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Abstract—The channel capacity of wireless networks is often
studied under the assumption that the communicating nodes have
perfect channel-state information and that interference is always
present. In this paper, we study the channel capacity of a wireless
network without these assumptions, i.e., a bursty noncoherent
wireless network where the users are grouped in cells and the
base-station features several receive antennas. We demonstrate
that the channel capacity is bounded in the signal-to-noise ratio
(SNR) when the number of receive antennas is finite and the
probability of presence of interference is strictly positive.

I. INTRODUCTION

According to the Ericsson mobility report [1], it is expected
that, in 2025, 90 percent of broadband subscriptions will be
mobile broadband. This will cause an increase in the data
traffic and a demand for higher data rates. Fulfillment of such
requirements in future wireless networks will be mainly based
on the densification of the radio access network. Indeed, the
next generations of wireless networks enable a more effective
share of network resources through femtocells and macrocells.
Such network densification, with the associated increase in
the number of users that are communicating, implies higher
interference from surrounding cells (inter-cell interference).
Since interference is one of the main limiting factors to achieve
higher data rates, its management has been the object of
several studies; see, e.g., [2] and references therein.

To better understand the impact of interference on the
throughput of wireless networks, the information-theoretic
limits of such networks have been extensively studied in
the past; see, e.g., [3]–[5]. Most of these works consider
that i) interference is always present and ii) the nodes in
the network have perfect channel-state information (CSI) in
the sense that they have perfect knowledge of the fading
coefficients. Regarding assumption i), we observe that in
certain scenarios assuming that interference is always present
is overly pessimistic. For instance, intermittent user activity
or opportunistic frequency reuse among cells [6] may cause
interference to be intermittent/bursty. Interference burstiness
may be exploited to achieve higher data rates at the different
cells. Regarding assumption ii), it is prima facie unclear
whether perfect CSI can actually be obtained if the number of
users is large. Thus, assuming that the receivers have perfect
CSI may be overly optimistic.
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The possible weaknesses in the assumptions i) and ii)
motivate the present work. While bursty interference has
been studied in the information theory literature [7]–[10],
these works consider either a Gaussian channel or a linear
deterministic model, with a finite number of users. Hence,
their relevance for future wireless networks is unclear. Among
the works that study the channel capacity of wireless networks
without perfect CSI, the most relevant for this paper are [11]
and [12]. Lozano et al. [11] consider a wireless network with-
out perfect CSI and study the maximum rate achievable with
channel inputs of the form

√
SNRU , where the distribution of

U does not depend on the SNR, and demonstrate that this rate
is bounded in the SNR. The authors in [12] model a wireless
network without perfect CSI by a flat-fading channel where
only two users communicate with each other (SISO scenario)
and an infinite number of users interferes this communication.
They show that, under some simplifying assumptions, the
channel capacity of this channel remains bounded in the SNR
even if the channel inputs normalized by

√
SNR are allowed

to depend on the SNR.
In the present work, we generalize [12] by considering a) a

MIMO scenario where a number nT of users communicates
with a base-station equipped with a number nR of receive
antennas, b) this communication is affected by the interference
from a large number of cells, and c) this interference is bursty.
Similar to [12], the input distribution is allowed to depend ar-
bitrarily on the SNR. We believe that this model better approx-
imates cellular communication systems since our assumptions
do not prohibit common access or multiplexing methods such
as frequency-division-multiple-access (FDMA), orthogonal-
frequency-division-multiple-access (OFDMA), time-division-
multiple-access (TDMA) or frequency hoping, which can be
modeled through the burstiness of the interference. We show
that under assumptions a)–c), and under the assumption that
the distances between the interfering cells and the intended
cell grow at most exponentially, the channel capacity of such
networks is bounded in the SNR, unless either the number of
receive antennas tends to infinity or the interference is absent
with probability one.

II. CHANNEL MODEL

In a cellular network users are grouped inside cells and
communicate with a base station. Users inside each cell are
assumed to cooperate, hence there is no intra-cell interference,
but they do not cooperate with the users in other cells.



A

Figure 1. Channel model.

Since a characterization of all achievable rates in the net-
work is unfeasible when the number of cells and users is large,
it is common to study the symmetric rate of the network, i.e.,
the rate that can be achieved when all users communicate at the
same rate. For the sake of tractability, we simplify the original
problem as follows: Firstly, we consider the case where the
users in a given cell are communicating with a base-station
and the interfering cells emit symbols that interfere with this
communication. To model a large network, we assume that
there are infinitely many interfering cells. Secondly, to ensure
that all nodes (transmitting and interfering) communicate at
the same rate, we invoke a random-coding argument and
assume that all nodes use the same distribution to draw their
codebooks. This can be viewed as a generalization of the as-
sumption of Gaussian codebooks, which is often encountered
in the literature.

The presence of interference is modeled using a Bernoulli-
distributed random variable that indicates whether the inter-
ference links from the different cells are present or not. We
assume that the interference state remains constant during the
whole transmission of the message. Our performance measure
is the capacity of the channel between the users and the base-
station inside a cell.

Specifically, we consider a system where nT users are
located in a cell and communicate with a base-station with
nR receive antennas. This transmission is affected by inter-cell
interference. For each cell, the channel input-output relation
at time k ∈ Z is

Yk = H0,kX0,k +

∞∑
`=1

B`H`,kX`,k + Zk (1)

where X0,k = [X0,1,k, . . . , X0,nT ,k] ∈ CnT×1

corresponds to a vector of transmitted symbols and
X`,k = [X`,1,k, . . . , X`,nT ,k] ∈ CnT×1 denotes the vector of
interfering symbols. The vector Zk ∈ CnR×1 models the
time-k additive noise vector; H0,k ∈ CnR×nT denotes the
matrix of fading coefficients of the links from the transmitters
in the intended cell; H`,k ∈ CnR×nT , ` = 1, 2, . . . denotes
the matrix of fading coefficients of the interfering links
from the transmitters inside the `-th interfering cell; and
B` ∈ {0, 1} denotes the state of the `-th interfering cell. In

Figure 1, A (in red) corresponds to the intended cell, the
dotted lines indicate the infinite number of interfering cells.
The shadowed cells correspond to cells that do not interfere
due to interference burstiness and the non-shadowed cells are
interfering the communication. We assume that {Zk, k ∈ Z},
{B`, ` = 1, 2, . . .}, and {H`,k, k ∈ Z}, ` = 0, 1, . . .
are independent sequences of independent and identically
distributed (IID) random variables. We further assume that
B` ∼ Ber(p), Zk ∼ NC(0, σ2I), H0,k ∼ NC(0, I), and
H`,k ∼ NC(0, α`I) for some α` > 0, ` = 1, 2, . . . Here
I denotes the identity matrix, Ber(p) is the Bernoulli
distribution with parameter p, and NC(µ,K) denotes the
circularly-symmetric complex Gaussian distribution with
mean µ and covariance matrix K.

We consider a noncoherent scenario where transmitter and
receiver only know the statistics of the fading coefficients
but not their realizations. We assume that the interferers do
neither cooperate with each other nor with the transmitters
in the intended cell. Hence, the sequences {X`,k, k ∈ Z},
` = 0, 1, . . . are independent. We further assume that each
such sequence has the same distribution. Finally, we assume
that the transmitters are not aware of which cells interfere and
which do not, i.e., the input sequences are independent of the
interference state {B`, ` = 1, 2, . . .}. However, the receiver of
the intended cell may have access to {B`, ` = 1, 2, . . .}.

The locations of the interfering cells enter the channel
model through the variance α` of the fading coefficients
corresponding to the paths between the interfering cells and the
intended cell. For simplicity, we assume that the autocovari-
ance matrix of H`,k has identical diagonal elements.1 Without
loss of generality, we order the interfering cells according to
the variances of the corresponding fading coefficients, i.e.,
α` ≥ α`′ for any ` < `′. We further assume that the total
power of the interference received at the intended cell is finite,
i.e.,

∑∞
`=1 α` <∞, and that there exists 0 < ρ < 1 such that

α`+1

α`
≥ ρ, ` = 1, 2, . . . (2)

If we suppose that the path loss grows polynomially with
the distance, then (2) implies that the distances from the
interfering cells to the intended cell grow at most exponentially
with the cell index `.

III. CHANNEL CAPACITY AND MAIN RESULT

We denote sequences such as An, An+1, . . . , Am by Amn .
We define two capacities of the channel (1), depending on the
level of knowledge of the interference states at the receiver
side:2

1) Receiver does not have access to the interference states:

C(P) , lim
N→∞

1

N
sup
QN

I(XN
0,1;YN

1 ). (3)

1This corresponds to the case where all nodes in the `-th interfering cell are
at the same distance from the receiver of the intended cell. This assumption
can be relaxed to different diagonal elements of the autocovariance matrix,
provided that they are finite and bounded away from zero. See Remark 1.

2The logarithms used in this paper are natural logarithms. The capacity has
thus the dimension “nats per channel use”.



2) Receiver has access to the interference states:

CB(P) , lim
N→∞

1

N
sup
QN

lim
L→∞

I(XN
0,1;YN

1 , B
L
1 ). (4)

The suprema in (3) and (4) are over all N -dimensional
probability distributions QN satisfying the power constraint

1

N

N∑
k=1

∫
|x0,j,k|2dQN (xN ) ≤ P, j = 1, 2, . . . , nT . (5)

As we shall show below, C(P) and CB(P) are bounded
uniformly in P. By Fano’s inequality [13, Sec. 7.9], any
encoding and decoding scheme with a rate above capacity
has an error probability that is bounded away from zero as
N →∞. By demonstrating that C(P) and CB(P) are bounded
uniformly in P, we therefore demonstrate that there exists
no encoding and decoding scheme that has a rate that tends
to infinity as P → ∞ and for which the decoding error
probability vanishes as N →∞.

Our main result is presented in the following theorem.
Theorem 1: Consider the channel model introduced in

Section II. For every P > 0 and 0 < p ≤ 1, irrespective
of the knowledge of the sequence B`, ` = 1, 2, . . . at the
receiver, the channel capacity is upper-bounded by

C(P) ≤ CB(P) ≤ nR 1−p
p log

(
ρ−

3
2

)
+ log

π

nRΓ(nR)

+ nR

(
log

nR
e

+
1

2
log ηmax + log (1 + ηmax)

)
(6)

where ηmax , max
(

1
α1
, 1
ρ

)
.

Proof: See Section V.
Remark 1: Theorem 1 can be generalized to the case

where the autocovariance matrices of the fading coefficients
{H`,k, k ∈ Z} are not scaled identity matrices. Instead,
these coefficients have diagonal covariance matrices D` with
arbitrary diagonal elements in [d, d̄]. If d̄/d <∞, then the
upper bound (6) is increased by 3

2nR log
(
d̄/d
)
, but it remains

bounded and independent of P.

IV. DISCUSSION

Lozano, Heath, and Andrews demonstrated in [11] that,
without perfect CSI, the information rates of wireless networks
achievable with inputs of the form

√
SNRU (where U is

independent of the SNR) is bounded in the SNR. In [12], it was
further shown that, under some additional simplifying assump-
tions, the capacity remains bounded in the SNR even if the
input distribution normalized by

√
SNR is allowed to depend

on the SNR. Theorem 1 demonstrates that the same is true un-
der less stringent assumptions and even when the interference
is bursty. Intuitively, to avoid a bounded capacity, a carefully
chosen frequency reuse scheme is crucial to ensure that the
interfering cells are super-exponentially far away so that (2) is
violated. However, interference burstiness increases the value
of the upper bound (6). For example, for nR = nT = 1 and
ρ = 0.5, if the interference is always present (p = 1), the
upper bound (6) becomes 1.59 nats/ch. use. In contrast, for

nR = nT = 1, ρ = p = 0.5, it becomes 2.63 nats/ch. use.
This also suggests that bursty signaling strategies, which
artificially enhance interference burstiness, may increase the
transmission rate of noncoherent wireless networks.

Observe that the upper bound presented in Theorem 1
decreases monotonically with the probability of presence of
interference p. For p = nR = 1, we recover [12, Th. 1].
Further observe that the upper bound (6) is independent of
nT . The impact of enabling nT users to cooperate vanishes as
the number of interfering cells tends to infinity.

By applying the Stirling series to approximate log Γ(nR), it
can be observed that, for large values of nR, the upper bound
(6) grows linearly with the number of receive antennas nR. A
numerical evaluation of (6) reveals that increasing the number
of receive antennas has a larger impact if either the interference
burstiness level p or the value of ρ are small. Finally, as ρ→ 1,
the impact of interference burstiness vanishes.

To summarize, Theorem 1 provides an upper bound on the
capacity that is independent of the SNR. For example, for
nR = nT = 1, ρ = 0.5, and p = 1, the upper bound (6)
becomes 1.59 nats/ch. use. If one wishes to communicate
above this rate, one has three possibilities: i) increase the
number of receive antennas, ii) use bursty signaling to increase
interference burstiness or iii) decrease ρ by adapting the
frequence reuse scheme.

V. PROOF OF THEOREM 1

The left-most inequality in (6) follows because providing the
receiver with information about {B`} does not reduce capacity.
The proof of the right-most inequality in (6) follows the proofs
for the non-bursty SISO case [12, Sec. V] and the bursty SISO
case [14, Ch. 5]. We begin by upper-bounding

I(XN
0,1;YN

1 , B
L
1 )

(a)
= h(YN

1 |BL1 )− h(YN
1 |XN

0,1, B
L
1 )

(b)

≤ h(YN
1 |BL1 )− h(YN

1 |XN
0,1,H

N
0,1, B

L
1 )

(c)
= h(YN

1 |BL1 )− h(YN
1 − HN0,1X

N
0,1|BL1 ) (7)

where (a) follows because XN
0,1 and BL1 are independent, (b)

follows because conditioning reduces entropy, and (c) follows
because, conditioned on BL1 , YN

1 − HN0,1X
N
0,1 is independent

of (HN0,1,X
N
0,1).

For BL1 = bL1 and b0 , 1, we define the random variables

Yk(bL1 ) ,
L∑
`=0

b`H`,kX`,k +

∞∑
`=L+1

B`H`,kX`,k + Zk (8)

Ȳk(bL1 ) ,
L∑
`=1

b`H̄`,kX`,k +

∞∑
`=L+1

B̄`H̄`,kX`,k + Z̄k. (9)

In (9), for every ` = 1, 2, . . . the fading coeffxicients
{H̄`,k, k ∈ Z} have the same distribution as {H`,k, k ∈ Z}
but are independent of {H`,k, k ∈ Z}. Likewise, the random
variables {B̄`, ` = 1, 2, . . .} have the same distribution as
{B`, ` = 1, 2, . . .} but are independent of {B`, ` = 1, 2 . . .},



and the additive noise terms {Z̄k, k ∈ Z} have the same dis-
tribution as {Zk, k ∈ Z} but are independent of {Zk, k ∈ Z}.
It follows that, conditioned on BL1 = bL1 , the random variable
YN

1 − HN0,1X
N
0,1 has the same distribution as ȲN

1 (bL1 ). Fur-
thermore, YN

1 (bL1 ) and ȲN
1 (bL1 ) are both independent of BL1 .

Using the definitions (8)–(9), we can thus rewrite (7) as

I(XN
0,1;YN

1 , B
L
1 ) ≤

∑
bL1 ∈BL

Pr{BL1 = bL1 }h
(
YN

1 (bL1 )
)

−
∑
b̃L1 ∈BL

Pr{BL1 = b̃L1 }h
(
ȲN

1 (b̃L1 )
)

(10)

where BL , {0, 1}L denotes the set of all binary sequences
of length L. We next consider a partition of BL based on the
position of the leading 1 in each sequence. In particular, for
m = 1, . . . , L+ 1, we define

BL(m) ,

{{
bL1 ∈ BL : bm1 = [0m−1

1 , 1]
}
, 1 ≤ m ≤ L,

{0L1 }, m = L+ 1.
(11)

In words, BL(m) is the set of all sequences of length L
whose leading 1 is in the m-th position. The sets BL(m),
m = 1, . . . , L+ 1 are disjoint and define a partition of BL.

To upper-bound (10), we will pair two sequences bL1 and b̃L1
according to the mapping described in the next proposition.

Proposition 1: There exists a one-to-one and onto mapping
fL : BL → BL such that, for every bL1 ∈ BL, the vector
b̃L1 = fL(bL1 ) lies in BL(m) for some m and satisfies
b̃L1 = [0m−1

1 , 1, bL−m1 ] and ‖b̃L1 ‖1 = ‖bL1 ‖1. Here ‖ · ‖p, p ≥ 1
denotes the p-norm.

Proof: See [14, Ch. 5, Prop. 1].
Since ‖bL1 ‖1 = ‖b̃L1 ‖1, it follows that Pr{BL1 = bL1 } =

Pr{BL1 = fL(bL1 )}. Consequently, (10) can be written as

I(XN
0,1;YN

1 , B
L
1 ) ≤

L∑
m=1

∑
bL1 :fL(bL1 )∈BL(m)

Pr{BL1 = bL1 }

×
[
h
(
YN

1 (bL1 )
)
− h
(
ȲN

1 (fL(bL1 ))
)]
. (12)

We next focus on the bracketed term in (12). Let

Ȳk(bL1 ,m) ,
L−m∑
`=0

b`H̄`+m,kX`,k

+

∞∑
`=L−m+1

B̄`H̄`+m,kX`,k + Z̄k. (13)

Since XN
0,1 and XN

`,1, ` = 1, 2, . . . have the same distribution,
it follows that Ȳk(bL1 ,m) and Ȳk(fL(bL1 )) have the same
distribution for every fL(bL1 ) ∈ BL(m). Hence, using the
identity h(U)− h(V ) = h(U |V )− h(V |U), we obtain

h
(
YN

1 (bL1 )
)
− h
(
ȲN

1 (fL(bL1 ))
)

= h
(
YN

1 (bL1 )
∣∣ ȲN

1 (bL1 ,m)
)
− h
(
ȲN

1 (bL1 ,m)
∣∣ YN

1 (bL1 )
)

≤
N∑
k=1

[
h
(
Yk(bL1 )

∣∣ Ȳk(bL1 ,m)
)

− h
(
Ȳk(bL1 ,m)

∣∣ Ȳk−1
1 (bL1 ,m),YN

1 (bL1 )
)]

(14)

where the inequality follows from the chain rule and because
conditioning reduces entropy. To upper-bound (14), we next
apply the following lemma.

Lemma 1: Let f and g be two arbitrary pdf. If
−
∫
f(x) log f(x)dx is finite, then −

∫
f(x) log g(x)dx exists

and

−
∫
f(x) log f(x)dx ≤ −

∫
f(x) log g(x)dx. (15)

Proof: See [15, Lemma 8.3.1].
Let fYk|Ȳk

denote the true conditional pdf of Yk(bL1 )

given Ȳk(bL1 ,m). Lemma 1 allows us to upper-bound the
conditional differential entropy of Yk(bL1 ) given Ȳk(bL1 ,m)
by replacing fYk|Ȳk

by an auxiliary pdf gYk|Ȳk
. For every

Ȳk(bL1 ,m) = ȳk, we choose

gYk|Ȳk
(yk|ȳk) =

nR
√
βΓ(nR)

πnR+1‖yk‖nR
2

1

1 + β‖yk‖2nR
2

(16)

with β = 1/‖ȳk‖2nR
2 . This is the density of a circularly-

symmetric complex random variable whose magnitude is
Cauchy distributed. A similar pdf has been used in [12] for the
SISO case and in [16] to analyze frequency-dispersive fading
channels.

Using (16) in (15), and since an+bn ≤ (a+b)n for a, b,≥ 0,

h
(
Yk(bL1 )

∣∣ Ȳk(bL1 ,m)
)

≤ (nR + 1) log π − log nR − log Γ(nR)

+
nR
2

(
E
[
log ‖Yk(bL1 )‖22

]
− E

[
log ‖Ȳk(bL1 ,m)‖22

] )
+ nRE

[
log(‖Yk(bL1 )‖22 + ‖Ȳk(bL1 ,m)‖22)

]
. (17)

Next, we consider the second conditional entropy in
(14). By conditioning on {X`,k}∞`=1 and {B̄`}∞`=L−m+1,
the random variable Ȳk(bL1 ,m) is independent of
(Ȳk−1

1 (bL1 ,m),YN
1 (bL1 )) and has a Gaussian distribution.

Hence,

h
(
Ȳk(bL1 ,m)

∣∣ Ȳk−1
1 (bL1 ,m),YN

1 (bL1 )
)

≥ h
(
Ȳk(bL1 ,m)

∣∣ {X`,k}∞`=1, B̄
∞
L−m+1

)
= nR log(πe) + nRE

[
log K̄(bL1 , B̄

∞
L−m+1,X

∞
0,k)
]

(18)

where

K̄(bL1 , B̄
∞
L−m+1,X

∞
0,k) ,

L−m∑
`=0

b`α`+m‖X`,k‖22

+

∞∑
`=L−m+1

|B̄`|2α`+m‖X`,k‖22 + σ2. (19)

Using (17) and (18), and simplifying terms, we obtain that
(14) can be upper-bounded by
N∑
k=1

(
log

π

nRΓ(nR)
− nR log e

+
nR
2

(
E
[
log ‖Yk(bL1 )‖22

]
− E

[
log ‖Ȳk(bL1 ,m)‖22

])
+ nRE

[
log(‖Yk(bL1 )‖22 + ‖Ȳk(bL1 ,m)‖22)

]
− nRE

[
log K̄(bL1 , B̄

∞
L−m+1,X

∞
0,k)
])
. (20)



We upper-bound the third line in (20) by applying Jensen’s
inequality to the concave function log(·):

E
[
log
(
‖Yk(bL1 )‖22 + ‖Ȳk(bL1 ,m)‖22

)]
≤ E

[
log
(

E
[
‖Yk(bL1 )‖22

+ ‖Ȳk(bL1 ,m)‖22
∣∣∣{X`,k, ` = 0, 1, . . .}, B∞1 , B̄∞1

])]
= E

[
log

(
L∑
`=0

b`α`‖X`,k‖22 +

∞∑
`=L+1

|B`|2α`‖X`,k‖22

+

L−m∑
`=0

b`α`+m‖X`,k‖22

+

∞∑
`=L−m+1

|B̄`|2α`+m‖X`,k‖22 + 2σ2

)]
+ log nR (21)

where α0 , 1. We then use that assumption (2) implies that

α` ≤
ηmax

ρm−1
α`+m, ` = 0, 1, . . . (22)

This gives
L−m∑
`=0

b`α`‖X`,k‖22 ≤
ηmax

ρm−1

(
L−m∑
`=0

b`α`+m‖X`,k‖22

+

∞∑
`=L−m+1

|B̄`|2α`+m‖X`,k‖22

)
. (23)

It follows that

E
[
log
(
‖Yk(bL1 )‖22 + ‖Ȳk(bL1 ,m)‖22

)]
≤ E

[
log

((
1 +

ηmax

ρm−1

)
K̄(bL1 , B̄

∞
L−m+1,X

∞
0,k)

)]
+ log nR + ζL,m (24)

where

ζL,m ,
L∑

`=L−m+1

α`b`E[‖X`,k‖22]
ηmax

ρm−1σ2

+

∞∑
`=L+1

α`E[|B`|2‖X`,k‖22]
ηmax

ρm−1σ2
(25)

and where K̄(bL1 , B̄
∞
L−m+1,X

∞
0,k) was defined in (19).

To upper-bound the second line in (20), we note that, condi-
tioned on X`,k = x`, B` = b`, and B̄` = b̄`, ` = 0, 1, . . ., both
‖Yk(bL1 )‖22 and ‖Ȳk(bL1 ,m)‖22 have a chi-square distribution
with 2nR degrees of freedom. Using [17, Eq. 4.352], we thus
obtain that

E
[
log ‖Yk(bL1 )‖22

]
− E

[
log ‖Ȳk(bL1 ,m)‖22

]
= E

[
log

(
K(bL1 , B

∞
L+1,X

∞
0,k)

K̄(bL1 , B̄
∞
L−m+1,X

∞
0,k)

)]
(26)

where

K(bL1 , B
∞
L+1,X

∞
0,k)

,
L∑
`=0

b`α`‖X`,k‖22 +

∞∑
`=L+1

|B`|2α`‖X`,k‖22 + σ2. (27)

To upper-bound (26), we use (22) and follow similar steps as
in (23)–(24) to obtain that

E
[
log ‖Yk(bL1 )‖22

]
− E

[
log ‖Ȳk(bL1 ,m)‖22

]
≤ log

(
ηmax

ρm−1

)
+ ζL,m. (28)

Combining (24) and (28) with (20) and (14), it follows that

h
(
YN

1 (bL1 )
)
− h
(
ȲN

1 (fL(bL1 ))
)

≤ N
[
nR(m− 1) log

(
ρ−

3
2

)
+ log

π

nRΓ(nR)

+ nR log
nR
e

+
nR
2

log(ηmax) + nR log(1 + ηmax)
]

+
3

2
NnRζL,m. (29)

The term ζL,m, defined in (25), can be upper-bounded as

ζL,m ≤
L∑

`=L−m+1

(
α`nTP
ηmax

ρm−1σ2

)
+

∞∑
`=L+1

(
α`pnTP
ηmax

ρm−1σ2

)
, ζ̄L,m (30)

by using that E
[
|B`|2

]
= E

[
|B̄`|2

]
= p and b` ≤ 1, and by

the power constraint (5).
Back to (12), using (29) and (30), we obtain that

1

N
I(XN

0,1;YN
1 , B

L
1 )

≤
L∑

m=1

p(1− p)m−1

[
nR(m− 1) log

(
ρ−

3
2

)
+ log

π

nRΓ(nR)

+ nR log
nR
e

+
nR
2

log(ηmax) + nR log(1 + ηmax)

]

+
3

2

L∑
m=1

p(1− p)m−1nRζ̄L,m (31)

since the first two lines on the RHS of (29) and ζ̄L,m do not
depend on bL1 , and since

Pr{fL(BL1 ) ∈ BL(m)} = p(1− p)m−1. (32)

The first sum on the RHS of (31) converges to

nR
1−p
p log

(
ρ−

3
2

)
+ log

π

nRΓ(nR)
+ nR log

nR
e

+
nR
2

log ηmax + nR log (1 + ηmax) (33)

as L→∞, since
∞∑
m=1

p(1− p)m−1 = 1 (34)

and [17, Eq. 0.231]
∞∑
m=1

p(1− p)m−1(m− 1) =
1− p
p

. (35)

The second sum on the RHS of (31) vanishes as L → ∞ by
using that

∑∞
`=1 α` <∞ and by following similar steps as in

[14, Ch. 5]. Since (33) does neither depend on N nor on the
input distribution, Theorem 1 follows.
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