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Abstract—The error probability trade-off of quantum hypoth-
esis testing is related to that of a certain surrogate classical
hypothesis test via the Nussbaum-Szkoła mapping. This connec-
tion was used in the information-theoretic literature to establish
the asymptotic error exponent of Bayesian quantum hypothesis
testing and asymmetric quantum hypothesis testing (Hoeffding
bound). In this work, we analyze the non-asymptotic gap between
the error probability of a quantum test and the corresponding
classical test via the Nussbaum-Szkoła mapping.

I. INTRODUCTION

We study the problem of discriminating between two quan-
tum states. Specifically, let us consider the density operators1

ρ and σ, acting on some finite dimensional complex Hilbert
space H with dimension d, and define the hypotheses

H0 : ρ, H1 : σ. (1)

In this binary setting we distinguish between two error types:
• The type-I error occurs when accepting H1 when the true

state is the null hypothesis H0 : ρ.
• The type-II error is the error of accepting H0 when the

true system state is H1 : σ.
A binary test is defined by a positive self-adjoint operator Π

acting on H such that 0 ⪯ Π ⪯ 1, where 1 denotes the identity
matrix and the notation A ⪯ B means that B − A is positive
semidefinite. For a test Π associated to H1, let Π̄ ≜ 1 − Π.
The type-I and type-II error probabilities are, respectively,

α(Π) = Tr[Πρ], (2)
β(Π) = Tr[Π̄σ] = 1− Tr[Πσ]. (3)

The two error probabilities cannot be made arbitrarily small
at the same time. The best achievable trade-off between these
probabilities is given by the Pareto optimal boundary

α⋆
β(ρ, σ) = inf

Π:β(Π)≤β
α(Π). (4)

When the alternatives are n-fold tensor products, i.e.,
ρ ≡ ρ⊗n and σ ≡ σ⊗n, previous results established the
asymptotic exponential behavior of the type-I and type-II error
probabilities as n → ∞. Several of these asymptotic results
were obtained using a mapping, first proposed by Nussbaum
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1Density operators are self-adjoint, positive semidefinite and have unit trace.

and Szkoła in [1], that relates the quantum testing problem to
a classical one with the same asymptotic exponential behavior.

In this work, we study the Nussbaum-Szkoła mapping in the
non-asymptotic setting of fixed n. We analyze its properties
and highlight the distinctions between quantum and classical
testing problems through specific examples.

The organization of the remainder of the article is as follows.
In Sec. II, we summarize some relevant asymptotic results
and introduce the Nussbaum-Szkoła mapping. In Sec. III we
present bounds on the error probability trade-off and show their
tightness under certain conditions. Finally, Sec. IV closes this
work with several numerical examples and some final remarks.

II. PRELIMINARIES

For a test between the alternatives H0 : ρ
⊗n and H1 : σ

⊗n,
we consider three significant asymptotic regimes as n → ∞:

1) In a Bayesian setting with prior probabilities Pr [H0] = η
and Pr [H1] = 1− η, the optimal average error probability is:

ϵ⋆η
(
ρ⊗n, σ⊗n

)
= inf

0⪯Π⪯1

{
ηα(Π) + (1− η)β(Π)

}
. (5)

The asymptotic exponential analysis of this probability leads
to the quantum Chernoff bound [1], [2] (see also [3, Sec. 3]):

lim sup
n→∞

− 1

n
log ϵ⋆η

(
ρ⊗n, σ⊗n

)
= sup

0≤s≤1

{
− log Tr

[
ρ1−sσs

]}
.

(6)

2) In a non-Bayesian setting with a fixed type-II error β, the
optimal type-I error is given by α⋆

β(ρ
⊗n, σ⊗n). Its exponential

behavior corresponds to the quantum Stein’s Lemma [4], [5]:

lim sup
n→∞

− 1

n
logα⋆

β(ρ
⊗n, σ⊗n) = Tr

[
σ
(
log σ − log ρ

)]
. (7)

3) Enforcing an exponential decrease in the type-II error as
βn = e−nr, the Hoeffding bound asserts that [6], [7]:

lim sup
n→∞

− 1

n
logα⋆

βn
(ρ⊗n, σ⊗n)

= sup
0≤s≤1

{
1

s− 1
log Tr

[
ρ1−sσs

]
+

s

s− 1
r

}
. (8)

Two important information metrics appear in these results:
the quantum extension of the Renyi and the Kullback-Leibler
divergences between density operators σ and ρ are defined as

Ds(σ∥ρ) ≜
1

s− 1
log Tr

[
ρ1−sσs

]
, (9)

DKL(σ∥ρ) ≜ Tr
[
σ
(
log σ − log ρ

)]
= lim

s→1
Ds(σ∥ρ). (10)



A. The Nussbaum-Szkoła Mapping
We consider the eigen-decomposition of the quantum states:

ρ =

d∑
i=1

λi |xi⟩ ⟨xi| , σ =

d∑
j=1

µj |yj⟩ ⟨yj | . (11)

The Nussbaum-Szkoła mapping transforms the states ρ and σ
in two classical distributions P and Q which are defined as

pi,j = λi |⟨xi | yj⟩|2 , qi,j = µj |⟨xi | yj⟩|2 , (12)

for i, j = 1, . . . , d. For this mapping, it follows that [3, Prop. 1]

Tr
[
ρ1−sσs

]
=

∑
i,j

p1−s
i,j qsi,j . (13)

Then, the quantum Renyi and Kullback-Leibler divergences
(9)-(10) coincide with their classical counterparts:

Ds(σ∥ρ) = Ds(Q∥P ) ≜
1

s− 1
log

∑
i,j

p1−s
i,j qsi,j , (14)

DKL(σ∥ρ) = DKL(Q∥P ) ≜
∑
i,j

qi,j
(
log qi,j−log pi,j

)
. (15)

It follows that the exponential behavior of the quantum test
ρ⊗n v. σ⊗n and that of the classical test P⊗n v. Q⊗n coincide
in the three asymptotic regimes considered above. Given this
(maybe) surprising property, one may wonder about how these
tests compare in the non-asymptotic setting of fixed n.

III. NON-ASYMPTOTIC ANALYSIS

Let α⋆
β(P,Q) denote the error probability trade-off of a

classical hypothesis test between the distributions P and Q.2

Theorem 1: For a binary quantum hypothesis test between
states ρ and σ, and for the classical distributions P and Q
defined via the Nussbaum-Szkoła mapping (12), it follows that

α⋆
β(ρ, σ) ≥

1

2
α⋆
2β(P,Q), (16)

for any β ∈
[
0, 1

2

]
, and trivially α⋆

β(ρ, σ) ≥ 0 for β ∈
(
1
2 , 1

]
.

Proof: This result corresponds to [3, Prop. 2], which is
stated for the average error probability in a Bayesian setting.
Using the same technique, in Sec. III-A we give a direct proof
for the bound on the error probability trade-off α⋆

β(·).
The inequality (16) implies that the optimal error probability

trade-off of the quantum test ρ v. σ is lower bounded by that
of the classical test when both the type-I and type-II error
probabilities α and β are multiplied by 1/2. Obviously, this
lower bound also applies to curve of the classical test P v. Q.

Analogously, applying a change of variable α′ ↔ 2α,
β′ ↔ 2β in (16), we conclude that the optimal error probability
trade-off of both the quantum test and that of the classical test
is upper bounded by the quantum curve when both the type-I
and type-II error probabilities are multiplied by 2.

In Sec. IV, we illustrate the accuracy of these bounds
through numerical experiments. Prior to that, we prove the
main result, and we show that this non-asymptotic bound is
indeed tight for specific symmetric discrimination problems.

2The function α⋆
β(P,Q) coincides with (4) when ρ and σ are diagonal

operators with the distributions P and Q in their respective diagonals.

A. Proof of Theorem 1
The proof of Theorem 1 is based on the following variational

formulation of the optimal trade-off α⋆
β(·). For fixed t ≥ 0, let

Πt ≜
{
tσ − ρ ≥ 0

}
be the projector onto the non-negative

eigenspace of tσ − ρ, and Π̄t ≜ 1−Πt. Then, [8, Lemma 2]

α⋆
β(ρ, σ) = sup

t≥0

{
Tr

(
ρΠt

)
+ t

(
Tr

(
σΠ̄t

)
− β

)}
. (17)

Using the eigendecompositions of ρ and σ from (11),
together with the cyclic property of the trace, then (17) yields

α⋆
β(ρ, σ) = sup

t≥0

{∑
i
λi ⟨xi|Πt|xi⟩

+ t
∑

j
µj ⟨yj | Π̄t|yj⟩ − tβ

}
. (18)

For the projectors Πt and Π̄t, it holds that Πt = Πt1Πt

and Π̄t = Π̄t1Π̄t. Moreover, the identity operator can be
decomposed as 1 =

∑
i |xi⟩ ⟨xi| =

∑
j |yj⟩ ⟨yj |. Therefore,

after some algebra, we shall rewrite (18) as:

α⋆
β(ρ, σ) = sup

t≥0

{∑
i,j

λi

∣∣⟨xi|Πt|yj⟩
∣∣2

+ t
∑

i,j
µj

∣∣⟨xi| Π̄t|yj⟩
∣∣2 − tβ

}
. (19)

We group the two sums and we focus on the (i, j)-th addend

λi

∣∣⟨xi|Πt|yj⟩
∣∣2 + tµj

∣∣⟨xi| Π̄t|yj⟩
∣∣2

≥ min(λi, tµj)
(∣∣⟨xi|Πt|yj⟩

∣∣2 + ∣∣⟨xi| Π̄t|yj⟩
∣∣2) (20)

≥ 1

2
min(λi, tµj)

(∣∣⟨xi|Πt|yj⟩
∣∣+ ∣∣⟨xi| Π̄t|yj⟩

∣∣)2 (21)

≥ 1

2
min(λi, tµj)

∣∣⟨xi|Πt|yj⟩+ ⟨xi| Π̄t|yj⟩
∣∣2 , (22)

where in (20) we used that both λi and tµj are lower
bounded by min(λi, tµj); in (21) we defined the vector
u = [⟨xi|Πt|yj⟩ ⟨xi| Π̄t|yj⟩]T featuring k = 2 dimensions,
and applied the norm inequality ∥u∥2 ≥ 1√

k
∥u∥1, u ∈ Ck;

and in the last step (22) we used that |u1|+ |u2| ≥ |u1 + u2|.
Applying the inequality chain (20)-(22) to the addends in

(19) for each (i, j), and recalling that Πt + Π̄t = 1, hence
⟨xi|Πt|yj⟩+ ⟨xi| Π̄t|yj⟩ = ⟨xi|yj⟩, we obtain

α⋆
β(ρ, σ) ≥ sup

t≥0

{
1

2

∑
i,j
min(λi, tµj)

∣∣⟨xi|yj⟩
∣∣2− tβ

}
. (23)

Using the definitions of P and Q in (12), we note that

min(λi, tµj)
∣∣⟨xi|yj⟩

∣∣2 = pi,j1[λi≤tµj ]+ tqi,j1[λi>tµj ], (24)

where 1E denotes the indicator function for the event E .
Particularizing the variational formulation (17) for ρ, σ

being diagonal operators with P,Q in their diagonal, it yields:

α⋆
β (P,Q) = sup

t≥0

{∑
i,j

pi,j1[pi,j≤tqi,j ]

+ t
(∑

i,j
qi,j1[pi,j>tqi,j ] − β

)}
, (25)

Therefore, noting that for the distributions P and Q in (12),
[pi,j ≤ tqi,j ] ⇔ [λi ≤ tµj ], moving the factor 1

2 out of the
maximization in (23) (using that β = 1

22β), we obtain the
desired lower bound (16) from (23)-(24) using (25).



B. Pure-state discrimination and symmetric error probability

We now consider a testing problem between two pure states,

H0 : ρ = |x1⟩ ⟨x1| , (26)
H1 : σ = |y1⟩ ⟨y1| , (27)

where |x1⟩ and |y1⟩ are assumed to satisfy 0 < |⟨x1|y1⟩|2 < 1.
We apply one step of the Gram-Schmidt process and define:

|x2⟩ =
|y1⟩ − |x1⟩ ⟨x1 | y1⟩
∥|y1⟩ − |x1⟩ ⟨x1 | y1⟩∥

, (28)

|y2⟩ =
|x1⟩ − |y1⟩ ⟨y1 |x1⟩
∥|x1⟩ − |y1⟩ ⟨y1 |x1⟩∥

. (29)

Both the orthonormal basis {|x1⟩ , |x2⟩} and {|y1⟩ , |y2⟩} span
the same 2-dimensional subspace encompassing |x1⟩ and |y1⟩.
If the dimension of the underlying Hilbert space is d > 2, the
remaining eigenvectors |x3⟩ , . . . , |xd⟩ and |y3⟩ , . . . , |yd⟩ are
orthogonal to both |x1⟩ and |y1⟩, and they become irrelevant in
the sequel. In Fig. 1(a), we illustrate a 2-dimensional example
of these bases for certain ρ = |x1⟩ ⟨x1| and σ = |y1⟩ ⟨y1|.

1) Classical test: For the eigendecompositions of ρ and σ
defined above, the Nussbaum-Szkoła mapping from (12) yields

pi,j =

{
|⟨x1|yj⟩|2 , i = 1, j = 1, 2,

0, otherwise,
(30)

qi,j =

{
|⟨xi|y1⟩|2 , i = 1, 2, j = 1,

0, otherwise.
(31)

The distributions P and Q exhibit non-overlapping supports,
except in the singular case (i, j) = (1, 1), under which

p1,1 = q1,1 = |⟨x1|y1⟩|2 = Tr[ρσ] ≜ a. (32)

Here we defined a = |⟨x1|y1⟩|2 for future convenience.
The optimal classical test for this problem decides the

correct hypothesis with no error, except when (i, j) = (1, 1).
For this observation, in the symmetric setting, the optimal
test may select between H0 and H1 at random with equal
probability, hence incurring an error with probabilities

αc = 1
2p1,1 = 1

2a, βc = 1
2q1,1 = 1

2a. (33)

2) Quantum test: A binary test Π = |x2⟩ ⟨x2| does not yield
a symmetric error probability in the measurement process.
Neither it does the test Π = |y1⟩ ⟨y1|. Instead, we construct a
symmetric measurement Π = |vy⟩ ⟨vy|, Π̄ ≜ 1−Π, with

|vx⟩ ≜
|x1⟩+ |y2⟩
∥|x1⟩+ |y2⟩∥

, (34)

|vy⟩ ≜
|y1⟩+ |x2⟩
∥|y1⟩+ |x2⟩∥

. (35)

The vector |vx⟩ (resp. |vy⟩) corresponds to the normalized
vector which is exactly at the midpoint between |x1⟩ and |y2⟩
(resp. between |y1⟩ and |x2⟩). It can be verified that these
vectors are orthogonal, ⟨vx|vy⟩ = 0, and that they define an
orthonormal basis of the subspace spanned by {|x1⟩ , |y1⟩}.
This basis is depicted in Fig. 1(b) for illustration purposes.

(a) (b)

Fig. 1: Hypothesis test between pure states |x1⟩ and |y1⟩,
with 0 < |⟨x1|y1⟩|2 ≤ 1

2 . (a) Basis {|x1⟩ , |x2⟩} (solid) and
{|y1⟩ , |y2⟩} (dashed). (b) Orthogonal symmetric measurement
{|vx⟩ , |vy⟩} (solid gray) for testing between |x1⟩ and |y1⟩.
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Fig. 2: Ratio between αq = βq and αc = βc for a hypothesis
test between pure states |x1⟩ and |y1⟩, versus a = |⟨x1|y1⟩|2.

We now derive the error probabilities for this quantum test:

αq = Tr
[
ρ |vy⟩ ⟨vy|

]
, βq = Tr

[
σ |vx⟩ ⟨vx|

]
. (36)

We first note that

Tr
[
ρ |vy⟩⟨vy|

]
= Tr

[
|x1⟩⟨x1| · |vy⟩⟨vy|

]
= |⟨x1|vy⟩|2 , (37)

and, using (35), we write

|⟨x1|vy⟩|2 =

∣∣⟨x1|y1⟩+ ⟨x1|x2⟩
∣∣2

∥|y1⟩+ |x2⟩∥2
=

a

2
(
1 +

√
1− a

) . (38)

In the last step we used that ⟨x1|x2⟩ = 0 and
∣∣⟨x1|y1⟩

∣∣2 = a;
and then we used (28) to obtain, after some straightforward
algebra, that ∥|y1⟩+ |x2⟩∥2 = 2

(
1 +

√
1− a

)
.

According to (36)-(38) and given the symmetry of the
problem, the type-I and type-II error probabilities are thus

αq = βq =
a

2
(
1 +

√
1− a

) , (39)

which depend only on a = |⟨x1|y1⟩|2.
Figure 2 shows the ratio between αq = βq and the classical

error probability αc = βc = 1
2a as a function of a. We observe

that, as a tends to 0 (i.e., states |x1⟩ and |y1⟩ approaching
orthogonality), this ratio tends to 1

2 . Indeed, using the Taylor
expansion of f(a) ≜ a

2(1+
√
1−a)

around a = 0, it yields

αq = βq = 1
4a+ o(a), (40)

where o(a) satisfies lima→0
o(a)
a = 0 (little-o notation).

Therefore, up to a vanishing term o(a), the quantum error
probabilities αq = βq coincide with the lower bound from
Theorem 1, given by 1

2α
c = 1

2β
c. We conclude that the bound

in Theorem 1 is tight in certain scenarios, even when n = 1.
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Fig. 3: Error probability trade-off of a hypothesis test between
mixed states ρ⊗n and σ⊗n, with ρ and σ given in (41).

IV. NUMERICAL RESULTS AND CONCLUSIONS

We now compare the type-I and type-II error probability
trade-off of a quantum hypothesis test with that of the classical
hypothesis test resulting from the Nussbaum-Szkoła mapping.

A. Mixed-state discrimination

Consider the quantum states defined by the density operators

ρ =

[
0.9 0
0 0.1

]
, σ =

[
0.5 0.4
0.4 0.5

]
. (41)

Both ρ and σ are mixed states with overlapping supports.
Figure 3 compares the error probability trade-off of the

quantum hypothesis test ρ⊗n v. σ⊗n with that of the surrogate
classical test P⊗n v. Q⊗n defined via the Nussbaum-Szkoła
mapping (11)-(12). Even when n = 1 both curves exhibit
a similar behavior. Note that P⊗n and Q⊗n correspond to
discrete distributions defined over d2n points, hence their
staggered shape when depicted in logarithmic scale (due to
the corresponding affine segments in linear scale).

For comparison, we also depict the upper and lower bounds
that follow from Theorem 1. Note that in general these bounds
are not tight. Moreover, the gap between the upper and lower
bound (when plotted in logarithmic scale) is approximately
constant with n, as it could be expected due to the multiplica-
tive nature of the bounds that follow from Theorem 1.

B. Pure-state discrimination

We now consider two pure states defined by

ρ =

[
1 0
0 0

]
, σ =

[
cos(ϕ)2 cos(ϕ) sin(ϕ)

sin(ϕ) cos(ϕ) sin(ϕ)2

]
. (42)

Figure 4 shows the error probability trade-off for the test
ρ⊗n v. σ⊗n with n = 1 and n = 6, for the states in (42)
with ϕ = π

4 . For n = 1 the inner product between the two
states is a = Tr[ρσ] = 1

2 , and the gap from the error trade-off
to the upper and lower bounds is still significant. As the value
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Fig. 4: Error probability trade-off of a hypothesis test between
pure states ρ⊗n and σ⊗n, with ρ and σ from (42) when ϕ = π

4 .

of n increases, the pure states ρ⊗n and σ⊗n exhibit a growing
degree of orthogonality. In this regime, as shown in Sec. III-B,
the lower and upper bound become increasingly tight for the
symmetric error probability. This is apparent from Fig. 4, since
for n = 6 (i.e., a ≈ 0.0156) the gap between the error curves
and the bounds becomes negligible in the region where α ≈ β.

The Nussbaum-Szkoła mapping transforms a hypothesis test
between two quantum states into a test between two classical
probability distributions. While this mapping was primarily
used to study the asymptotics of quantum hypothesis testing as
n → ∞, it also approximates its non-asymptotic performance
for fixed n. In this work we examine and illustrate the gap
between the error probability trade-off of the quantum and
classical hypothesis tests in certain settings of interest, laying
the groundwork for potential future research in this direction.
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