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Abstract—This paper studies the performance of block coding
on an additive white Gaussian noise channel under different
power limitations at the transmitter. Lower bounds are presented
for the minimum error probability of codes satisfying an average
power constraint. These bounds are tighter than previous results
in the literature, and yield a better understanding on the
structure of good codes under an average power limitation.

I. INTRODUCTION

We consider the problem of transmitting equiprobable mes-
sages over several uses of an additive white Gaussian noise
(AWGN) channel. We consider different power constraints:
equal power constraint (all the codewords in the transmission
code have equal energy); maximal power constraint (the
energy of all the codewords is below a certain threshold); and
average power constraint (while some codewords may violate
the threshold, the energy budget is satisfied in average).

In his 1959 paper, Shannon derived a lower bound to the
error probability of any equal power constrained codebook
via geometrical arguments [1, Eq. (20)]. Following a different
approach, Polyanskiy, Poor and Verdú applied a particular
instance of a binary hypothesis test to lower bound the same
error probability [2, Th. 41]. While [2, Th. 41] was derived
originally under an equal power constraint, it was recently
shown to also hold under a maximal power constraint [3,
Th. 3]. Other connections among the system performance
under the three power constraints are studied in [1, Sec. XIII]
(see also [2, Lem. 39]).

In this work, we establish direct lower bounds for codes
satisfying an average power limitation at the transmitter. Our
analysis is based on the meta-converse bound [2, Th. 27] eval-
uated for auxiliary Gaussian distributions. We characterize the
error probability of the binary hypothesis test appearing in this
bound for the AWGN channel, and use its properties to avoid
the optimization over input distributions. Our results show that,
if the cardinality of the codebook is below a certain threshold,
[2, Th. 41] and [3, Th. 3] hold under an average power
limitation without any modifications. The resulting bound is
tighter than previous results in the literature for the same power
constraint and provide an accurate characterization of the error
probability for a wide range of system parameters.
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II. SYSTEM MODEL

We consider the problem of transmitting M equiprobable
messages over n uses of an AWGN channel with noise
power σ2. Specifically, we consider the channel with law
W = PY |X which, for an input x = (x1, . . . , xn) and output
y = (y1, . . . , yn), has a probability density function (pdf)

w(y|x) =

n∏
i=1

ϕxi,σ(yi), (1)

where ϕµ,σ(·) denotes the pdf of the Gaussian distribution,

ϕµ,σ(x) ,
1√
2πσ

e−
(x−µ)2

2σ2 . (2)

In our communications system, a source produces a certain
message v ∈ {1, . . . ,M} randomly with equal probability.
This message is mapped by the encoder to a codeword cv
according to a codebook C ,

{
c1, . . . , cM

}
, and the sequence

x = cv is transmitted over the channel. Then, based on the
channel output y, the decoder guesses the transmitted message
v̂ ∈ {1, . . . ,M}. We define the average error probability

Pe(C) , Pr{V̂ 6= V }, (3)

where the underlying probability is induced by the chain of
source, encoder, channel and decoder.

We consider codebooks satisfying the following constraints:
• Equal power constraint Υ:

Le(n,M,Υ) ,
{
C
∣∣∣ ‖ci‖2 = nΥ, i = 1, . . . ,M

}
(4)

• Maximal power constraint Υ:

Lm(n,M,Υ) ,
{
C
∣∣∣ ‖ci‖2 ≤ nΥ, i = 1, . . . ,M

}
(5)

• Average power constraint Υ:

La(n,M,Υ) ,
{
C
∣∣∣ 1
M

∑M

i=1
‖ci‖2 ≤ nΥ

}
(6)

Clearly, Le ⊆ Lm ⊆ La. In the following, we study lower
bounds on the error probability Pe(C) under equal, maximal
and average power constraints. While derivation of converse
bounds is easier under an equal power constraint, the maximal
power and average power constraints are more relevant for
practical applications.



III. META-CONVERSE BOUND FOR EQUAL AND
MAXIMAL POWER CONSTRAINTS

In [2], Polyanskiy et al. proved that the error probability
of a binary hypothesis test with certain parameters lower
bounds the error probability Pe(C) for a certain channel W .
In particular, [2, Th. 27] shows that

Pe(C) ≥ inf
P∈P

sup
Q

{
α 1
M

(
PW,P ×Q

)}
, (7)

where P is the set of distributions over the input alphabet Xn
satisfying a certain constraint and Q is an auxiliary distribution
over the output alphabet Yn which is not allowed to depend on
the input x. Here αβ (A,B) denotes the minimum type-I error
for a maximum type-II error β ∈ [0, 1] in a binary hypothesis
test between the distributions A and B. Specifically, for two
distributions A and B defined over an alphabet Z , the function
αβ (A,B) is given by

αβ(A,B) , inf
0≤T≤1:

EB [T (Z)]≤β

{
1− EA[T (Z)]

}
, (8)

where T : Z → [0, 1] and EP [·] is the expectation operator
with respect to the random variable Z ∼ P .

The bound (7) is usually referred to as the meta-converse
bound since several converse results in the literature can be
recovered from it via relaxation. While it is possible to restrict
the set of distributions Q over which the bound is maximized
and still obtain a lower bound, the minimization over P
needs to be carried out over all the n-dimensional probability
distributions (not necessarily product) satisfying P .

For the Gaussian channel W , Polyanskiy et al. fixed Q
to be zero-mean Gaussian distributed with variance θ2 and
independent entries, i.e., with pdf

q(y) =

n∏
i=1

ϕ0,θ(yi). (9)

For this choice of Q, α 1
M

(·, ·) presents spherical symmetry.
Then, restricting the input distribution to lie on the surface
of a n-dimensional hyper-sphere of squared radius nΥ and
setting θ2 = Υ + σ2, they obtained the following result.

Theorem 1 (Converse, equal power constraint [2, Th. 41]):
Let C ∈ Le(n,M,Υ) be a length-n code of cardinality M
satisfying an equal power constraint. Then, for θ2 = Υ + σ2,

Pe(C) ≥ α 1
M

(
ϕn√

Υ,σ
, ϕn0,θ

)
. (10)

The bound in Theorem 1 can be extended to maximal and
average power constraints using, e.g., [2, Lem. 39]. A direct
lower bound under maximal power constraint is given next.

Theorem 2 (Converse, maximal power constraint [3, Th. 3]):
Let C ∈ Lm(n,M,Υ) be a length-n code of cardinality M
satisfying a maximal power constraint. For any θ ≥ σ, n ≥ 1,
the lower bound (10) holds for this code.

The bounds in Theorems 1 and 2 coincide for equal and
maximal power constraints. Then, one may wonder if this is
also the case for codes satisfying an average power constraint.
In Section IV, we will show that the lower bound (10) holds
in this setting under certain conditions (but not in general).

A. Computation of αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)
Computation of Theorems 1 and 2 require to evaluate

f(β, γ) , αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)
. (11)

We next provide a parametric formulation of this function.
Proposition 1: Let σ, θ > 0 and n ≥ 1, be fixed parameters,

and define δ , θ2 − σ2. The trade-off between α and β
admits the following parametric formulation as a function of
the auxiliary parameter t ≥ 0,

α(γ, t) = Qn
2

(
√
nγ
σ

δ
,
t

σ

)
, (12)

β(γ, t) = 1−Qn
2

(
√
nγ
θ

δ
,
t

θ

)
, (13)

where Qm(x, y) denotes the generalized Marcum Q-function.
Let tb satisfy β(γ, tb) = b according to (13). Then, the
function (11) is given by f(b, γ) = α(γ, tb) according to (12).

Proof outline: Following the lines of the proof of [2,
Th. 41], we obtain a parametric formulation in terms of two
non-central χ2 distributions. Then, to recover (12)-(13), we
write the cumulative density function Fn,ν(x) of a non-central
χ2 distribution with n degrees of freedom and non-centrality
parameter ν in terms of the generalized Marcum Q-function
Qm(a, b) as Fn,ν(x) = 1−Qn

2

(√
ν,
√
x
)
.

In Proposition 1, we need to invert the marcum-Q function
in (13) to evaluate f(β, γ). The following alternative expres-
sion is more adequate for implementation purposes, as it only
requires to solve a one dimensional optimization problem.

Corollary 1: Let σ, θ > 0 and n ≥ 1, be fixed parameters.
The function f(β, γ) = αβ

(
ϕn√γ,σ, ϕ

n
0,θ

)
is given by

f(β, γ) = max
t≥0

{
Qn

2

(
√
nγ
σ

δ
,
t

σ

)
+
θn

σn
e

1
2

(
nγ
δ −

δt2

σ2θ2

)

×
(

1− β −Qn
2

(
√
nγ
θ

δ
,
t

θ

))}
. (14)

Proof outline: We define

j(y) , log
ϕn√γ,σ(y)

ϕn0,θ(y)
(15)

= n log
θ

σ
− 1

2

n∑
i=1

θ2(yi −
√
γ)2 − σ2y2

i

σ2θ2
. (16)

According to the Neyman-Pearson lemma, the trade-off
αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)
admits the parametric form

α(t′) = Pr
[
j(Y 0) ≤ t′

]
, (17)

β(t′) = Pr
[
j(Y 1) > t′

]
, (18)

in terms of t′ ∈ R and where Y 0 ∼ ϕn√γ,σ , Y 1 ∼ ϕn0,θ.
We apply [4, Lem. 1] to the tail probabilities (17)-(18) and

consider the change of variables t′ ↔ t, which are related as
t2 = 2σ2θ2 1

δ

(
n log θ

σ + n
2
γ
δ − t

′). Then, to obtain the desired
result, we proceed as in the proof of Proposition 1 and use
that et

′
= θn

σn exp
{

1
2

(
nγ
δ −

δt2

σ2θ2

)}
.



IV. LOWER BOUNDS FOR AVERAGE-POWER CONSTRAINT

The Legendre-Fenchel (LF) transform of a function g is

g∗(b) = max
a∈A

{
〈a, b〉 − g(a)

}
, (19)

where A is the domain of the function g and 〈a, b〉 denotes
the interior product between a and b.

The function g∗ is usually referred to as Fenchel’s conjugate
(or convex conjugate) of g. If g is a convex function with
closed domain, applying the LF transform twice recovers the
original function, i.e., g∗∗ = g. If g is not convex, applying
the LF transform twice returns the lower convex envelope of
g, which is the largest lower semi-continuous convex function
function majorized by g. For our problem, for f(β, γ) in (11),
we define

f(β, γ) , f∗∗(β, γ), (20)

and note that f(β, γ) ≤ f(β, γ) for any β ∈ [0, 1] and γ ≥ 0.
The lower convex envelope (20) is a lower bound to the

error probability in the average power constraint setting.
Theorem 3 (Converse, average power constraint): Let C ∈
La(n,M,Υ) be a length-n code of cardinality M satisfying
the average power constraint Υ. Then, for any θ ≥ σ, n ≥ 1,

Pe(C) ≥ f
(

1
M ,Υ

)
, (21)

where f(β, γ) is the lower convex envelope (20) of f(β, γ)
defined in (11).

Proof: We start by considering the general meta-converse
bound in (7) with P = Pa(Υ) corresponding to the set of
distributions satisfying an average power constraint, i.e.,

Pa(Υ) ,
{
X ∼ PX

∣∣∣ E
[
‖X‖2

]
≤ nΥ

}
. (22)

To solve the minimization over P in (7) we shall use the
following decomposition. For any γ ≥ 0, we define the set
Sγ ,

{
x | ‖x‖2 = nγ

}
. Then, any input distribution PX

induces a distribution over the parameter γ, Pγ , Pr{X ∈
Sγ}, and a conditional distribution

dPX|γ(x) =

{
dPX(x)

dPγ
, x ∈ Sγ ,

0, otherwise.
(23)

It follows that PX(x) =
∫
PX|γ(x) dPγ . Here, dPγ ≥ 0 and∫

dPγ = 1. Furthermore, the conditional distributions PX|γ
have disjoint support. Then, we apply [5, Lem. 25] to write

inf
P∈Pa(Υ)

{
α 1
M

(
PW,P ×Q

)}
= inf

{Pγ ,βγ}:∫
γ dPγ=Υ∫
βγ dPγ= 1

M

{∫
αβγ

(
PγW,Pγ ×Q

)
dPγ

}
(24)

= inf
{Pγ ,βγ}:∫
γ dPγ=Υ∫
βγ dPγ= 1

M

{∫
αβγ

(
ϕn√γ,σ, ϕ

n
0,θ

)
dPγ

}
, (25)

where the last step follows from the spherical symmetry of
each of the tests in (24), using that x = (

√
γ, . . . ,

√
γ) ∈ Sγ .

Using that f(β, γ) ≤ f(β, γ) = αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)
, we

lower-bound the right-hand side of (25) as

inf
{Pγ ,βγ}:∫
γ dPγ=Υ∫
βγ dPγ= 1

M

{∫
f
(
βγ , γ

)
dPγ

}

≥ inf
{Pγ ,βγ}:∫
γ dPγ=Υ∫
βγ dPγ= 1

M

{∫
f
(
βγ , γ

)
dPγ

}
(26)

≥ inf
{Pγ ,βγ}:∫
γ dPγ=Υ∫
βγ dPγ= 1

M

{
f
(

1
M ,Υ

)}
(27)

= f
(

1
M ,Υ

)
, (28)

where (27) follows by applying Jensen’s inequality since
f(β, γ) is jointly convex in both parameters and by using
the constraints; and (28) holds since the objective of the
optimization in (27) does not depend on {Pγ , βγ}.

The lower bound (21) then follows from combining (7),
(24)-(25) and the inequalities (26)-(28).

The function f(β, γ) can be evaluated numerically by
considering a 2-dimensional grid of the parameters (β, γ),
using (14) to compute f(β, γ) over this grid, and obtaining
the corresponding convex envelope. Nevertheless, sometimes
f
(

1
M ,Υ

)
= f

(
1
M ,Υ

)
= α 1

M

(
ϕn√

Υ,σ
, ϕn0,θ

)
and these steps

can be avoided, as the next result shows.
Corollary 2: Let σ, θ > 0 and n ≥ 1, be fixed parameters,

and define δ , θ2 − σ2. For t ≥ 0, we define

ξ1(t) , Qn
2

(√
nΥ

σ

δ
,
t

σ

)
−Qn

2

(
0,
√(

t2

σ2 − nΥ θ2

δ2

)
+

)
,

(29)

ξ2(t) ,
θn

σn
e
− 1

2

(
t2

σ2θ2
−nΥ

δ

)(
Qn

2

(
0,
√(

t2

θ2 − nΥσ2

δ2

)
+

)
−Qn

2

(√
nΥ

θ

δ
,
t

θ

))
, (30)

ξ3(t) =
nΥ

2δ

(
tδ

σ2
√
nΥ

)n
2

e
− 1

2

(
t2

σ2 +nΥσ2

δ2

)
In

2

(√
nΥ

t

δ

)
, (31)

where (a)+ = max(0, a), Qm(a, b) is the Marcum Q-function
and Im(·) denotes the m-th order modified Bessel function of
the first kind. Let t0 be the solution to the implicit equation

ξ1(t0) + ξ2(t0) + ξ3(t0) = 0, (32)

and let

M̄ ,
(
1−Qn

2

(√
nΥθ/δ, t0/θ

))−1
. (33)

Then, for any code C ∈ La(n,M,Υ) with cardinality M ≤ M̄ ,

Pe(C) ≥ α 1
M

(
ϕn√

Υ,σ
, ϕn0,θ

)
. (34)

Proof: See the Appendix.
Corollary 2 implies that the bound from Theorems 1 and 2

holds in the average power constraint setting if the cardinality
of the codebook is sufficiently small. Indeed, it follows that
this condition is satisfied for typical communication systems.
For transmission rates very close to capacity or above capacity,
the bound (21) is needed instead (see the example in Fig. 2).
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Fig. 1: Upper and lower bounds to the channel coding error
probability over an AWGN channel with SNR = 10 dB and
rate R = 1.5 bits/channel use.

V. NUMERICAL EXAMPLES

A. Comparison with previous results

We consider the transmission of M = 2nR codewords over
n uses of an AWGN channel with R = 1.5 bits/channel use
and SNR = 10 log10

Υ
σ2 = 10 dB. The channel capacity is

C = 1
2 log2

(
1 + Υ

σ2

)
≈ 1.8 bits/channel use.

Figure 1 compares the lower bound from Theorem 3 with
previous results in the literature. In particular, we consider
Shannon’59 achievability and converse bounds for equal power
constraint [1, Eq. (20)], Shannon’59 converse bound for
maximal power constraint [1, Eqs. (20) and (83)], and the
lower bound for average power constraint that follows from
combining [1, Eq. (20)] and [6, Lem. 65]. While the bounds in
Figure 1 hold under the average probability of error formalism,
for reference we also include the curve Sh’59 (average)
for maximal error probability, which is tighter than that for
average error probability (see [6, Lem. 65] for details).

As the transmission rate R is close to capacity C, the
optimizing θ2 in Theorem 3 is close to the variance of the
capacity achieving output distribution. Then, for simplicity,
we fix θ2 = Υ + σ2. For the system parameters considered,
the condition M ≤ M̄ from Corollary 2 is satisfied for all n
and Theorem 3 can be evaluated using (34). It thus follows
that the bounds from Theorems 1, 2 and 3 coincide.

The results in Figure 1 show that that Shannon’59 lower
bound is the tightest bound in the equal power constraint
setting. However, under both maximal and average power
constraints, Theorem 3 yields a tighter lower bound and
presents a small constant gap to the achievability bound from
[1, Eq. (20)].1 Indeed, for an average power constraint and
under the average probability of error formalism the advantage
of Theorem 3 over previous results is significant in the finite
blocklength regime, as shown in Figure 1.

1The rate considered here is above the critical rate of the channel, and
therefore the error exponents of the achievability and converse bounds in
Figure 1 coincide. This is not longer true for rates below the critical rate.
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Fig. 2: Lower bounds to the channel coding error probability
over an AWGN channel with n = 2 and SNR = 10 dB.
Markers show the simulated error probability of a sequence
of codes satisfying an equal (◦), maximal (×) and average (•)
power constraints. Vertical line corresponds to the boundary
M ≤ M̄ ≈ 22.8 from Corollary 2.

B. Constellation design under power constraints

We consider the problem of transmitting M codewords with
n = 2 uses of an AWGN channel with SNR = 10 dB. This
problem is analogous to determining the best 2-dimensional
constellation for an uncoded communication system.

Figure 2 depicts Shannon’59 lower bound [1, Eq. (20)], and
the bounds from Theorems 2 and 3, both with θ2 = Υ + σ2.
The vertical line shows the boundary of the region M ≤ M̄
from Corollary 2, where the bounds from Theorems 2 and 3
coincide. With markers, we show the simulated ML decod-
ing error probability of a sequence of M -PSK (phase-shift
keying) constellations satisfying an equal power constraint
(◦), of a sequence of M -APSK (amplitude-phase-shift keying)
constellations satisfying a maximal (×) and average (•) power
constraints (both optimized using an stochastic algorithm).

As 2-dimensional cones coincide with the ML decoding
regions of an M -PSK constellation, Shannon’59 curve is on
top of the corresponding simulated probability (◦). However,
Shannon’59 lower bound does not apply to M -APSK con-
stellations satisfying maximal (×) and average (•) power
constraints. We can see that while Theorem 3 applies in both
of these settings, this is not the case for Theorem 2, that
in general only applies under maximal power constraint. As
stated in Corollary 2, the bounds from Theorems 2 and 3
coincide for M ≤ M̄ ≈ 22.8.

An analysis of the average power constrained codes (•) that
violate Theorem 2 shows that they present several constellation
points concentrated at the origin (0, 0). As these symbols
coincide, it is not possible to distinguish between them and
they will often yield a decoding error. However, since the
symbol (0, 0) does not require any energy for its transmission,
the average power for the remaining symbols is increased and
this code yields an overall smaller probability of error.
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APPENDIX

We characterize the region where f(β, γ) and its convex
envelope f(β, γ) coincide. We shall use the following result.

Proposition 2: Suppose g is differentiable with gradient ∇g.
Let A denote the domain of g, and let a ∈ A. If the inequality

g(ā) ≥ g(a) +∇g(a)T (ā− a), (35)

is satisfied for all ā ∈ A, then, it holds that g(a) = g∗∗(a).
Proof: As g∗∗ is the lower convex envelope of g, then

g(a) ≥ g∗∗(a) trivially. It remains to show that (35) implies
g(a) ≤ g∗∗(a). Fenchel’s inequality [7, Sec. 3.3.2] yields

g∗∗(a) ≥ 〈a, b〉 − g∗(b), (36)

for any b in the domain of g∗.
Setting b = ∇g(a) and using (19) in (36), we obtain

g∗∗(a) ≥ ∇g(a)Ta−max
ā∈A

{
∇g(a)T ā− g(ā)

}
(37)

= min
ā∈A

{
∇g(a)T (a− ā) + g(ā)

}
(38)

≥ min
ā∈A

{
g(a)

}
, (39)

where in the last step we used (35) to lower bound g(ā). Since
the objective of (39) does not depend on ā, we conclude from
(37)-(39) that g(a) ≤ g∗∗(a) and the result follows.

We apply Proposition 2 to the function f(β, γ). We recall
that f(β, γ) is differentiable for β ∈ [0, 1] and γ ≥ 0 with
derivatives given in [8, App. A]. We define the gradients

∇βf(b, g) ,
∂f(β, γ)

∂β

∣∣∣
β=b,γ=g

, (40)

∇γf(b, g) ,
∂f(β, γ)

∂γ

∣∣∣
β=b,γ=g

. (41)

According to Proposition 2, the function f(β0, γ0) and its
convex envelope f(β0, γ0) coincide if

f(β, γ) ≥ f(β0, γ0) + (β − β0)∇βf(β0, γ0)

+ (γ − γ0)∇γf(β0, γ0). (42)

is satisfied for all β ∈ [0, 1] and γ ≥ 0. This condition implies
that the first-order Taylor approximation of f at (β0, γ0) is a
global under-estimator of the function f(β, γ).

The derivatives of f(β, γ), given in [8, App. A], show that
the function is decreasing in both parameters, convex with
respect to β for all β ∈ [0, 1], and jointly convex with respect
to (β, γ) except for the neighborhood near the axis γ = 0.
Using these properties, it can be shown that the the condition
(42) only needs to be verified along the axis γ = 0.

Then, we conclude that f(β0, γ0) = f(β0, γ0) if (42) holds
for every β ∈ [0, 1] and γ = 0, i.e., if

f(β0, γ0)− f(β, 0) ≥ (β0 − β)∇βf(β0, γ0)

+ γ0∇γf(β0, γ0). (43)

Let θ ≥ σ > 0, n ≥ 1. Let t0 be the value such that
β(γ0, t0) = β0 and let t̄ satisfy β(0, t̄) = β, for β(γ, t) defined
in (13). Using (12) and the derivatives in [8, App. A], yields

f(β0, γ0)−f(β, 0) = Qn
2

(
√
nγ0

σ

δ
,
t0
σ

)
−Qn

2

(
0,
t̄

σ

)
, (44)

∇βf(β0, γ0) = − θ
n

σn
e

1
2 (nγ0

δ −t
2
0( 1
σ2− 1

θ2
)), (45)

∇γf(β0, γ0) = − n

2δ

(
t0δ

σ2√nγ0

)n
2

In
2

(
t0
√
nγ0

δ

)
× e−

1
2

(
nγ0σ

2

δ2
+
t20
σ2

)
. (46)

As β(γ0, t0) = β0 and β(0, t̄) = β, using (13), it follows that

β0 − β = Qn
2

(
0,
t̄

θ

)
−Qn

2

(
√
nγ0

θ

δ
,
t0
θ

)
. (47)

Substituting (44) and (47) in (43), reorganizing terms, yields

Qn
2

(
√
nγ0

σ

δ
,
t0
σ

)
+∇βf(β0, γ0)Qn

2

(
√
nγ0

θ

δ
,
t0
θ

)
− γ0∇γf(β0, γ0) ≥ Qn

2

(
0,
t̄

σ

)
+∇βf(β0, γ0)Qn

2

(
0,
t̄

θ

)
.

(48)

The interval β ∈ [0, 1] corresponds to t̄ ≥ 0. We maximize
the right-hand side of (48) over t̄ ≥ 0 and we only verify the
condition (48) for this maximum value. To this end, we find the
derivative of the right-hand side of (48) with respect to t̄, we
identify the resulting expression with zero, and we use (45).
We conclude that the right-hand side of (48) is maximized for

t̄? =
√(

t20 − nγσ2θ2/δ2
)

+
(49)

where the threshold (a)+ = max(0, a) follows from the
constraint t̄ ≥ 0. By evaluating the second derivative of (48),
it can be verified that t̄? in (49) is indeed a maximum.

Using (45), (46) and (49) in (48) we obtain the desired
characterization for the region of interest. For the statement of
the result in Corollary 2, we select the smallest t0 that fulfills
(48) (which satisfies the condition with equality) and invert
the transformation β(γ0, t0) = β0 for γ0 = Υ and β0 = 1

M .
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