= I0− |h̃pk|2pk, where I0,−k is now

independent of pk we have the following result.

Theorem 5.1. A Nash equilibrium exists in game G = (K,Ak, uk) if

1. g(0) = 0, g′(0) > 0 and limγ→∞
g(γ)
g′(γ) > −∞

2. g(γ)g′′(γ)
(g′(γ))2

< 2 for all γ > 0

3. 0 < λs ≤ Q0

I0,−k
for k = 1, 2, . . . ,K

Proof. See Appendix 5.A.

Clearly, the above DSL game model is general enough to allow for various sec-

ondary reward functions g(·) that may satisfy above conditions. We have seen that

choosing the most suitable secondary user performance metric and the associated



5.4 General formulation for practical DSL schemes 157

reward function in a cognitive radio network can itself be a non-trivial task. For

illustrative purposes, we consider in the following two specific reward functions:

g
(1)
k (γk) = Wk log(1 + γk), (5.32)

g
(2)
k (γk) = Rk

CBSC (Pe(γk))

pk
(5.33)

where Wk and Rk are the bandwidth and data rate of user k, respectively, Pe(γk)

is the probability of bit error with received SINR of γk and CBSC(Pe) is the capacity

of a binary symmetric channel with cross-over probability Pe which can be written

in terms of the binary entropy function H(Pe) = −Pe log2 Pe− (1−Pe) log2(1−Pe)
as CBSC(Pe) = 1−H(Pe).

The reward function g(1)(·) is a measure of user k’s capacity in the presence of

all other users, while g(2)(·) is a measure of its throughput per unit power. Both these

reward functions can be justified in a wide variety of contexts. For example, the

reward function g(1)(·) can be justified in a dynamic spectrum leasing application in

which the secondary users are mainly concerned with getting access to the spectrum

and their power consumption is not a major concern. On the other hand, g(2)(·)
is suitable when secondary users are interested in achieving best throughput per

unit energy spent. For concreteness, we will assume that Pe(γk) = 1
2 exp(−γk) (i.e.

BPSK modulation with a matched-filter receiver).

5.4.3 Best response adaptations and implementation issues

Primary user. Since the best response by a player in a game is a strategy that

maximizes its own utility given all other players actions, the best response of the

primary user in the above DSL game is obtained by setting u′0(Q0) = 0. The unique

interior solution is given by

Q∗0(I0) =
Q̄0 + I0

2
. (5.34)

Note that, since u0(Q0) is monotonic increasing for Q0 < Q∗0, if the maximum

interference cap is such that Q̄0 < Q∗0, the best response of the primary user would

be to set the interference cap to Q0 = Q̄0. Hence, the primary user’s best response
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is given by

r0 (a−0) = r0 (I0) (5.35)

= min
{
Q̄0, Q

∗
0(I0)

}
. (5.36)

We observe that in order to determine its best response for a chosen action vector

a−0 by the secondary users, the only quantity that the primary user needs to know

is the total secondary interference at the primary receiver I0. Indeed, this total

interference can be estimated at the primary receiver without much difficulty.

Secondary user. On the other hand, the best response of the k-th secondary

user to the transmit powers of the other secondary users as well as interference cap

set by the primary user is given by the solution to u′k(pk) = 0 that we denote here

p∗k(a−k).

Since uk is quasi-concave in pk, if p∗k(a−k) > p̄k where p̄k is the k-th user’s

maximum possible transmit power, its best response is to set its transmit power to

pk = p̄k. Hence, we have the best response of k-th secondary user, for k = 1, 2, . . . ,K:

rk (a−k) = min {p̄k, p∗k(a−k)} . (5.37)

It can be shown that p∗k(a−k) = p∗k(Q0, I0,−k, Ik), that is, the best response of

the k-th secondary user is a function of the primary interference cap Q0, the residual

interference I0,−k from all other secondary users to the primary user, and the total

interference from all secondary and primary users to the k-th user’s received signal

at the secondary receiver Ik. The secondary system can of course estimate the latter

quantity.

To obtain the knowledge of Q0 and I0,−k we assume that the primary system

periodically broadcasts Q0 and I0. Note that this is the only interaction that the pri-

mary system will need to keep with the secondary system. Since these two quantities

are readily available to the primary system, we believe that the periodic broadcast

of these quantities, informing the secondary system what it needs to know in order

to avoid severe conflicts with primary transmissions, is a reasonable expectation for

a future cognitive radio system that expects to harvest spectrum leasing gains. Ob-

serve that by knowing I0, each secondary user can compute the residual interference

I0,−k = I0 − |h̃0k|2pk given that it can estimate the channel state information |h̃0k|2
to the primary. If reverse link signals are available in the same band this may be

feasible. Otherwise the secondary receiver does not necessarily need the CSI of its



5.4 General formulation for practical DSL schemes 159

link with the primary receiver, as it will be shown in the numerical results section,

since the approximation I0,−k ≈ I0 performs well in practice, especially when the

number of secondary users K is sufficiently large.

5.4.4 Performance analysis

In the following we consider a dynamic spectrum leasing cognitive radio system

that fits into the proposed game-theoretic framework. Our goal is to investigate the

behavior of the primary and secondary systems at the equilibrium. It is to be noted

that the Nash equilibrium can reasonably be expected to be the natural outcome of

the system when it reaches steady-state. Thus, the performance of the system is to

be considered as its performance at the Nash equilibrium.

Now, to illustrate the characteristics of the Nash equilibrium in this primary-

secondary user dynamic spectrum leasing game, we first consider a simplified sce-

nario with identical secondary users. This scenario allows to analytically determine

the Nash equilibrium state and its general behavior. We analyze next a more gen-

eral scenario with non-identical secondary users and fading channels by means of

simulations.

Stationary system with identical secondary users

When all secondary users present the same channel to the secondary receiver it is

possible to characterize the best response correspondences of primary and secondary

users to graphically visualize the Nash equilibrium. If |h̃sk|2 = |h̃s|2 and |h̃pk|2 =

|h̃p|2 for all k. By symmetry, in this case all secondary users must have the same

power pk = p∗ at the Nash equilibrium (equivalently, the same SINR γk = γ∗). Thus

the Nash equilibrium is characterized by the intersection (Q∗0, p
∗) of the following

two curves:

Q0 = r0(p) =
Q̄0 +K|h̃p|2p

2
(5.38)

p = (solution to equation ψQ0(p) = 0)
.
= rs (Q0) (5.39)

where

ψQ0(p)
.
= Kp+

Ik + σ2
s

|h̃s|2
g (γ1(p))

g′ (γ1(p))
− Q0

λs|h̃p|2
. (5.40)
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Figure 5.3: Primary user utility u0 for a fixed secondary interference I0 in a single-
user secondary system.

Combining (5.38) and (5.39), the Nash power p∗ of the secondary users is given by

the solution to the equation

K

(
1− 1

2λs

)
p+

Ik + σ2
s

|h̃s|2
g (γ1(p))

g′ (γ1(p))
− Q̄0

2|h̃p|2λs
= 0. (5.41)

Figure 5.3 shows the primary utility function for fixed secondary network ac-

tions in a single secondary user system, that isK = 1, assuming that Q̄ = Qmax = 10,

p̄1 = 12, W1 = 1, λs = 1, γ̄0 = 1, h̃p1 = h̃p0 = h̃s0 = h̃s1 = 1 and σ2
s = σ2

p = 1.

On the other hand, for the setup described, secondary utility and best response

depends on the considered reward function g(γ). First Figs. 5.4(a) and 5.4(b)

assume the secondary reward function g(γ) = g(1)(γ) = log(1+γ). In Fig. 5.4(a) we

can see the concavity of the secondary utility function for fixed primary response,

and thus the existence of a best response. The primary and secondary best response

curves Q0 = r0(p1) and p1 = r1(Q0) for the setup described are presented in Fig.

5.4(b). Notice that the intersection of these two best response curves specifies the

Nash equilibrium for this system: (Q∗, p∗1) = (6.505, 3.010).

Similarly, Figs. 5.5(a) and (b) show the secondary user utility for a fixed pri-

mary interference cap and the best response functions, respectively, when the sec-

ondary utility function is chosen to be g(γ) = g(2)(γ) = R1
CBSC(Pe(γ))

p with R1 = 1

and all other parameters as in the previous scenario. From 5.5(a) we observe that
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Figure 5.4: System behavior for identical secondary users when g(γ) = g(1)(γ). (a)
Secondary utility. (b) Best-response functions.

the secondary utility function is still concave in secondary power. The best re-

sponse curves in Fig. 5.5(b) are characterized by (5.39) and (5.38) where, now,

g(γ) = g(2)(γ). Figure 5.5(b) shows that the Nash equilibrium in this system is

(Q∗, p∗1) = (6.325, 2.650). Note that this NE shows that due to the penalty for in-

creasing transmit power in the secondary system, the secondary user now settles for

a slightly lower transmit power level compared to the earlier situation in which it

was not concerned with power expenditure. As a result, the primary user is also

better off by slightly lowering its interference cap so that it keeps the demand high.

With this in mind, and for ease of explanation we will restrict our discussion to the

secondary utility g(γ) = g(1)(γ). Extension to g(γ) = g(2)(γ) is straightforward and

it is left to the curious reader.

It is of interest to investigate the equilibrium behavior of this dynamic spectrum

leasing system as a function of the secondary system size K. In Fig. 5.6 we show

the allowed interference cap Q0 and the actual secondary interference I0 at the

system equilibrium for a system such that Q̄ = 10, p̄k = 10, Wk = 1, γ̄0 = 1,

h̃pk = h̃sk = 1 for all k, and σ2
s = σ2

p = 1. From Fig. 5.6 we can observe how the

total interference I0 increases with increasing K, and how, in turn, the primary user

also increases its interference cap to maximize its utility. It is also of interest to

note that the safety margin Q0 − I0 is large for smaller number of users, and seems

to monotonically decrease with increasing K. This, we believe, is essentially due

to the fact that the number of degrees of freedom in a multiuser system is being

proportional to the number of users. When the number of secondary users K is large,

the interference generated by the secondary system I0 is close to the interference cap
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Figure 5.5: System behavior for identical secondary users when g(γ) = g(2)(γ). (a)
Secondary utility. (b) Best-response functions.

Q0, yet, as desired, is always below it. Figure 5.6 shows the game outcomes when

exact channel state information for the primary system is available at each secondary

user (via estimation) so the exact I0,−k is used in its best response adaption, as well

as when this channel state information to the primary is not available, so that the

secondary user employs the approximation I0,−k ≈ I0. As we may observe from Fig.

5.6, the system that does not rely on the knowledge of channel state information

demonstrates the same performance trends at the equilibrium. In particular, still

the DSL game converges to a Nash equilibrium that does not violate the primary

interference cap. It seems that the only effect of not having the exact I0,−k is that

the safety margin Q0−I0 at the equilibrium is slightly larger. This is essentially due

to the fact that each secondary user believes an exaggerated residual interference

I0,−k making it to decrease its power.

Figure 5.7 shows the primary and secondary utilities at the Nash equilibrium

of the system considered in Fig. 5.6 as a function of the secondary system size. In

Fig. 5.7 we show the utilities achieved when exact channel state information for the

primary system is available at each secondary user (via estimation) so the exact

I0,−k is used in its best response adaptation, as well as when this channel state

information to the primary is not available, so that the secondary user employs

the approximation I0,−k ≈ I0. In particular, as seen by Fig. 5.7(a) the primary

utility u∗0 at the Nash equilibrium typically increases with the number of secondary

users K. However, the rate of increase decreases with increasing K. Thus, from a

design point of view we may argue that the primary user might prefer the system

to operate at a point where its rate of utility increase is above a certain threshold
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Figure 5.6: Game outcome assuming identical secondary users for a quasi-static
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Figure 5.7: System performance of the DSL game in quasi-static environments as-
suming identical secondary users. (a) Primary user utility. (b) Secondary user
reward function.

value. However, the primary system cannot impose this explicitly on the secondary

system and indeed it is not a requirement. The only requirement is that I0 ≤ Q0.

However, as we see next from Fig. 5.7(a) the secondary system has the incentive

to keep K not too high. It is also observed from Fig. 5.7(a) that the equilibrium

utility of the primary user is decreased when exact channel state information is not

available at the secondary users.

Figure 5.7(b) shows both the sum-rate
∑K

k=1 gk(γ
∗
k) as well as the per-user rate
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1
K

∑K
k=1 gk(γ

∗
k) achieved by the secondary system, with and without exact channel

state information. As was the case with primary utility, the secondary utilities are

also reduced slightly in the absence of channel state information. However, as we

observe from Fig. 5.7(b), this performance degradation seems to be small when

the secondary system size is sufficiently large. Note that, from a system point of

view the secondary system would prefer to maximize the sum-rate. As we see from

Fig. 5.7(b), the sum-rate monotonically increases with K both with and without

CSI. Thus, at a first glance, allowing more secondary users to operate simultaneously

seems to be the preferred solution. However, Fig. 5.7(b) also shows that the per-

user rate is monotonically decreasing in K, leading to decreasing incremental gains

in sum-rate as additional secondary users are added to the system. Depending on

the application and the QoS requirement of the secondary system, each secondary

user will have a minimum required rate (in bits per transmission) below which

the transmissions would be useless. Thus we note that this QoS requirement will

determine the maximum number of secondary users K the secondary system would

want to support at any given time. For example, if the minimum per-user rate

required is 0.1 bps, the optimal K would be K∗ = 4, assuming exact CSI. If, on the

other hand, the rate threshold was reduced to 0.025 bps, the secondary system may

allow up to K = 18 secondary users to simultaneously operate.

DSL network under quasi-static fading channels
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Figure 5.8: Game outcome in the presence for a quasi-static scenario versus the
number of secondary users K.
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Figure 5.9: System performance of the DSL game in quasi-static environments. (a)
Primary user utility. (b) Secondary user reward function.

In the presence of wireless channel fading, the Nash equilibrium power pro-

file of the dynamic spectrum leasing system will depend on the observed channel

state realization. In particular, it is expected that in this case the Nash equilibrium

transmit powers of individual secondary users will be different for each user. In Fig.

5.8 we have shown the game outcome at the Nash equilibrium in the presence of

channel fading as a function of the number of secondary users K, both with and

without CSI (when there is no channel state information, again, we use the approx-

imation I0,−k ≈ I0). Figures 5.9(a) and 5.9(b) show the corresponding primary and

secondary user utilities achieved at the Nash equilibrium in the presence of channel

fading. In obtaining Fig. 5.8 and Fig. 5.9 we have assumed all channel gains in the

system to be Rayleigh distributed with all channel coefficients normalized so that

E[h2] = 1. The remaining parameters are assumed Q̄ = 10, p̄k = 10, Wk = 1, γ̄0 = 1,

and σ2
s = σ2

p = 1 as in the previous section. This essentially allows us to consider,

without any loss in generality, the transmit powers pk to be equal to the average

received power (averaged over fading). Note that, due to interference averaging in

the presence of fading, in this case the secondary system is able to achieve better

sum- and per-user rates compared to those with non-fading channels.

Note that, when the reward function f = f (1), the reward for a secondary user

is the capacity (in bps) it can achieve assuming all other transmissions (both primary

and secondary) are purely noise. In the presence of channel fading, this capacity

is a random quantity determined by the fading coefficients of all users. As we saw

earlier with identical users, the per-user reward is typically a decreasing function of

the increasing secondary system size. The interpretation is simple: Essentially, all
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secondary users in the system must share the allowed interference level set by the

primary system. As we mentioned earlier, a secondary user may require a minimum

capacity to ensure at least an acceptable QoS for its applications.

DSL network under time-varying environmental conditions

In the above discussion, we have assumed the quasi-static fading in which fading

realizations stay fixed for a period of duration and then change to new values. This

facilitated the Nash equilibrium analysis without having to deal with time-varying

channel coefficients. While quasi-static assumption may be justified in certain chan-

nel environments, sometimes it is likely that the channel coefficients may slowly vary

in time. It is easy to see that for the best-response adaptations to converge to a

Nash equilibrium, the rate of adaptations need to be faster than the time-variations

of the channel. One may expect that in the presence of channel variations, the con-

vergence may be slowed, or even not occur. However, as we will demonstrate in this

section, the proposed DSL-game has the desired property of being tolerant towards

slow time-variations of the channel state. Moreover, the Nash equilibrium of the

proposed DSL-game is robust against small channel estimation errors. This is also

a desired property since in practice the channel coefficients need to be estimated,

and these estimations are almost always not perfect.

In this section we investigate the behavior of the proposed DSL-game based

dynamic spectrum sharing networks. We first study the effect of both channel

variation rate ε and CSI updating interval L on the network performance and how

they affect the probability of the secondary system meeting the target interference

cap Q0. Secondly we compare a quasi-static scenario where the system has enough

time to converge to its Nash equilibrium with a more realistic time-varying scenario

for a different number of secondary users K.

Channel Model. Channel coefficients are assumed Rayleigh distributed and

independent across users, that is,

h·k[n] ∼ CN
(
0, σ2

h·k

)
, (5.42)

where with some abuse of notation we use a dot in the subscript to denote either

primary (p) or secondary (s) systems. We assume that channel coefficients present

temporal correlations. Under the slow varying channel assumption we model tempo-

ral correlation as a first order Gauss-Markov process (Maybeck, 1979) at sampling
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rate:

h·k[n] =
√

1− ε2h·k[n− 1] + εw·k[n], (5.43)

where the driving noise w·k follows an iid CN
(

0, σ2
h·k

)
, and ε, defined here as channel

variation rate, is a parameter related to the normalized Doppler spread. First order

Markovian assumption for fading correlations has been shown to be accurate both

experimentally and analytically (Wang and Chang, 1996).

Additionally we assume that the channel state information (CSI) update at

the system is not instantaneous, and the system obtains CSI periodically every L

samples. Then system decisions are taken as a function of the last CSI estimate

ĥ·k[n]
.
= h·k[Lbn/Lc], (5.44)

where b·c stands for the operand integer part of the argument.

For each set of parameters the results are averaged over 1000 Monte Carlo

repetitions. We divide each realization into a transient period (100 best-response

iterations), where the system evolves to its stationary regime and the period in which

the results are averaged (500 best-response iterations). Unless specified otherwise,

simulation parameters were set to γ̄0 = 1, σ2
p = σ2

s = 1, σ2
h̃pk

= σ2
h̃sk

= 1 for

k = 0, . . . ,K. The maximum allowed interference cap was fixed to Q̄0 = 10 while

the maximum transmission power of each of the secondary transmitters was set to

P̄k = 10 for k = 1, . . . ,K. The weighting coefficient was set to λs = 1. As we will see

below we can compensate for both channel variations and channel state information

inaccuracies by changing the value of the parameter λs.

Effect of channel variation rate

Here we fix the size of the secondary system (K = 10) and the channel estima-

tion period (L = 10), and we study the effect of the channel variation rate ε. To

this end we vary its value from a static channel ε = 0 to a (moderately fast) varying

channel ε = 0.2.

Fig. 5.10(a) shows the averaged game outcome for different values of the channel

variation rate ε. This figure must be seen in conjunction with Fig. 5.10(b) that shows

the probability of the secondary system outcome not meeting the allowed interference

cap Q0 set by primary user. We compare here two values of the weighting coefficient

λs.
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Figure 5.10: Outcome averaged over the fading for two different values of the weight-
ing coefficient λs versus a growing channel variation rate ε. (a) Game outcome. (b)
Probability of undesired operation.

In Fig. 5.10(a) we can see that for both λs = 1 and λs = 1.25 an increase in

the rate of variation does not affect the average interference cap Q0 at the system

equilibrium. However the actual interference I0 at the primary receiver increases

on average with ε. Fig. 5.10(b) shows that the probability of undesired operation

defined as Pr{I0 > Q0} turns to be non-zero even for moderate values of ε. Moreover,

above a given variation rate I0 exceeds the allowed interference cap on average, as

seen from Fig. 5.10(a). Note that by adjusting the weighting coefficient λs we can

control the safety margin of the system. In Fig. 5.10(b) we can see that by increasing

λs we shift the probability of undesired operation curve to the right, allowing the

system to work satisfactorily even at higher channel variation rates. This increased

tolerance to time-variations, however, comes at a price. In our case, it is the smaller

equilibrium interference cap chosen by the primary user, which in turn leads to

reduced both primary utility and secondary system sum-reward.

Effect of channel estimation period

We set the channel variation rate ε = 0.1 for the same secondary system size

(K = 10). We vary the channel estimation period L from 1 (each best-response

iteration carried out with perfect CSI) to L = 25, that is, one estimate every 25

best-response round-robin iterations.

In Fig. 5.11 we can see that the effect of the channel estimation period L

resembles the channel variation rate effect. For longer channel estimation periods

the actual interference at the primary increases although the allowed interference
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Figure 5.11: Outcome averaged over the fading for two different values of the weight-
ing coefficient λs versus a varying channel estimation period L. (a) Game outcome.
(b) Probability of undesired operation.

cap remains constant even in the presence of outdated channel information. In

Fig. 5.11(b) we can see that by increasing the weighting coefficient λs the probability

of undesired operation curve gets shifted allowing a larger operating range.

Effect of the number of users

Here we compare the effect of the secondary system size in a quasi-static sce-

nario, corresponding to ε = 0, where the system converges to its Nash equilibrium

and the channel is known perfectly, with a time-varying situation corresponding to

a channel variation rate of ε = 0.1 and channel estimation period of L = 10 best

response adaptations.

Figure 5.12 shows the game outcome versus the secondary system size. We see

that in a quasi-static scenario the actual interference I0 at the primary meets the

allowed interference cap Q0 even for a moderate number of secondary users. For

a growing number of secondary users the safety margin Q0 − I0 decreases. On a

time-varying scenario with outdated CSI the safety margin Q0 − I0 is reduced due

to incomplete adaptation to the actual environment that prevents the convergence

of the network to its desired Nash equilibrium, as we have seen in the previous

results. This effect becomes more pronounced for a growing number of secondary

users because of the required longer convergence time of a larger network.

In Figures 5.13(a) and (b) we show the utility and the reward function of the

primary and secondary systems, respectively. In the case of time-varying channels

the primary utility is larger than for stationary channels, as seen from Fig. 5.13(a).
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Figure 5.12: Game outcomes averaged over fading for a quasi-static scenario and for
time-varying scenario for a varying number of secondary users K.
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Figure 5.13: System performance averaged over fading for a quasi-static scenario and
for time-varying scenario. (a) Primary user utility. (c) Secondary reward function.

This effect comes from the fact that the actual interference seen at the primary is

larger than for stationary channels. On the other hand, Fig. 5.13(b) shows that the

reward function for the secondary users remains almost unaltered for time-varying

channels, even when the interference at primary has been increased. This is an

undesirable effect since an increase in transmitted power by secondary users does

not translate into a larger reward for the secondary system. The reason is that the

increased transmitted power hinder both primary and other secondary users due to

the suboptimality of matched filter decoding.



5.5 Conclusions 171

5.5 Conclusions

A formal analysis of Cognitive Radio paradigms which allow different level of aware-

ness between primary and secondary networks shows the potential gain of the inter-

action between the two heterogeneous systems.

Specifically, in this chapter we have studied the expected utility improvement of

a primary system which dynamically adjusts the level of allowed interference. The

proposed analysis results into a Stackelberg game formulation of the interactions

between primary and secondary systems, which is not implementable in practice.

Instead, we propose a general game theoretical framework which results in a family

of practical (though suboptimal) DSL communication schemes. The stability and

performance of this system has been analyzed under different scenarios showing a

good behavior in realistic environments.

The results presented in this chapter are the result of the collaboration between

the Signal Processing in Communications Group (GPSC, University of Vigo) and

the Communications and Information Sciences Lab (CISL, University of New Mex-

ico). This collaboration conducted to three publications in the topic of DSL based

schemes. First, Vazquez-Vilar et al. (2010b), published in the IEEE-TWC, studies

the potential gain of a family of DSL schemes and covers Section 5.3. On the other

hand, the content in Section 5.4 is mainly based on Jayaweera et al. (2010), published

in IEEE-TVT and was extended to time varying environments in El-howayek et al.

(2010), presented at the 1st International Workshop on Cognitive Radio Interfaces

and Signal Processing (CRISP 2010).
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Appendix 5.A Proof of Theorem 5.1

Note that the primary user action set is of the form of A0 = Q = [0, Q̄0], where

Q̄0 is the maximum interference cap that is determined by the required minimum

QoS and the maximum possible transmit power of primary user. Clearly A0 is both

compact and convex. Similarly, for all k = 1, · · · ,K, the secondary user strategy

sets are of the form of Ak = Pk = [0, p̄k]. Again, it is easy to observe that all

secondary user action sets are convex and compact (being closed and bounded real

intervals). Further, both u0(a) and uk(a) are continuous in the action vector a, and

u0 is concave in Q0. For the existence of a Nash equilibrium we need to additionally

ensure the quasi-concavity of uk’s in pk for pk ≥ 0, for k = 1, · · · ,K.

Let us define

φk (γk)
.
=

I0,−k
Q0

+
|h̃pk|2σ2

s

Q0

(
γk +

g(γk)

g′(γk)

)
. (5.45)

Then, it can be seen that uk has a local maximum that is indeed a global maximum

if φk(γk) = 1
λs

has only one solution for pk ∈ Pk. Clearly, φk(γk) = 1
λs

has a

solution if φk(0) ≤ 1
λs

< limγk→∞ φk(γk), and, moreover, this solution is indeed a

global maximum if in addition φ′k(γk) > 0 for γk > 0. It can be easily verified that

φ′k(γk) > 0 will be true if the reward function is such that g(γk)g′′(γk)
(g′(γk))2

< 2 for all

γk > 0. Note that, this is trivially true for any reward function that is concave in γk

since in that case g′′(γk) ≤ 0. Note also that φk(0) =
I0,−k
Q0

and limγk→∞ φk(γk) =∞
if limγk→∞

g(γk)
g′(γk) > −∞. Hence, if reward function g(γk) and the coefficient λs satisfy

the following conditions, uk indeed has a local maximum that is a global maximum:

1. g(0) = 0, g′(0) > 0 and limγk→∞
g(γk)
g′(γk) > −∞

2. g(γk)g′′(γk)
(g′(γk))2

< 2 for all γk > 0

3. 0 < λs ≤ Q0

I0,−k
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This thesis is framed within the field of cognitive radio, a smarter communica-

tions paradigm in which radios may learn and adapt to the environment. While this

novel scheme promises a better strectrum utilization by allowing dynamic access in

certain licensed bands, there exists a series of challenges which need to be addressed

before the technology is mature enough for its deployment.

In the first chapters of this thesis we presented different detection schemes

exploiting the available information about the primary network. In particular, in

Chapters 2 and 3 we presented different multi-antenna detection schemes exploiting

the spatial structure of the received signal together with the available information

about its spectral shape. In Chapter 4 we addressed the issue of acquisition and

detection of wideband signals, both when the sampling is performed at Nyquist rate

and when the acquisition is done through novel analog to information converters.

Wideband processing is shown to provide additional information that can be used

to increase the detection performance.

As a whole, this thesis provides a set of tools that, depending on the known

parameters on the primary network and the architecture of the detection system,

allows the system designer to construct efficient detectors. For each of the proposed

detection schemes we developed a rigurous performance analysis, either analytically

when mathematically tractable, or through extensive Monte Carlo simulations oth-

erwise.

The second part of the thesis focuses on the study of a general architecture
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for interference management in cognitive radio networks. In this sense, Chapter 5

discusses the advantages of allowing some interaction between the primary system

and secondary system, concluding that this advantage can be significant in dynamic

environments. Given the current rising trend in the use of mobile devices, the

analysis of systems in dynamic environments will have a big impact in the design of

the next generation communication standards.

6.1 Future work

The work developed within the framework of this thesis opens multiple lines of

research. Here I will present some of the most interesting yet unanswered questions.

• In Chapter 2 we proposed a low SNR diversity analysis for different detection

schemes which assume known noise variance at the receiver. Extending this

analysis to more sophisticated detectors, for example the ones presented in

Chapter 3, is an open problem.

In fact, this question can be reformulated in a broader scope. Assume that we

have a given family of detectors, parametrized by the set of unknown system

parameters. If their performance depends on a subset of these parameters,

which may suffer from fading, the detection performance is a random variable

which needs to be averaged over the parameter realizations. How is this average

performance affected by the presence of additional unknown parameters?

• The detection schemes derived in Chapter 3 allow the detection of rank-P

signals in spatially uncorrelated noise, and the detection of rank-1 signals in

presence of noise with spatial correlation. However, the approach used to

derive the latter cannot be directly applied to solve the most general problem

of detection of spatially rank-P signals in spatially correlated noise. This

detector would have important implications in certain practical scenarios.

• All of the detectors considered in Chapter 3 assume knowledge of the signal

rank P . While this may be reasonable in some contexts, for example if the

space-time coding scheme used by primary transmitters is known, there are

scenarios in which P is unknown, for example if it is related to the number of

primary users simultaneously transmitting. Future research should consider

estimation of P (Chiani and Win, 2010) and primary signal detection jointly.
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• In Chapter 4 we investigated primary signal detection in a wideband setting.

This conducted to the estimation of parameters which may present certain

sparsity patterns. Exploiting this sparsity has been shown to be fundamental

to increase detection peformance in the proposed scenario. An interesting ex-

tension would be to derive a general performance analysis of the gain obtained

by exploiting sparsity information in general detection / estimation problems.

• The multichannel detection schemes proposed in Chapter 4 have been derived

under the assumption of a single-antenna spectrum monitor. Exploiting both

multiple antennas and wideband processing opens new interesting posibilities,

which, compared to the case of exploiting both properties separately, may

increase the detection performance.

• Chapter 5 presents a novel framework which allows certain interaction between

primary and secondary networks assuming single-carrier systems. This frame-

work can in principle be extended to the case of multi-carrier multi-antenna

systems, which offer multiple degrees of freedom which can be used in the

optimization procedure. Additionally, one may think in more complex scenar-

ios in which different secondary networks coexist. This networks may either

compete for the resources or collaborate to obtain a better utilization. These

scenarios can be studied from a game theoretical point of view by either con-

sidering non-cooperative (as the one considered in Chapter 5) or cooperative

games (which is left as a line of future research).

• Also in the context of cognitive radio other, somehow more philosophical, ques-

tions arise. The scholar community recently proposed a wide set of detection

schemes that can be applied to cognitive radio networks. However, much less

attention has been given to the integration of these detectors in the CR re-

ceiver. In this sense it is clear that in a system with limited resources, say,

for instance, number of available dimensions, a trade-off exists between the

sensing performance and the spectral efficiency of the network. If several of

the available dimensions are used for spectral sensing, there are only a few left

for transmission and a small efficiency is achieved. On the other hand, if few

resources are allocated to the sensing procedure, the system may not be able

to detect transmission opportunities and thus suffers again a reduced spectral

efficiency. Somewhere between these two extremes a trade-off exists which

maximizes the spectral efficiency obtained. In this thesis we presented a set

of multiantenna detectors, and different analyses which allow us to quantify
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their detection performance. This, together with novel results on finite length

bounds (Tauste et al., 2011), can be used as an starting point to formalize the

existing trade-off.

6.2 Concluding remarks

While in this thesis we have focused on the context of CR, several of the fundamental

results obtained can be applied in other fields. For example, the GLRT detectors

presented in Chapter 3 may have practical importance in radio astronomy or in tar-

get detection in the field of radar. The bargain scheme presented in Chapter 5 could

be applied with minor changes, for instance, to femtocell interference management

in cellular networks.

The work presented in this thesis has led to several articles published in interna-

tional journals such as IEEE Transactions on Signal Processing, IEEE Transactions

on Vehicular Technology, or the IEEE Transactions on Wireless Communications,

while other articles are still in review process. Additionally, some preliminary results

have been presented in some of the events with major impact in the field of signal

processing, such as IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP) conference, as well as in specific workshops in the field of Cog-

nitive Radio, such as the ICST Conference on Cognitive Radio Oriented Wireless

Networks (CrownCOM) or the IEEE International Workshop on Signal Processing

Advances for Wireless Communications (SPAWC).

Some of the results this thesis were produced in collaboration with different re-

search groups worldwide. Specifically, the results exposed in Section 3.3 have been

obtained in collaboration with the Advanced Signal Processing Group (GTAS, Uni-

versity of Cantabria) and the theoretical results in Section 3.4 constitute a joint

work with the Signal Processing for Communications Research Group (SPCOM,

Technical Univ. of Catalonia UPC). The analysis of a new interference manage-

ment paradigm presented in Chapter 5 has been developed in collaboration with the

Communications and Information Sciences Lab (CISL, University of New Mexico).

Additionally, a collaboration with Philips Research (Netherlands) has led to a joint

conference paper on the topic of detection diversity in cognitive radio systems.
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López-Valcarce, R., Vazquez-Vilar, G., and Álvarez Dı́az, M. (2009). Multiantenna
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