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wŜƳƛƴŘŜǊΧ

Evasion Attacks:
ÅAttacks at test time.
ÅThe attacker aims to find the blind spots and 

weaknesses of the ML system to evade it.

PoisoningAttacks:
ÅCompromise data collection.
ÅThe attacker subverts the learning process.
ÅDegrades the performance of the system.
ÅCan facilitate future evasion.
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Evasion Attacks
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a.k.a. Adversarial Examples

Å C. SzegedyŜǘ ŀƭΦ άIntriguing Properties of Neural NetworksΦέ arXivpreprint, 2013.
Å I. Goodfellow, J. Shlens, C. SzegedyΦ άExpaliningand Harnessing Adversarial ExamplesΦέ L/[w нлмрΦ



Evasion Attacks
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Å K. EykholtŜǘ ŀƭΦ άRobustPhysicalWorldAttackson Deep LearningVisual ClassificationΦέ //±twΣ ǇǇΦ мснр-
1634, 2018.

Å G.F. ElsayedŜǘ ŀƭΦ άAdversarial Examplesthat Foolboth ComputerVisionand Time-LimitedHumansΦέ Arxiv
pre-print arxiv:1802.08195v3, 2018.



V. KuleshovŜǘ ŀƭΦ άAdversarial Examples for Natural Language Classification ProblemsΦέ нлмуΦ

5



Evasion Attacks in the Wild
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Evasion Attacks
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http://www.cleverhans.io/security/privacy/ml/2016/12/15/breaking-things-is-easy.html



Enabling Black-.ƻȄ !ǘǘŀŎƪǎΧ
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!ƎŀƛƴΧ ¢ǊŀƴǎŦŜǊŀōƛƭƛǘȅ

Successful attacks against one machine learning 
system are often successful against similar ones.

We can craft effective black-box attacks with:
ÅSurrogate models
ÅSurrogate datasets

Nicolas Papernot, Patrick McDaniel, Ian GoodfellowΦ άTransferability in Machine Learning: from 
Phenomena to Black-Box Attacks using Adversarial SamplesΦέ ArXivpreprint arXiv:1605.07277, 2016.



Types of Evasion Attacks
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Indiscriminate Targeted



Types of Evasion Attacks (formulation)
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Different formulations have been proposed in the research literature:

Å Minimum distance attack strategies:

Å Attacks with budget constraints:

Å Approximations (Fast Gradient Sign Method):



Adversarial Training
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Å Re-train the network including adversarial examples in the 
training dataset.

Å Can help to partially mitigate the problem.
Å.ǳǘ ȅƻǳ ŎŀƴΩǘ ŎƘŀǊŀŎǘŜǊƛǎŜ ŀƭƭ ǇƻǎǎƛōƭŜ adversarial regions.

Approaches:
Å min-max training:

Å Ensemble adversarial training: include adversarial 
examples from different machine learning models.

Florian Tramèr, Alex Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, Patrick aŎ5ŀƴƛŜƭΦ άEnsemble Adversarial Training: Attacks 
and Defences.έ L/[wΣ нлмуΦ

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. άTowards Deep Learning Models Resistant to Adversarial Attacks.έ L/[wΣ 
2018.



Universal Adversarial Perturbations
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S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard.άUniversal Adversarial Perturbationsέ 
CCVPR, pp. 86ς94, 2017.


