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On Noncoherent Multiple-Antenna Rayleigh
Block-Fading Channels at Finite Blocklength
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Abstract—This paper investigates the maximum coding rate
at which data can be transmitted over a noncoherent, multiple-
input, multiple-output (MIMO) Rayleigh block-fading channel
using an error-correcting code of a given blocklength with a
block-error probability not exceeding a given value. A high-
SNR normal approximation is derived that becomes accurate
as the signal-to-noise ratio (SNR) and the number of coherence
intervals over which we code tend to infinity. The obtained
normal approximation complements the nonasymptotic bounds
that have appeared in the literature, but whose evaluation
is computationally demanding. It further lays the theoretical
foundation for an analytical analysis of the fundamental tradeoff
between diversity, multiplexing, and channel-estimation cost at
finite blocklength and finite SNR.

Index Terms—Channel dispersion, finite blocklength, high
SNR, MIMO, normal approximation, Rayleigh fading, wireless
communications

I. INTRODUCTION

There exists an increasing interest in the transmission of
short packets in wireless communications [1]. For example, the
vast majority of wireless connections in the next generations of
cellular systems will most likely be originated by autonomous
machines and devices, which predominantly exchange short
packets. It is also expected that enhanced mobile-broadband
services will be complemented by new services that target sys-
tems requiring reliable real-time communication with stringent
requirements on latency and reliability. While capacity and
outage capacity provide accurate benchmarks for the through-
put achievable in wireless communication systems when the
package length is not restricted, for short-package wireless
communications, a more refined analysis of the maximum
coding rate as a function of the blocklength is needed. Such
an analysis is provided in this paper.

Let R∗(n, ϵ) denote the maximum coding rate at which
data can be transmitted using an error-correcting code of
blocklength n with a block-error probability no larger than
ϵ. Hayashi [2] and Polyanskiy, Poor, and Verdú [3] showed
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that, for various channels with a positive capacity C, R∗(n, ϵ)
can be tightly approximated as

R∗(n, ϵ) = C −
√

V

n
Q−1(ϵ) +O

(
log n

n

)
(1)

where V is the so-called channel dispersion, Q−1(·) denotes
the inverse of the Q-function Q(x) ≜ 1√

2π

∫∞
x

e−t2/2dt,
and O(log n/n) comprises terms that decay no slower than
log n/n. The approximation that follows by ignoring the
O(log n/n) term is sometimes referred to as normal approx-
imation. The normal approximation has been established as a
benchmark for short error-correcting codes; see, e.g., [4], [5].
It further serves as a proxy for the maximum coding rate in
the analysis and optimization of communication systems that
exchange short packets and has appeared in numerous papers
on short-packet wireless communications; see, e.g., [6]–[15].
However, many of these works consider the normal approxi-
mation of the Gaussian channel, which may fail to capture the
effects of key parameters in wireless communication systems,
such as coherence time, diversity, or multiplexing gain.

To address this shortcoming, the work of Polyanskiy, Poor,
and Verdú has been generalized to several wireless communi-
cation channels [16]–[27]. In particular, the channel dispersion
of coherent fading channels, where the receiver has perfect
knowledge of the realizations of the fading coefficients, was
obtained by Polyanskiy and Verdú for the single-antenna case
[16], and by Collins and Polyanskiy for the multiple-input
single-output (MISO) [17] and the multiple-input multiple-
output (MIMO) case [18], [19]. The case where the number
of transmit and receive antennas grows with the blocklength
was considered in [20]. When both the transmitter and the
receiver have perfect knowledge of the realization of the fading
coefficients and the transmitter satisfies a long-term power
constraint, the channel dispersion of single-antenna quasi-
static fading channels was obtained by Yang et al. [21]. In
the noncoherent setting, the channel dispersion is only known
in the quasi-static case, where it is zero [22]. For general
noncoherent Rayleigh block-fading channels, nonasymptotic
bounds on the maximum coding rate were presented in [23],
[24]. Saddlepoint approximations that accurately approximate
these bounds in the single-antenna case with a reduced compu-
tational cost were given in [25], [26]. However, a closed-form
expression of the channel dispersion for general noncoherent
Rayleigh block-fading channels is still unknown. Obtaining
such an expression is difficult because the capacity-achieving
input distribution is unknown, so the standard approach of
obtaining expressions of the form (1), which consists of first
evaluating nonasymptotic upper and lower bounds on R∗(n, ϵ)
for the capacity-achieving input and output distributions and
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then analyzing these bounds in the limit as n → ∞, cannot be
followed. Fortunately, the asymptotic behavior of the capacity
of such channels at high signal-to-noise ratio (SNR) is well
understood [28], [29]. This fact was exploited in [27] to derive
a high-SNR normal approximation of R∗(n, ϵ) for noncoherent
single-antenna Rayleigh block-fading channels.

In this paper, we generalize [27] to the MIMO case. In
particular, we present an expression of R∗(n, ϵ) similar to (1)
for noncoherent MIMO Rayleigh block-fading channels. By
deriving asymptotically-tight approximations of the capacity
and the channel dispersion at high SNR, we obtain a high-
SNR normal approximation of R∗(n, ϵ), which complements
the existing nonasymptotic bounds.

The rest of the paper is organized as follows. Section II
introduces the system model. Section III presents and discusses
the main result of this paper: a high-SNR normal approxima-
tion for noncoherent MIMO block-fading channels. The proof
of the main result is given in Section IV. The paper concludes
with a summary and discussion of our results in Section V.
Some of the proofs are deferred to the appendices.

Notation

Upper-case letters such as X denote scalar random variables
and their realizations are written in lower case, e.g., x. We
use boldface upper-case letters to denote random matrices,
e.g., X, and upper-case letters of a special font for their
realizations, e.g., X. The distribution of a circularly-symmetric
complex Gaussian random variable with mean µ and variance
σ2 is denoted by CN (µ, σ2). The gamma distribution of shape
parameter α and rate parameter λ is denoted by Γ(α, λ). We
use E[·] and Var(·) to denote expectation and variance, respec-
tively. The symbol “ d

=” indicates equivalence in distribution.
We write (·)H, (·)∗, and (·)T to denote Hermitian transpose,

complex conjugation, and transpose, respectively, and tr(·) and
det(·) to denote the trace and the determinant, respectively.
The (a× a)-dimensional identity matrix is written as Ia, and
diag{d1, . . . , da} denotes an (a×a)-dimensional diagonal ma-
trix with entries d1, . . . , da. The diagonal submatrix containing
the first i columns and rows of a matrix X is denoted as
[X](1:i)2 . For any matrix X, ∥X∥F denotes the Frobenius norm.

Throughout the paper, log(·) denotes the natural logarithm
function, [a]+ stands for max{a, 0}, and 1{·} denotes the
indicator function. We shall further use the following gamma
and digamma functions:

Γ(x) ≜
∫ ∞

0

tx−1e−tdt, gamma function (2a)

Γm(x) ≜ πm(m−1)/2
m∏

k=1

Γ(x− k + 1),

complex multivariate gamma function (2b)

Ψ(x) ≜
d

dx
log Γ(x), digamma function (2c)

Ψ ′(x) ≜
d

dx
Ψ(x), derivative of Ψ(·). (2d)

Last but not least, we denote by lim the limit superior and by
lim the limit inferior.

II. SYSTEM MODEL

We consider a Rayleigh block-fading channel with nt

transmit antennas, nr receive antennas, and coherence interval
T . For this channel, within the ℓ-th coherence interval, the
channel input-output relation is given by

Yℓ = XℓHℓ +Wℓ (3)

where Xℓ is the complex-valued, (T × nt)-dimensional,
transmitted matrix; Yℓ is the complex-valued,
(T × nr)-dimensional, received matrix; Hℓ is the (nt × nr)-
dimensional fading matrix with independent and identically
distributed (i.i.d.) CN (0, 1) entries; Wℓ is the (T × nr)-
dimensional, additive noise matrix with i.i.d. CN (0, 1) entries.
We assume that Hℓ and Wℓ are independent and take on
independent realizations over successive coherence intervals.
We further assume that the joint law of (Hℓ,Wℓ) does not
depend on Xℓ. We consider a noncoherent setting where
transmitter and receiver know the statistics of the fading
matrix Hℓ, but do not have knowledge of its realization.

We assume that nt ≤ nr and T ≥ nt+nr. The assumption
nt ≤ nr incurs no loss in capacity at high SNR. Indeed, Zheng
and Tse [28] showed that the capacity of the noncoherent
Rayleigh block-fading channel can be expressed as

C(ρ) = n⋆

(
1− n⋆

T

)
log ρ+Oρ(1) (4)

where n⋆ ≜ min{nt, nr, ⌊T/2⌋} and Oρ(1) summarizes terms
that are bounded in the SNR ρ. This implies that, for a given
coherence time T and number of receive antennas nr, the
capacity pre-log is maximized by using nt = min{nr, ⌊T/2⌋}
transmit antennas. Thus, using more than nr transmit antennas
does not increase the high-SNR capacity. The assumption
T ≥ nt + nr is reasonable for slow-fading channels when
the number of antennas is moderate. Under this assumption, an
input distribution referred to as unitary space-time modulation
(USTM) achieves a lower bound on the capacity that is
asymptotically tight as the SNR tends to infinity [28], [29].
When T < nt + nr, USTM inputs are no longer optimal and
an input distribution called beta-variate space-time modulation
(BSTM) should be considered instead [29]. Analyzing the
maximum coding rate for this input distribution requires a
different analysis that is beyond the scope of this paper.

We shall restrict ourselves to codes of blocklength n = LT ,
where L denotes the number of blocks of coherence interval
T a codeword spans. An (L, T,M, ϵ, ρ) code consists of:
(1) An encoder f : {1, · · · ,M} → (CT×nt)L that maps

a message Φ, which is uniformly distributed on
{1, · · · ,M}, to a codeword XL = [X1, · · · ,XL]. The
codewords are assumed to satisfy the power constraint1

∥Xℓ∥2F ≤ Tρ, ℓ = 1, · · · , L, almost surely. (5)

1In the information theory literature, it is more common to impose a
power constraint per codeword XL. Such a constraint would allow for a more
flexible power allocation across coherence intervals and may give rise to a
larger maximum coding rate. However, practical systems typically require a
per-coherence-interval constraint to avoid large peak-to-average-power ratios.
Furthermore, allocating equal power to each coherence interval is optimal
with respect to channel capacity, in which case the per-codeword power con-
straint specializes to the per-coherence-interval constraint. It therefore seems
plausible that both power constraints give rise to the same maximum coding
rate for L sufficiently large, where the channel-capacity term dominates.
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Since the variances of Hℓ and Wℓ are normalized, ρ can
be interpreted as the average SNR at the receiver.

(2) A decoder g: (CT×nt)L → {1, · · · ,M} satisfying the
maximum error probability constraint

max
1≤ϕ≤M

Pr
[
g(YL) ̸= Φ|Φ = ϕ

]
≤ ϵ (6)

where YL = [Y1, · · · ,YL] is the channel output induced
by the codeword XL = f(ϕ), according to (3).

The maximum coding rate is defined as

R∗(L, T, ϵ, ρ) ≜ sup

{
logM

LT
: ∃(L, T,M, ϵ, ρ) code

}
. (7)

III. MAIN RESULTS

The main result of this paper is a high-SNR normal ap-
proximation of R∗(L, T, ϵ, ρ) presented in Section III-A. In
Section III-B, we discuss the accuracy of this approximation
by means of numerical results. In Section III-C, the normal
approximation is applied to study the optimal number of active
transmit antennas.

A. High-SNR Normal Approximation

Theorem 1: Assume that T ≥ nr + nt, nr ≥ nt, and 0 <
ϵ < 1

2 . Then, at high SNR,

R∗(L, T, ϵ, ρ) = Ĩ(T, ρ)−

√
Ṽ (T ) +KṼ (T, ρ)

L
Q−1(ϵ)

+KĨ(T, ρ) +KL(L, T, ρ) (8)

where

Ĩ(T, ρ) ≜ nt

(
1− nt

T

)
log

ρ

nt
+ nt

(
1− nt

T

)
log

T

e

+
1

T
log

Γnt
(nt)

Γnt(T )
+

(
1− nt

T

) nt−1∑
i=0

Ψ(nr − i) (9)

Ṽ (T ) ≜
nt

T

(
1− nt

T

)
+

(
1− nt

T

)2 nt−1∑
i=0

Ψ ′(nr − i). (10)

In (8), KĨ(T, ρ) and KṼ (T, ρ) are functions of T and ρ that
satisfy

lim
ρ→∞

Kξ(T, ρ) = 0, ξ ∈ {Ĩ , Ṽ } (11)

and KL(L, T, ρ) is a function of L, T , and ρ that satisfies

sup
ρ≥ρ0

∣∣KL(L, T, ρ)
∣∣ ≤ A

logL

L
, L ≥ L0 (12)

for some A, L0, and ρ0 independent of L and ρ.
Proof: See Sec. IV.

The quantity Ĩ(T, ρ) is an asymptotically-tight lower bound
on the capacity C(ρ) of the noncoherent MIMO Rayleigh
block-fading channel [29]. Similarly, Ṽ (T ) can be viewed
as a high-SNR approximation of the channel dispersion. By
ignoring the error terms KĨ(T, ρ), KṼ (T, ρ), and KL(L, T, ρ)
in (8), we obtain the high-SNR normal approximation

R∗(L, T, ϵ, ρ) ≈ Ĩ(T, ρ)−

√
Ṽ (T )

L
Q−1(ϵ). (13)

Observe that Ĩ(T, ρ) and Ṽ (T ) depend on nr only via the
digamma function Ψ(nr − i) and its derivative Ψ ′(nr − i),
respectively. On the domain of positive integers, the digamma
function is monotonically increasing, and its derivative is
monotonically decreasing. As a consequence, the approxima-
tion (13) is monotonically increasing in nr. As we shall ob-
serve in Sections III-B and III-C, the dependence of (13) on nt

is more intricate. Intuitively, increasing the number of transmit
antennas achieves a higher multiplexing gain min{nt, nr}, but
it also requires the estimation of more channel coefficients.

For comparison, at high SNR, the capacity Cc(ρ) of the
coherent MIMO Rayleigh block-fading channel satisfies [30]

lim
ρ→∞

{
Cc(ρ)− nt log

ρ

nt
− E

[
log det(HℓH

H
ℓ )
]}

= 0. (14)

Furthermore, the channel dispersion Vc(ρ) converges to [19]

lim
ρ→∞

Vc(ρ) =
nt

T
+Var

(
log det(HℓH

H
ℓ )
)
. (15)

Applying [31, Lemma A.2] (see also Lemma 7 below), the sum
of the digamma functions Ψ(nr − i) in (9) can be identified
as E

[
log det(HℓH

H
ℓ )
]
, and the sum of the derivatives of these

functions in (10) can be identified as Var
(
log det(HℓH

H
ℓ )
)
.

The high-SNR capacity and dispersion of the noncoherent
block-fading channel can thus be written as

Ĩ(T, ρ) = nt

(
1− nt

T

)
log

ρ

nt
+ nt

(
1− nt

T

)
log

T

e

+

(
1− nt

T

)
E
[
log det(HℓH

H
ℓ )
]
+

1

T
log

Γnt
(nt)

Γnt
(T )

(16)

and

Ṽ (T ) =
nt

T

(
1− nt

T

)
+

(
1− nt

T

)2

Var
(
log det(HℓH

H
ℓ )
)
.

(17)

Observe that, up to SNR-independent terms, Ĩ(T, ρ) is given
by (1 − nt/T ) times the high-SNR approximation of Cc(ρ).
Similarly, it can be shown that Ṽ (T ) corresponds to the
high-SNR channel dispersion one obtains by transmitting in
each coherence block one pilot symbol per transmit antenna
to estimate the fading coefficient, and by then transmitting
T −nt symbols over a coherent fading channel. This suggests
the heuristic that one should transmit one pilot symbol per
transmit antenna and coherence block followed by coherent
transmission. However, this heuristic may be misleading, since
the SNR-independent terms of Ĩ(T, ρ) may be significant,
and since it is prima facie unclear whether one pilot symbol
per transmit antenna and coherence block suffices to obtain a
fading estimate of sufficient accuracy. For the single-antenna
case, an analysis of the maximum coding rate achievable with
pilot-assisted transmission can be found in [32].

Theorem 1 provides an asymptotic analysis of the max-
imum coding rate R∗(L, T, ϵ, ρ) as L tends to infinity for
a fixed coherence interval T . Indeed, the error terms in (8)
vanish as L → ∞ and ρ → ∞, provided that T is held
fixed. This corresponds to the ergodic case where codewords
span independent coherence intervals. The complementary
case where T → ∞ as L is held fixed was considered
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(a) n = 168, ϵ = 10−3, ρ = 15 dB, and nt = nr = 2.

(b) n = 168, ϵ = 10−3, ρ = 25 dB, and nt = nr = 2.

Fig. 1. R∗(L, T, ϵ, ρ) as a function of T for a fixed n = TL.

in [22]. Specifically, [22] considers a quasi-static multiple-
antenna fading channel and analyzes the convergence of the
maximum coding rate to the outage capacity in the limit as
T → ∞. By replacing the fading matrix H in [22] by a
block-diagonal matrix, one obtains a channel model that is
equivalent to the block-fading channel (3). The corresponding
results in [22, Ths. 3 & 9] demonstrate that the ϵ-dispersion
is zero, irrespective of whether channel-state information is
available at the transmitter or receiver. This implies that the
maximum coding rate converges quickly to the outage capacity
as T → ∞. Consequently, in this regime, the outage capacity
is a good proxy for the maximum coding rate. In general, both
analyses (ergodic and quasi-static) characterize the maximum
coding rate in different regimes and complement each other.

B. Numerical Results

We next provide numerical examples that illustrate the ac-
curacy of the high-SNR normal approximation in Theorem 1.
In the following figures, we depict the high-SNR normal
approximation (8), the normal approximation of the coherent
MIMO Rayleigh block-fading channel obtained in [19], a
nonasymptotic (in ρ and L) lower bound on R∗(L, T, ϵ, ρ)
that is based on the dependence testing (DT) bound [3, Th.
22], and a nonasymptotic upper bound that is based on the
meta converse (MC) bound [3, Th. 31], both specialized to

(a) T = 24, ϵ = 10−3, nt = 2, nr = 2, and ρ = 15 dB.

(b) T = 24, ϵ = 10−3, nt = 2, nr = 4, and ρ = 15 dB.

Fig. 2. R∗(L, T, ϵ, ρ) as a function of n for a fixed T .

the noncoherent MIMO Rayleigh block-fading channel in [24].
The nonasymptotic bounds are evaluated using the communi-
cation toolbox SPECTRE [33]. While these bounds are very
accurate, their computational complexity grows exponentially
in the blocklength and can be substantial. For the noncoher-
ent single-antenna block-fading channel, a discussion of the
computational complexity of these bounds and approximations
thereof can be found in [26, Sec. VIII-A]. In the figures, the
shaded area indicates the area where R∗(L, T, ϵ, ρ) lies.

In Figs. 1a and 1b, we show R∗(L, T, ϵ, ρ) as a function of
T for a fixed blocklength2 n = LT = 168 and SNR values
ρ = 15 dB and ρ = 25 dB. Observe that the high-SNR normal
approximation (8) accurately describes the maximum coding
rate for ρ = 25 dB but is loose for ρ = 15 dB unless L is
large. Furthermore, the normal approximation of the coherent
setting is strictly larger than that of the noncoherent setting,
and it becomes more accurate as T increases, indicating that
the cost for estimating the channel decreases with T .

In Figs. 2a and 2b, we show R∗(L, T, ϵ, ρ) as a function
of the blocklength n = LT for T = 24 and ρ = 15 dB,
and for nt = nr = 2, and nt = 2, nr = 4, respectively.
For comparison, we further depict Ĩ(T, ρ) (9), which is an
asymptotically tight lower bound on capacity. Observe that the
normal approximation (8) becomes more accurate as L and nr

increase, and for nr = 4, it is very close to the nonasymptotic
bounds for the considered values of L. Moreover, the gap

2Thus, L is inversely proportional to T .
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(a) nt = 2, nr = 2, T = 24, and L = 7.

(b) ρ = 25 dB, T = 24, and L = 7.

Fig. 3. R∗(L, T, ϵ, ρ) as a function of ϵ.

between the coherent and the noncoherent normal approxi-
mations appears to be independent of L. This agrees with the
intuition that the cost for estimating the channel is determined
by the coherence interval T .

In Figs. 3a and 3b, we study R∗(L, T, ϵ, ρ) as a function
of ϵ for T = 24 and L = 7. Specifically, Fig. 3a plots
R∗(L, T, ϵ, ρ) for nt = 2, nr = 2, and two different SNR
values 20 dB and 25 dB. Fig. 3b plots R∗(L, T, ϵ, ρ) for 25 dB
and three different numbers of antennas (nt, nr) = (1, 1),
(1, 2), and (2, 2). Observe that the accuracy of normal approx-
imation (8) increases as the SNR value and the number of an-
tennas become larger, and for ρ = 25 dB and (nt, nr) = (2, 2)
it is very close to the nonasymptotic bounds over the entire
range of error probabilities considered.

In Figs. 4a and 4b, we study R∗(L, T, ϵ, ρ) as a function of
the SNR for T = 24, L = 7, ϵ = 10−5, and (nt, nr) = (1, 2)
and (2, 2), respectively. For comparison, we also show the
high-SNR approximation Ĩ(T, ρ) of channel capacity. First
observe that the DT lower bound on R∗(L, T, ϵ, ρ) (which is
based on USTM channel inputs) is close to the MC upper
bound (which is valid for any input distribution satisfying
the power constraint (5)). Thus, USTM channel inputs are
nearly capacity-achieving for all SNR values considered.
Further observe that the SNR range over which the normal
approximation (8) is accurate depends on the number of
antennas. Specifically, when nt = 1 and nr = 2, the normal
approximation is accurate for SNR values above ρ = 12
dB, whereas when nt = 2 and nr = 2, it is accurate for

0 10 20 30 40 50 60
0

5

10

15

20

(a) T = 24, L = 7, ϵ = 10−5, nt = 1, and nr = 2.

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

(b) T = 24, L = 7, ϵ = 10−5, nt = 2, and nr = 2.

Fig. 4. R∗(L, T, ϵ, ρ) as a function of ρ.

SNR values above ρ = 23 dB. As expected, the normal
approximation of the coherent channel is strictly larger than
both the high-SNR normal approximation of the noncoherent
channel and the nonasymptotic bounds. However, its gap to
the nonasymptotic bounds diminishes as ρ becomes small.
Intuitively, this is because, as ρ decreases, knowledge of the
fading coefficients becomes less important.

In Fig. 5, we plot the error probability as a function of
the SNR for a fixed rate R = 4 and for T = 24, L = 7,
and the numbers of antennas (nt, nr) = (1, 1), (1, 2), (1, 4),
and (2, 4). As in the previous figures, the plotted DT bounds
are based on USTM channel inputs, whereas the plotted MC
bounds indicate the smallest probability of error that can be
achieved by channel inputs satisfying the power constraint (5).
Observe that the error-probability curves become steeper as
the number of transmit and receive antennas increases. This
is consistent with the diversity-multiplexing tradeoff (DMT)
proposed by Zheng and Tse [34]. Indeed, let the multiplexing
gain r and the diversity gain d be defined as

r ≜ lim
ρ→∞

R∗(L, T, ϵ, ρ)

log ρ
(18a)

d ≜ − lim
ρ→∞

log ϵ

log ρ
. (18b)

Intuitively, if a system has a diversity gain of d, then the
corresponding error probability decays as ρ−d with the SNR
ρ. A steeper error probability curve thus corresponds to a
higher diversity gain. For the noncoherent Rayleigh block-
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Fig. 5. The minimum error probability ϵ as a function of the SNR for R = 4,
T = 24, and L = 7.

fading channel, the DMT is given by the piecewise linear curve
joining the points [35](

r =
(
1− n⋆

T

)
k, d = L(nt − k)(nr − k)

)
(19)

for k = 0, . . . ,min(nt, nr), where n⋆ is as in (4). If the
multiplexing gain r (or, equivalently, k) is held fixed, then
(19) implies that the diversity gain grows with the number of
transmit and receive antennas. This is the setting considered
in Fig. 5, where we assume a fixed rate, and hence also a
fixed multiplexing gain. Our observation that the slope of
ϵ becomes steeper as the number of transmit and receive
antennas increases is thus supported theoretically by the DMT.
Further observe that the normal approximation (8) is accurate
when the number of transmit antennas is nt = 1, but it is
overly-pessimistic when nt = 2. In contrast, the coherent
normal approximation is overly-optimistic for all parameters
considered in this figure. Last but not least, observe that
the error probability decreases significantly as the number of
antennas increases. This demonstrates the benefit of multiple
antennas at the transmitter and receiver at short blocklengths.

Finally, we study the impact of antenna allocation on the
maximum coding rate and the error probability when the total
number of antennas is equal to 4. To this end, we plot in
Fig. 6a the maximum coding rate R∗(L, T, ϵ, ρ) as a function
of T for a fixed blocklength n = 168 for ρ = 25 dB,
error probability ϵ = 10−3, and the numbers of antennas
(nt, nr) = (1, 4), (2, 2), and (4, 1). Similarly, we plot in
Fig. 6b the minimum error probability ϵ as a function of the
SNR for R = 4, T = 24, L = 7, and the same numbers of
antennas. For the cases (nt, nr) = (1, 4) and (nt, nr) = (2, 2),
we plot the normal approximation (8), whereas for the case
(nt, nr) = (4, 1) we plot the DT and the MC bounds, as the
case nt > nr is not covered by Theorem 1. Observe that,
for a fixed error probability, the coding rate is maximized by
allocating the same number of antennas to the transmitter and
receiver. This corresponds to the case where the transmit and
receive antennas are used to maximize spatial multiplexing.
In contrast, for a fixed rate, the error probability is minimized
by maximizing the number of receive antennas. Intuitively, all
cases exhibit the same diversity order ntnr, but the smallest

8 12 14 24 42
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(a) R∗(L, T, ϵ, ρ) as a function of T for a fixed TL = 168,
ϵ = 10−3, and ρ = 25 dB.

(b) Error probability ϵ as a function of the SNR for R = 4, T =
24, and L = 7.

Fig. 6. Maximum coding rate and minimum error probability for (nt, nr) =
(1, 4), (2, 2), and (4, 1).

number of transmit antennas results in the smallest cost for
estimating the fading matrix Hℓ. For example, estimating Hℓ

by means of pilot symbols would require one pilot symbol per
coherence interval and transmit antenna.

It is well-known that normal approximations are accurate
for sufficiently large blocklengths and moderate error proba-
bilities; see also the discussion in [26, Sec. VIII-B]. The same
applies to the high-SNR normal approximation presented in
Theorem 1. Specifically, comparing the high-SNR normal ap-
proximation (8) against the nonasymptotic bounds, we observe
that, for T = 24 and L ≥ 7, the normal approximation deviates
from the true value of R∗(L, T, ϵ, ρ) by less than 5% for SNR
values ρ ≥ 25 dB and error probabilities ϵ ≥ 10−5, and for
SNR values ρ ≥ 21 dB and error probabilities ϵ ≥ 10−3,
irrespective of the number of transmit and receive antennas.

C. Optimal Number of Active Transmit Antennas

In [28], Zheng and Tse showed that, at high SNR, the
channel capacity of the noncoherent Rayleigh block-fading
channel behaves as

C(ρ) = n⋆

(
1− n⋆

T

)
log ρ+Oρ(1) (20)

where n⋆ is as in (4). If T ≥ nt + nr and nt ≤ nr, then
n⋆ = nt and the pre-log factor nt(1−nt/T ) is monotonically
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(a) n = 168, ϵ = 10−3, ρ = 25 dB, and nr = 6. Crossing points:
T4,6 = 14.9 and T5,6 = 22.9.

(b) n = 512, ϵ = 10−5, ρ = 25 dB, and nr = 8. Crossing points:
T6,7 = 17.9, T5,8 = 18.3, T6,8 = 22.3, and T7,8 = 32.5.

Fig. 7. High-SNR normal approximation as a function of T for a fixed
n = TL and varying numbers of transmit antennas.

increasing in nt. In this case, it is optimal to use all available
transmit antennas. However, it is prima facie unclear whether
the same is true at finite blocklength. To gain some insights on
this question, we analyze the behavior of the high-SNR normal
approximation (8) as a function of the number of transmit
antennas nt for a given number of receive antennas nr.

In Figs. 7a and 7b, we plot the high-SNR normal approx-
imation as a function of T for a fixed blocklength n = LT ,
a given number of receive antennas, and varying numbers
of transmit antennas. We consider the cases ρ = 25 dB,
ϵ = 10−3, n = 168, and nr = 6 (Fig. 7a), and ρ = 25 dB,
ϵ = 10−5, n = 512, and nr = 8 (Fig. 7b). Comparing the
high-SNR normal approximation against the nonasymptotic
bounds, it can be observed that, for the considered parameters,
the normal approximation deviates from the true value of
R∗(L, T, ϵ, ρ) by less than 5.2%, hence it is a good proxy
for the maximum coding rate. We further indicate the values
of the coherence interval where two lines cross. Specifically,
we use the notation Tn1,n2

to indicate the crossing point of
the curves for nt = n1 and nt = n2. Observe that, in contrast
to the pre-log factor of the high-SNR asymptotic capacity, the
number of transmit antennas that maximizes the high-SNR
normal approximation is not necessarily equal to the maximum

value nt = nr and depends on the coherence interval T . For
example, when n = 168 and nr = 6, the maximum number of
available transmit antennas should only be used when T ≥ 23;
cf. Fig. 7a. Similarly, when n = 512 and nr = 8, using
all available transmit antennas is suboptimal when T < 32;
cf. Fig. 7b. Finally, the optimal number of active transmit
antennas is not necessarily monotonically increasing in T . As
can be observed from Fig. 7b, when n = 512 and nr = 8,
using nt = 7 transmit antennas is optimal when 18 ≤ T ≤ 32.

In summary, while the high-SNR asymptotic capacity sug-
gests that, at large blocklengths and high SNR, it is optimal to
use all available transmit antennas, in general the maximum
coding rate has a more intricate dependence on the number of
active transmit antennas. The high-SNR normal approximation
presented in Theorem 1 allows us to unveil this dependence
without having to resort to nonasymptotic bounds that need to
be evaluated numerically at a high computation cost.

IV. PROOF OF THEOREM 1
To prove Theorem 1, we derive in Section IV-A a lower

bound on R∗(L, T, ϵ, ρ) and in Section IV-B an upper bound
on R∗(L, T, ϵ, ρ). Since both bounds are equal to (8) up
to error terms that have the same behavior as KĨ(T, ρ),
KṼ (T, ρ), and KL(L, T, ρ) (cf. (43) and (125)), we conclude
that R∗(L, T, ϵ, ρ) is given by (8).

A. Lower Bound on R∗(L, T, ϵ, ρ)

To derive a lower bound on R∗(L, T, ϵ, ρ), we evaluate the
DT lower bound [3, Th. 22] for an USTM input distribu-
tion. Such an input can be written as XL =

√
Tρ/ntU

L,
where UL = [U1, . . . ,UL] is a sequence of i.i.d., isotrop-
ically distributed, random matrices satisfying UH

ℓ Uℓ = Int ,
ℓ = 1, . . . , L. We define the information density between the
random vectors XL and YL as

i(XL;YL) ≜ log
fYL|XL(YL|XL)

fYL(YL)
(21)

where fYL|XL denotes the conditional probability density
function (pdf) of the outputs YL of the channel (3) given the
inputs XL, and fYL is the output pdf induced by the input
distribution and the channel law. When the input distribution
is USTM, the channel outputs YL are i.i.d., (T × nr)-
dimensional random matrices whose joint pdf is given by

fYL(YL) =

L∏
ℓ=1

f
(U)
Y (Yℓ), YL = [Y1, . . . ,YL] (22)

where f
(U)
Y denotes the pdf of the outputs of the channel

(3) induced by USTM channel inputs. Since the channel is
blockwise memoryless, the information density can then be
expressed as

i(XL;YL) =

L∑
ℓ=1

i
(U)
ℓ (Xℓ;Yℓ) (23)

where the USTM information density i
(U)
ℓ (Xℓ;Yℓ) is defined

as

i
(U)
ℓ (Xℓ;Yℓ) ≜ log

fY|X(Yℓ|Xℓ)

f
(U)
Y (Yℓ)

(24)
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and fY|X denotes the conditional pdf of the channel output
Yℓ given the corresponding channel input Xℓ.

We next note that the cumulative distribution function
Pr
[
i(xL;YL) ≤ α

]
for (23) and YL distributed according to

(22) does not depend on xL. This follows from the isotropy
of USTM inputs combined with the unitary invariance of the
output distribution [24, App. A]. Furthermore, USTM inputs
satisfy the power constraint (5) with probability one. Under
these assumptions, the DT bound can be expressed as follows:

Lemma 1 (Dependence-Testing Bound): Fix an arbitrary
distribution on XL. Assume that the cumulative distribution
function Pr

[
i(xL;YL) ≤ α

]
does not depend on xL when

YL is distributed according to fYL , and that XL satisfies the
power constraint (5) with probability one. Then, there exists
a code of blocklength n = LT with M codewords whose
maximum error probability satisfies

ϵ ≤ E
[
exp

{
−[i(XL;YL)− log(M − 1)]+

}]
. (25)

Proof: The lemma follows by optimizing the bound in
[3, Th. 23] for the case where Pr

[
i(xL;YL) ≤ α

]
does not

depend on xL, as in the proof of [3, Th. 22].
Distinguishing between the cases where i(XL;YL) >

log(M − 1) and i(XL;YL) ≤ log(M − 1), the inequality
(25) in Lemma 1 can be written as

ϵ ≤ (M − 1)E
[
e−i(XL;YL)1

{
i(XL;YL) > log(M − 1)

}]
+ Pr

[
i(XL;YL) ≤ log(M − 1)

]
. (26)

Consequently, if we can find an M such that the right-
hand side (RHS) of (26) is upper-bounded by ϵ, then there
exists an (L, T,M, ϵ, ρ) code with these parameters. By the
definition of the maximum coding rate (7), we then obtain that
R∗(L, T, ϵ, ρ) ≥ logM

LT .
To find such an M , we closely follow [3, Eqs. (258)–(267)].

To this end, we will need the following auxiliary results. In the
following, we shall omit the subscript ℓ where it is immaterial.
We further define I(T, ρ) ≜ E[i(U)(X;Y)] and U(T, ρ) ≜
Var
(
i(U)(X;Y)

)
. Recall that these quantities, as well as the

third moment E[|i(U)(X;Y) − I(T, ρ)
∣∣3], are computed for

USTM channel inputs.
Lemma 2: At high SNR, U(T, ρ) can be approximated as

U(T, ρ) = T 2Ṽ (T ) +KU (T, ρ) (27)

where Ṽ (T ) is defined in (10) and KU (T, ρ) is a function of
T and ρ that satisfies

lim
ρ→∞

KU (T, ρ) = 0. (28)

Proof: See Appendix I.
Lemma 3: There exists a sufficiently large ρ0 such that

sup
ρ≥ρ0

U(T, ρ) < ∞ (29a)

sup
ρ≥ρ0

E
[∣∣i(U)(X;Y)− I(T, ρ)

∣∣3] < ∞. (29b)

Proof: See Appendix II.
Lemma 2 implies that there exists a sufficiently large ρ0

such that
U(T, ρ) ≥ T 2

2
Ṽ (T ), ρ ≥ ρ0. (30)

Furthermore, by Lemma 3, there exist a sufficiently large ρ0
and an S(T ) that is independent of ρ such that

E
[∣∣i(U)(X;Y)− I(T, ρ)

∣∣3] ≤ S(T ), ρ ≥ ρ0. (31)

Combining (30) and (31), it then follows that

6E
[∣∣i(U)(X;Y)− I(T, ρ)

∣∣3]
U(T, ρ)3/2

≤ 6S(T )[
T 2

2 Ṽ (T )
]3/2 ≜ B(T ).

(32)
for ρ ≥ ρ0. The first term on the RHS of (26) can be upper-
bounded using the following lemma.

Lemma 4 (Polyanskiy-Poor-Verdú’10): Let Z1, . . . , ZL

be independent random variables, σ2 =
∑L

ℓ=1 Var(Zℓ), and
T =

∑L
ℓ=1 E

[
|Zℓ − E[Zℓ]|3

]
. Then, for any A,

E

[
exp

{
−

L∑
ℓ=1

Zℓ

}
1

{
L∑

ℓ=1

Zℓ > A

}]

≤ 2

(
log 2√
2π

+
12T

σ2

)
1

σ
exp{−A}. (33)

Proof: See [3, Lemma 47].
Applying Lemma 4 to the first term on the RHS of (26),

we obtain that

(M − 1)E
[
e−i(XL;YL)1

{
i(XL;YL) > log(M − 1)

}]
≤ 2

(
log 2√
2π

+ 2B(T )

)
1√
L
. (34)

We next use (32) together with the Berry-Esseen theorem to
upper-bound the second term on the RHS of (26):

Lemma 5 (Berry-Esseen Theorem): Let Z1, . . . , ZL

be independent random variables with µℓ = E[Zℓ],
σ2 =

∑L
ℓ=1 Var(Zℓ), and T =

∑L
ℓ=1 E

[
|Zℓ − E[Zℓ]|3

]
. Then,

for any λ ∈ R,∣∣∣∣∣P
[

L∑
ℓ=1

(Zℓ − µℓ) ≥ λσ

]
−Q(λ)

∣∣∣∣∣ ≤ 6T

σ3
. (35)

Proof: See [36, Ch. XVI.5].
Let

τ = Q−1

(
ϵ−

(
2 log 2√

2π
+ 5B(T )

)
1√
L

)
(36a)

log(M − 1) = LI(T, ρ)− τ
√
LU(T, ρ). (36b)

Then, by setting in (35) Zℓ = i(U)(Xℓ;Yℓ), λ ≜ τ ,
T ≜ LE

[∣∣i(U)(X;Y) − I(T, ρ)
∣∣3], and σ ≜

√
LU(T, ρ),3

the Berry-Esseen theorem yields that

Pr
[
i(XL;YL) ≤ log(M − 1)

]
≤ Q(τ) +

6E
[∣∣i(U)(X;Y)− I(T, ρ)

∣∣3]
√
L
(
U(T, ρ)

)3/2
≤ ϵ− 2

(
log 2√
2π

+ 2B(T )

)
1√
L

(37)

where the second step follows from (32) and the definition of
τ . It can be checked that the sum of the RHSs of (37) and

3Note that T and σ defined in (35) are different from the definitions in
this paper.
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(34) is equal to ϵ. Consequently, there exists an (L, T,M, ϵ, ρ)
code with M given in (36b) and we have

R∗(L, T, ϵ, ρ) ≥ log(M − 1)

LT

=
I(T, ρ)

T
−
√

U(T, ρ)

LT 2
τ. (38)

A Taylor-series expansion of τ around ϵ yields that∣∣τ −Q−1(ϵ)
∣∣ ≤ A√

L
, L ≥ L0 (39)

for some constants A and L0 that are independent of L and
ρ. Furthermore, Lemma 2 shows that U(T, ρ) is uniformly
bounded in ρ ≥ ρ0. Thus, combining (38) and (39), we obtain

R∗(L, T, ϵ, ρ)

≥ I(T, ρ)

T
−
√

U(T, ρ)

LT 2
Q−1(ϵ) +KDT(L, T, ρ) (40)

where KDT(L, T, ρ) is a function of L, T , and ρ that satisfies

sup
ρ≥ρ0

∣∣KDT(L, T, ρ)
∣∣ ≤ A

L
, L ≥ L0 (41)

for some constants (A,L0, ρ0) that are independent of (L, ρ).
The expressions I(T, ρ)/T and U(T, ρ)/T 2 can be approx-

imated at high SNR as follows:

I(T, ρ)

T
= Ĩ(T, ρ) + K̃I(T, ρ) (42a)

U(T, ρ)

T 2
= Ṽ (T ) + K̃U (T, ρ) (42b)

where Ĩ(T, ρ) and Ṽ (T ) are given in (9) and (10), and where
K̃ξ(T, ρ), ξ ∈ {I, U} are functions of T and ρ that both satisfy
limρ→∞ K̃ξ(T, ρ) = 0. Here, (42a) follows from [29, Eq. (49)]
and (42b) follows from Lemma 2. Combining (42a) and (42b)
with (40), we obtain that

R∗(L, T, ϵ, ρ) ≥ Ĩ(T, ρ)−

√
Ṽ (T ) + K̃U (T, ρ)

L
Q−1(ϵ)

+ K̃I(T, ρ) +KDT(L, T, ρ). (43)

Note that K̃ξ(T, ρ), ξ ∈ {I, U} satisfy (11) and KDT(L, T, ρ)
satisfies (12).

B. Upper Bound on R∗(L, T, ϵ, ρ)

Our upper bound on R∗(L, T, ϵ, ρ) is based on the MC
bound:

Lemma 6 (Meta-Converse Bound): The cardinality of a
codebook C with codewords (X1, . . . ,XL) belonging to a set
F and maximum error probability not exceeding ϵ satisfies

log |C| ≤ sup
XL∈F

log
1

β1−ϵ(XL, qYL)
(44)

where β1−ϵ(X
L, qYL) denotes the minimum probability of

error of a binary hypothesis test under hypothesis qYL if the
probability of error under hypothesis fYL|XL does not exceed
ϵ [3, Eq. (100)], and qYL is an auxiliary pdf of YL.

Proof: See [3, Th. 31].

Characterizing β1−ϵ(X
L, qYL) asymptotically as L → ∞

and ρ → ∞ is intractable. To sidestep this problem, we use
[3, Eq. (106)] to lower-bound

β1−ϵ(X
L, qYL)

≥
Pr
[
fYL|XL (YL|XL)

qYL (YL)
< ξ(XL)

∣∣∣ XL = XL
]
− ϵ

ξ(XL)
(45)

for an arbitrary ξ(XL) > 0 which may depend on XL. Together
with (44), this gives rise to the weakened MC bound

M ≤ sup
XL∈F

{
log ξ(XL)

− log
(
Pr
[
j(XL;YL) < log ξ(XL)

∣∣ XL = XL
]
− ϵ
)}

(46)

where

j(XL;YL) ≜
L∑

ℓ=1

log
fY|X(Yℓ|Xℓ)

qY(Yℓ)
(47)

is the so-called mismatched information density.4

In (44), we choose the auxiliary pdf qY that was chosen in
[29, Sec. IV-A] to derive an upper bound on the channel ca-
pacity of noncoherent MIMO Rayleigh block-fading channels.
That is, qYL = qY × . . .× qY is a product distribution with

qY(Y) =
1

µntnrπnrT

Γnt(T )

Γnt
(nt)

e−
∑nt

i=1

σ2
i
µ(∏nt

i=1 σ
2
i

)T−2nr+nt
×

× e−
∑nr

i=nt+1 σ2
i∏nt

i=1

∏nr

j=nt+1(σ
2
i − σ2

j )
2

(48)

where σ1 ≥ . . . ≥ σnr
are the ordered nonzero singular values

of Y and µ ≜ Tρ/nt.
We next note that, for every T × T unitary matrix A and

every X and Y, [24, Eqs. (54) & (55)]

fY|X(Yℓ|AHXℓ) = fY|X(AYℓ|Xℓ) (49a)
qY(AY) = qY(Y). (49b)

It then follows from [37, Prop. 19] that β1−ϵ(X
L, qYL) does

not change if we multiply the channel input Xℓ by a unitary
matrix Aℓ. We further note that

fY|X(Yℓ|Xℓ) =
e−tr(YH

ℓ (IT+XℓX
H
ℓ )

−1Yℓ)

πnrT det(IT + XℓXH
ℓ )

nr
(50)

and, hence, also β1−ϵ(X
L, qYL) depends on Xℓ only via the

product XℓX
H
ℓ . By expressing Xℓ in terms of its singular value

decomposition (SVD)

Xℓ = UℓΣℓV
H
ℓ (51)

(where Uℓ and Vℓ are unitary matrices of dimensions T×T and
nt ×nt, respectively, and Σℓ is a T ×nt rectangular diagonal
matrix), and by setting Aℓ = Uℓ, we thus obtain that we can
restrict ourselves without loss of optimality to channel inputs
Xℓ that are given by a T × nt rectangular diagonal matrix
with diagonal entries d1,ℓ, . . . , dnt,ℓ. Intuitively, d2i,ℓ denotes
the power at transmit antenna i = 1, . . . , nt and coherence

4We use the word “mismatched” to indicate that the output distribution
qY is not the one induced by the input distribution and the channel.
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interval ℓ = 1, . . . , L. Let Dℓ ≜ diag
{
d1,ℓ, . . . , dnt,ℓ

}
and

αℓ ≜ tr(D2
ℓ)/T . Thus, Dℓ is the diagonal square matrix that

is composed of the first nt columns and rows of Xℓ, i.e.,
Dℓ = [Xℓ](1:nt)2 (recall that [Xℓ](1:nt)2 denotes the diagonal
submatrix that is composed of the first nt columns and rows of
Xℓ; see also the notation subsection at the end of Section I). By
the power constraint (5), we have for every ℓ that 0 ≤ αℓ ≤ ρ.

Since directly maximizing the weakened MC bound over
XL is challenging, we wish to first derive an asymptotic
expansion of the conditional cumulative distribution function
of j(XL;YL) by resorting to the Berry-Esseen theorem
(Lemma 5). Maximizing the resulting expansion over XL is
then feasible. However, this requires the absolute third central
moment of j(XL;YL) divided by its variance to the power
of 3/2 to be bounded in XL ∈ F . Unfortunately, this is
not the case if the norm of XL is small, since the variance
of j(XL;YL) vanishes as XL tends to zero. To avoid this
issue, we follow the idea in [19] and separate the codebook C
into two sub-codebooks C1 and C2, where C1 contains all the
codewords for which d2i,ℓ > δ̄ρ, i = 1, · · · , nt (with δ̄ defined
in (54)) in at least half of the coherence intervals, and where
C2 contains the remaining codewords. Clearly, if the maximum
error probabilities of C1 and C2 are ϵ, then the maximum error
probability of C cannot be smaller than ϵ. For codewords in
C1, the variance of j(XL;YL) is bounded away from zero,
so we can apply the Berry-Esseen theorem. For codewords in
C2, we apply Chebyshev’s inequality, which is less precise but
applies to all values of XL. We then show that, as L → ∞ and
ρ → ∞, the cardinality of the entire codebook C is dominated
by the cardinality of C1, so R∗(L, T, ϵ, ρ) is asymptotically
upper-bounded by the upper bound on the maximum coding
rate of C1 and a less precise analysis for codewords in C2 is
unproblematic.

In the following, we provide a detailed proof of the upper
bound. We begin by dividing the codebook C into the sub-
codebooks C1 and C2 and upper-bound the cardinalities of both
codebooks using the weakened MC bound (46)

log |Ci| ≤ sup
XL∈Ci

{
log ξ(DL)

− log
(
Pr
[
j(XL;YL) < log ξ(DL)

∣∣ XL = XL
]
− ϵ
)}

(52)

for i = 1, 2, where (with a slight abuse of notation) we
replaced ξ(XL) in (46) by ξ(DL). Thus, ξ(DL) > 0 is an
arbitrary threshold which may depend on DL and which we
shall define later.

To define C1 and C2 mathematically, we first introduce the
sets

D1 ≜
{
D ∈ Dnt

: d2i > δ̄ρ, i = 1, . . . , nt

}
, (53a)

D2 ≜ Dnt
\ D1, (53b)

where Dnt
denotes the set of (nt × nt)-dimensional diagonal

matrices D with non-negative, real-valued entries that satisfy
tr(D2) ≤ Tρ; and di denotes the i-th diagonal element of D.
Further let

δ̄ ≜
T

nt
− T

2nr
√
nt

√
E
[
log det(HℓHH

ℓ )
2
]
+ 1

. (54)

This choice of δ̄ satisfies the power constraint ntδ̄ρ ≤ Tρ
and ensures that the Berry-Esseen ratio B̄(DL, T, ρ) (see (70)
below) is bounded. We further argue that δ̄ > 0 by evaluating
E[(log det(HℓH

H
ℓ ))

2] using the following lemma.
Lemma 7 (Wishart matrices): Let W be a Wishart matrix

with distribution W(m,n), m ≤ n. Then

E[log detW] =

m−1∑
i=0

Ψ(n− i) (55a)

Var
(
log detW

)
=

m−1∑
i=0

Ψ ′(n− i). (55b)

Proof: See [31, Lemma A.2].
Lemma 7 yields that

E
[(
log det(HℓH

H
ℓ )
)2]

=

(
nt−1∑
i=0

Ψ(nt − i)

)2

+

nt−1∑
i=0

Ψ ′(nt − i). (56)

Since nt ≤ nr (by assumption) and Ψ ′(1) = π2/6 [38, Th.
2.11], it follows that δ̄ > 0.

For a sequence of matrices DL = (D1, . . . ,DL), let

LD1
(DL) ≜

L∑
ℓ=1

1{Dℓ ∈ D1}. (57)

Then, we define the two sub-codebooks C1 and C2 as

C1 ≜
{
XL ∈ C : LD1(D

L) ≥ L/2,Dℓ = [Xℓ](1:nt)2
}

(58a)

C2 ≜
{
XL ∈ C : LD1

(DL) < L/2,Dℓ = [Xℓ](1:nt)2
}
. (58b)

In words, the sub-codebook C1 contains all codewords XL for
which the diagonal entries satisfy d2i,ℓ > δ̄ρ for all i and at
least half of the time instants ℓ. We next derive upper bounds
on the cardinalities of C1 and C2.

1) Upper bound on log |C1|: An upper bound on log |C1|
follows from the weakened MC bound (52). To obtain a
tractable expression, we further upper-bound (52) by lower-
bounding the conditional probability. Indeed, as argued above,
we can assume without loss of optimality that Xℓ is given
by a T × nt rectangular diagonal matrix with diagonal
entries d1,ℓ, . . . , dnt,ℓ. By substituting qY(Y) in (48) and
fY|X(Yℓ|Xℓ) in (50) into (47), we then obtain that

j(XL;YL) =

L∑
ℓ=1

jℓ(Xℓ;Yℓ) (59)

where

jℓ(Xℓ;Yℓ)

= ntnr log
Tρ

nt
+ log

Γnt
(nt)

Γnt
(T )

+
nt

Tρ

nt∑
i=1

σ2
i,ℓ +

nr∑
i=nt+1

σ2
i,ℓ

− tr
(
YH

ℓ

(
IT +XℓX

H
ℓ

)−1
Yℓ

)
− nr log det(Int +XℓX

H
ℓ )

+ (T − 2nr + nt) log

(
nt∏
i=1

σ2
i,ℓ

)

+ 2 log

(
nt∏
i=1

nr∏
j=nt+1

(σ2
i,ℓ − σ2

j,ℓ)

)
. (60)
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In (60), σℓ = (σ1,ℓ, . . . ,σnr,ℓ) are the ordered singular values
of Yℓ.

We show in Appendix III that jℓ(Xℓ;Yℓ) can be upper-
bounded by a term that, conditioned on Xℓ = Xℓ, has the
same distribution as

j̄(Dℓ,Z
′
ℓ,Z

′′
ℓ ,Hℓ,Qℓ)

≜ ntnr log
Tρ

nt
+ log

Γnt(nt)

Γnt
(T )

+

nt∑
i=1

(
nt + ntd

2
i,ℓ

Tρ
− 1

)
Z ′
i,ℓ

− Tρ− nt

Tρ

nt∑
i=1

Z ′′
i,ℓ + (T − nt − nr) log det

(
Int

+ D2
ℓ

)
+ (T − nt) log det

(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)

(
Int + D2

ℓ

)−1
)

(61)

where Z′
ℓ = {Z ′

1,ℓ, . . . , Z
′
nt,ℓ

} and Z′′
ℓ = {Z ′′

1,ℓ, . . . , Z
′′
nt,ℓ

}
are both sequences of i.i.d. random variables, the former
distributed according to the gamma distribution Γ(nr, 1) and
satisfying

∑nt

i=1 Z
′
i,ℓ = tr(HH

ℓ Hℓ), and the latter distributed
according to the gamma distribution Γ(T − nt, 1); Qℓ is
an (T − nt) × nr random matrices with i.i.d. CN (0, 1)
entries that are independent of Hℓ; and λ1(Q

H
ℓ Qℓ) denotes

the largest eigenvalue of QH
ℓ Qℓ. Furthermore, the sequences

{Z′
1, . . . ,Z

′
L}, {Z′′

1 , . . . ,Z
′′
L}, and {Q1, . . . ,QL} are all i.i.d.,

and {Z′′
1 , . . . ,Z

′′
L} and {HL,Z′

1, . . . ,Z
′
L} are independent of

each other. Since j̄ℓ(Dℓ,Z
′
ℓ,Z

′′
ℓ ,Hℓ,Qℓ) depends on XL only

through DL, it then follows that

Pr

[
L∑

ℓ=1

jℓ(Xℓ;Yℓ) < log ξ(DL)

∣∣∣∣∣ XL = XL

]

≥ Pr

[
L∑

ℓ=1

j̄(Dℓ,Z
′
ℓ,Z

′′
ℓ ,Hℓ,Qℓ) < log ξ(DL)

]
. (62)

For future reference, the expected value of
j̄(Dℓ,Z

′
ℓ,Z

′′
ℓ ,Hℓ,Qℓ) is given by

J̄(Dℓ, T, ρ)

= ntnr log
Tρ

nt
+ log

Γnt
(nt)

Γnt
(T )

+

nt∑
i=1

(
nt + ntd

2
i,ℓ

Tρ
− 1

)
nr

− Tρ− nt

Tρ
nt(T − nt) + (T − nt − nr) log det(Int

+ D2
ℓ)

+ (T − nt)E
[
log det

(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(Int + D2

ℓ)
−1
)]

(63)

since Z ′
i,ℓ and Z ′′

i,ℓ are gamma distributed with means
E[Z ′

i,ℓ] = nr and E[Z ′′
i,ℓ] = T − nt, respectively.

Combining (62) with (52), we can upper-bound the cardi-
nality of the sub-codebook C1 as

log |C1| ≤ sup
XL∈C1

{
log ξ(DL)

− log

(
Pr

[
L∑

ℓ=1

j̄(Dℓ,Z
′
ℓ,Z

′′
ℓ ,Hℓ,Qℓ) < log ξ(DL)

]
− ϵ

)}
(64)

for every ξ : DL
nt

→ (0,∞). We next perform an asymptotic
analysis of (64) based on the Berry-Esseen theorem. To this
end, we need the following auxiliary lemmas:

Lemma 8: Let

Ū(D, T, ρ) ≜ Var
(
j̄(D,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ)

)
(65a)

S̄(D, T, ρ) ≜ E
[∣∣j̄(D,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ)− J̄(D, T, ρ)

∣∣3] (65b)

for D ∈ Dnt . Then, we have for every T ≥ nr + nt and any
positive ρ0

sup
ρ≥ρ0

sup
D∈Dnt

Ū(D, T, ρ) < ∞ (66a)

sup
ρ≥ρ0

sup
D∈Dnt

S̄(D, T, ρ) < ∞. (66b)

Proof: See Appendix IV.
Lemma 9: For every D ∈ D1, we have

Ū(D, T, ρ) ≥ (T − nt)nt +KŪ (D, T, ρ) (67)

where KŪ (D, T, ρ) is a function of D, T , and ρ that satisfies

lim
ρ→∞

sup
D∈D1

∣∣KŪ (D, T, ρ)
∣∣ = 0.

Proof: See Appendix V.
Lemma 8 implies that there exists an S̄(T ) that only depends
on T and satisfies

S̄(D, T, ρ) ≤ S̄(T ), D ∈ Dnt
, ρ > ρ0. (68)

Furthermore, for ρ ≥ ρ0 and sufficiently large ρ0, we have
|KŪ (D, T, ρ)| ≤ (T − nt)nt/2, D ∈ D1, by the definition of
KŪ (D, T, ρ). It follows from Lemma 9 that, for ρ ≥ ρ0 and
XL ∈ C1,

L∑
ℓ=1

Ū(Dℓ, T, ρ) ≥
L

2

(T − nt)nt

2
(69)

since all codewords in C1 satisfy LD1(D
L) ≥ L/2. Combining

these two results, we can upper-bound the ratio

B̄(DL, T, ρ) ≜
6
∑L

ℓ=1 S̄(Dℓ, T, ρ)(∑L
ℓ=1 Ū(Dℓ, T, ρ)

)3/2 (70)

for XL ∈ C1 and Dℓ = [Xℓ](1:nt)2 as

B̄(DL, T, ρ) ≤ 6LS̄(T )(L(T−nt)nt

4

)3/2 ≜
B̄(T )√

L
. (71)

With this, we are ready to apply the Berry-Esseen theorem
(Lemma 5) to the upper bound (64). Let

log ξ(DL) =

L∑
ℓ=1

J̄(Dℓ, T, ρ)− λ

√√√√ L∑
ℓ=1

Ū(Dℓ, T, ρ) (72a)

λ = Q−1

(
ϵ+

2B̄(T )√
L

)
, 0 < ϵ < 1/2. (72b)

It then follows from the Berry-Esseen theorem that

Pr

[
L∑

ℓ=1

j̄(Dℓ,Z
′
ℓ,Z

′′
ℓ ,Hℓ,Qℓ) < log ξ(DL)

]
≥ ϵ+

B̄(T )√
L

.

(73)
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Substituting (72) and (73) into the upper bound (64), we obtain
for L ≥ L0 and a sufficiently large L0 that

log |C1|
L

≤ sup
XL∈C1


L∑

ℓ=1

J̄(Dℓ, T, ρ)

L
− λ

L

√√√√ L∑
ℓ=1

Ū(Dℓ, T, ρ)


− log B̄(T )

L
+

logL

2L

≤ sup
XL∈C1

1

L

L∑
ℓ=1

{
J̄(Dℓ, T, ρ)− λ

√
Ū(Dℓ, T, ρ)

L

}

− log B̄(T )

L
+

logL

2L
(74)

where the second inequality follows because, by the assump-
tion 0 < ϵ < 1/2, λ is positive for sufficiently large L
so, applying Jensen’s inequality, the square-root of the sum∑L

ℓ Ū(Dℓ, T, ρ) can be lower-bounded by the sum of square-
roots

∑L
ℓ

√
Ū(Dℓ, T, ρ) divided by

√
L.

Performing a Taylor-series expansion of λ around ϵ, we
obtain ∣∣λ−Q−1(ϵ)

∣∣ ≤ A√
L
, L ≥ L0 (75)

for some constants A, L0, and ρ0 that are independent of L and
ρ. Further using that, by Lemma 8, Ū(Dℓ, T, ρ) is bounded in
Dℓ ∈ Dnt

and ρ ≥ ρ0, and collecting terms of order logL/L,
we can then rewrite the upper bound (74) as

log |C1|
L

≤ 1

L
sup

XL∈C1

L∑
ℓ=1

R̄NA(Dℓ, L, T, ρ) +K1(L, T, ρ) (76)

where

R̄NA(D, L, T, ρ) ≜ J̄(D, T, ρ)−
√

Ū(D, T, ρ)

L
Q−1(ϵ) (77)

and where K1(L, T, ρ) is a function of L, T , and ρ that
satisfies

sup
ρ≥ρ0

∣∣K1(L, T, ρ)
∣∣ ≤ A

logL

L
, L ≥ L0 (78)

for some constants (A,L0, ρ0) that are independent of (L, ρ).
Since Xℓ satisfies the power constraint ∥Xℓ∥2 ≤ Tρ for

every ℓ, and since R̄NA(Dℓ, L, T, ρ) depends on ℓ only via Xℓ,
the supremum on the RHS of (76) can be written as

sup
DL∈DL

nt
: LD1

(DL)≥L/2

{
LD1

(DL) sup
D∈D1

R̄NA(D, L, T, ρ)

+
(
L− LD1(D

L)
)
sup
D∈D2

R̄NA(D, L, T, ρ)

}
. (79)

We next upper-bound (79) using the following lemmas:
Lemma 10: For every D ∈ Dnt satisfying tr(D2) ≥ Tρ(1−

δ) for some 0 < δ ≤ 1
2 , we have

Ū(D, T, ρ) ≥ Ū

(√
ρ

α
D, T, ρ

)
−Υ(T )δ, ρ ≥ ρ0 (80)

where Υ(T ) is a positive constant that only depends on T and
ρ0 is an arbitrary positive constant.

Proof: See Appendix VI.

Lemma 11: Assume that T ≥ nt + nr. For ρ ≥ ρ0 and
L ≥ L0 and sufficiently large ρ0 and L0,

sup
D∈D1

R̄NA(D, L, T, ρ)

≤ sup
D∈Dnt :

tr(D2)
Tρ ≥1−K(T )

L

{
J̄∗(D, T, ρ)−

√
Ū(D, T, ρ)

L
Q−1(ϵ)

}

+KD1
(T, ρ) (81)

for some constant K(T ) ≥ 0 that only depends on T . Here,

J̄∗(D, T, ρ)

≜ ntnr log
Tρ

nt
+ log

Γnt
(nt)

Γnt
(T )

+

(
Tα− Tρ

Tρ

)
nrnt

− nt(T − nt) + (T − nt − nr) log det
(
Int

+ D2
)

+ (T − nt)E
[
log det

(
HℓH

H
ℓ

)]
(82)

and KD1(T, ρ) is a nonnegative function of T and ρ that
satisfies limρ→∞ KD1

(T, ρ) = 0.
Proof: See Appendix VII.

Lemma 12: Maximized over D ∈ D1, the term J̄∗(D, T, ρ)
is given by

sup
D∈D1

J̄∗(D, T, ρ) = J̄D1
(T, ρ), ρ > 0 (83)

where

J̄D1
(T, ρ) ≜ ntnr log

Tρ

nt
+ log

Γnt(nt)

Γnt
(T )

− nt(T − nt)

+ (T − nt − nr) log

(
1 +

Tρ

nt

)nt

+ (T − nt)E
[
log det

(
HℓH

H
ℓ

)]
(84)

Proof: See Appendix VIII.
Lemma 13: For every D ∈ D1, we have

Ū

(√
ρ

α
D, T, ρ

)
≥ T 2Ṽ (T ) +KŪ (D, T, ρ) (85)

where Ṽ (T ) was defined in (10) and KŪ (D, T, ρ) is a function
of D, T , and ρ which satisfies

lim
ρ→∞

sup
D∈D1

|KŪ (D, T, ρ)| = 0. (86)

Proof: See Appendix IX.
Lemma 14: Maximized over D ∈ D2, the term J̄(D, T, ρ)

can be bounded as

J̄D2
(T, ρ) ≤ sup

D∈D2

J̄(D, T, ρ) ≤ J̄D2
(T, ρ)+KD2

(T, ρ) (87)

for ρ ≥ ρ0 and a sufficiently large ρ0 > 0, where

J̄D2
(T, ρ)

≜ ntnr log
Tρ

nt
+ log

Γnt
(nt)

Γnt
(T )

− nt(T − nt)

+ (T − nt − nr) log

(
(1 + δ̄ρ)

(
1 +

T − δ̄

nt − 1
ρ

)nt−1
)

+ (T − nt)E
[
log det

(
HℓH

H
ℓ

)]
(88)
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and KD2
(T, ρ) is a nonnegative correction term that only

depends on T and ρ and satisfies

lim
ρ→∞

KD2(T, ρ) = 0. (89)

Proof: See Appendix X.
We are now ready to upper-bound (79). Indeed, the first

supremum on the RHS of (79) can be upper-bounded as

sup
D∈D1

R̄NA(D, L, T, ρ)

≤ sup
D∈Dnt :

tr(D2)
Tρ ≥1−K(T )

L

{
J̄∗(D, T, ρ)−

√
Ū(D, T, ρ)

L
Q−1(ϵ)

}

+KD1(T, ρ)

≤ max

{
sup
D∈D2

J̄(D, T, ρ),

sup
D∈D1 :

tr(D2)
Tρ ≥1−K(T )

L

{
J̄∗(D, T, ρ)−

√
Ū(D, T, ρ)

L
Q−1(ϵ)

}}

+KD1
(T, ρ) (90)

where the first inequality follows from Lemma 11; the second
inequality follows by writing the supremum over Dnt

as the
maximum of the supremum over D1 and the supremum over
D2 (because Dnt = D1 ∪ D2 and D1 ∩ D2 = ∅), and by
upper-bounding the latter supremum by removing the trace
constraint and by lower-bounding Ū(D, T, ρ) ≥ 0.

The supremum over D1 in (90) can be upper-bounded as

sup
D∈D1 :

tr(D2)
Tρ ≥1−K(T )

L

{
J̄∗(D, T, ρ)−

√
Ū(D, T, ρ)

L
Q−1(ϵ)

}

≤ sup
D∈D1 :

tr(D2)
Tρ ≥1−K(T )

L

{
J̄∗(D, T, ρ)

−

√
Ū
(√

ρ
αD, T, ρ

)
−Υ(T )K(T )

L

L
Q−1(ϵ)

}
≤ sup

D∈D1

J̄∗(D, T, ρ)

−

√
T 2Ṽ (T )−KŪ (T, ρ)−Υ(T )K(T )

L

L
Q−1(ϵ)

≤ R̄D1
(L, T, ρ) +KD1

(L, T ) (91)

where

R̄D1
(L, T, ρ)

≜ J̄D1
(T, ρ)−

√
T 2Ṽ (T )−KŪ (T, ρ)

L
Q−1(ϵ) (92)

and

KŪ (T, ρ) ≜ sup
D∈D1

|KŪ (D, T, ρ)| (93a)

KD1(L, T ) ≜

√
Υ(T )K(T )

L
Q−1(ϵ). (93b)

In (91), the first inequality follows from Lemma 10; the
second inequality follows from Lemma 13 and by optimiz-
ing J̄∗(D, T, ρ) and the constant KŪ (D, T, ρ) in (85) over
D ∈ D1; the third inequality follows from Lemma 12 and the
inequality

√
x− y ≥

√
x−√

y, x ≥ y.
We next use Lemma 14 to upper-bound the supremum over

D2 in (90) as

sup
D∈D2

J̄(D, T, ρ) ≤ J̄D2(T, ρ) +KD2(T, ρ) (94)

for ρ ≥ ρ0 and a sufficiently large ρ0 > 0. Comparing
J̄D2

(T, ρ) with J̄D1
(T, ρ), we obtain that

J̄D1(T, ρ)− J̄D2(T, ρ)

= (T − nt − nr) log


(
1 + Tρ

nt

)nt

(1 + δ̄ρ)
(
1 + Tρ−δ̄ρ

nt−1

)nt−1


≜ Θ(T, ρ). (95)

In the limit as ρ tends to infinity, Θ(T, ρ) tends to

Θ(T ) ≜ (T − nt − nr) log


(

T
nt

)nt

δ̄
(

T−δ̄
nt−1

)nt−1

 (96)

which is strictly positive since, by the geometric-arithmetic
mean inequality,

δ̄

(
T − δ̄

nt − 1

)nt−1

<

(
δ̄ + T−δ̄

nt−1 + . . .+ T−δ̄
nt−1

nt

)nt

=

(
T

nt

)nt

. (97)

By the definitions of R̄D1(L, T, ρ) and Θ(T, ρ), we have that

sup
D∈D2

J̄(D, T, ρ)− R̄D1
(L, T, ρ)−KD1

(T, ρ)

≤ KD2(T, ρ)−Θ(T, ρ)

+

√
T 2Ṽ (T )−KŪ (T, ρ)

L
Q−1(ϵ)−KD1

(T, ρ). (98)

Since the first, second, and last terms on the RHS of (98)
only depend on ρ, and the second-to-last term vanishes as
L → ∞ uniformly in ρ, we conclude that the double limit of
the RHS of (98) as ρ → ∞ and L → ∞ exists and is equal
to −Θ(T ) < 0. It follows that there exist ρ0 and L0 such that

sup
D∈D2

J̄(D, T, ρ) < R̄D1
(L, T, ρ) +KD1

(T, ρ) (99)

for ρ ≥ ρ0 and L ≥ L0. Combining (99) and (91) with (90),
we obtain that

sup
D∈D1

R̄NA(D, L, T, ρ) ≤ R̄D1(L, T, ρ) +KD1(L, T, ρ) (100)

for ρ ≥ ρ0 and L ≥ L0 and sufficiently large (ρ0, L0), where

KD1
(L, T, ρ) ≜ KD1

(T, ρ) +KD1
(L, T ). (101)

We next show that the second supremum on the RHS of
(79) does not exceed the RHS of (100). It follows then that
our upper bound on (79) is maximized for LD1

(DL) = L. To
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prove this claim, we use again Lemma 14 together with the
nonnegativity of Ū(D, T, ρ) to upper-bound

sup
D∈D2

R̄NA(D, L, T, ρ) ≤ J̄D2
(T, ρ) +KD2

(T, ρ). (102)

It then follows from (102) and (95) that

R̄D1
(L, T, ρ) +KD1

(L, T, ρ)− sup
D∈D2

R̄NA(D, L, T, ρ)

≥ Θ(T, ρ)−

√
T 2Ṽ (T )−KŪ (T, ρ)

L
Q−1(ϵ)

+KD1(L, T, ρ)−KD2(T, ρ). (103)

Using similar arguments as the ones leading to (99), we can
show that the double limit of the RHS of (103) as ρ → ∞
and L → ∞ exists and is equal to Θ(T ). Consequently, there
exist (ρ0, L0) such that, for ρ ≥ ρ0 and L ≥ L0, the RHS of
(103) is strictly positive. Thus, for ρ ≥ ρ0 and L ≥ L0,

sup
D∈D2

R̄NA(D, L, T, ρ) < R̄D1
(L, T, ρ) +KD1

(L, T, ρ). (104)

Combining (100)–(104) with (74) and (79), we obtain that

log |C1|
L

≤ R̄D1(L, T, ρ) +KD1(L, T, ρ)−
log B̄(T )

L
+

logL

2L

= J̄D1
(T, ρ)−

√
T 2Ṽ (T )−KŪ (T, ρ)

L
Q−1(ϵ)

+KD1(T, ρ) +KC1(L, T )

≜ R̄C1(L, T, ρ) (105)

where KC1
(L, T ) ≜ KD1

(L, T )− log B̄(T )
L + logL

2L is a function
of L and T that satisfies

|KC1
(L, T )| ≤ A

logL

L
, L ≥ L0 (106)

for some constants A and L0 that are independent of L and
ρ. Recall that lim→∞ KD1

(T, ρ) = limρ→∞ KŪ (T, ρ) = 0.
2) Upper bound on log |C2|: An upper bound on log |C2|

follows from the weakened MC bound (52) and (62):

log |C2| ≤ sup
XL∈C2

{
log ξ(DL)

− log

(
Pr

[
L∑

ℓ=1

j̄(Dℓ,Z
′
ℓ,Z

′′
ℓ ,Hℓ,Qℓ) < log ξ(DL)

]
− ϵ

)}
.

(107)

We next note that, by Lemma 8, there exists an Ū(T ) that
only depends on T and satisfies

Ū(D, T, ρ) ≤ Ū(T ), D ∈ Dnt
, ρ > ρ0. (108)

If we choose

log ξ(DL) =

L∑
ℓ=1

J̄ℓ(Dℓ, T, ρ) +

√
2LŪ(T )

1− ϵ
(109)

then Chebyshev’s inequality yields that

Pr

[
L∑

ℓ=1

j̄(Dℓ,Z
′
ℓ,Z

′′
ℓ ,Hℓ,Qℓ) ≥ log ξ(DL)

]
≤ 1− ϵ

2
(110)

and we can upper-bound (107) as

log |C2| ≤ sup
XL∈C2

L∑
ℓ=1

J̄(Dℓ, T, ρ) +

√
2LŪ(T )

1− ϵ

+ log 2− log(1− ϵ). (111)

It remains to upper-bound the supremum on the RHS of
(111). Similar to (79), using that J̄ℓ(Dℓ, T, ρ) depends on ℓ
only via Dℓ, we obtain that

sup
XL∈C2

L∑
ℓ=1

J̄(Dℓ, T, ρ)

= sup
DL∈DL

nt
: LD1

(DL)<L/2

{
LD1

(DL) sup
D∈D1

J̄ℓ(Dℓ, T, ρ)

+
(
L− LD1

(DL)
)
sup
D∈D2

J̄ℓ(Dℓ, T, ρ)

}
≤ sup

DL : LD1
(DL)<L/2

{
LD1

(DL)
(
J̄D1

(T, ρ) +KD1
(T, ρ)

)
+
(
L− LD1

(DL)
) (

J̄D2
(T, ρ) +KD2

(T, ρ)
)}

≤ L
(
J̄D1(T, ρ) +KD1(T, ρ) +KD2(T, ρ)

)
− L

2
Θ(T, ρ)

(112)

where KD1(T, ρ) and KD2(T, ρ) are functions of T and ρ
that vanish as ρ → ∞. Here, the first inequality follows from
(269) in the proof of Lemma 11 and from Lemmas 12 and 14;
the second inequality follows from the definition of Θ(T, ρ)
in (95) and because 0 ≤ LD1

(DL) < L/2.
Substituting (112) into (111), we obtain the desired upper

bound
log |C2|

L
≤ J̄D1

(T, ρ)− 1

2
Θ(T, ρ) +KD1

(T, ρ)

+KD2
(T, ρ) +KC2

(L, T )

≜ R̄C2
(L, T, ρ) (113)

where

KC2(L, T ) ≜

√
2Ū(T )

L(1− ϵ)
− 1

L
log

(
1− ϵ

2

)
(114)

is a function of L and T that satisfies

|KC2
(L, T )| ≤ A

L
, L ≥ L0 (115)

for some constants A and L0 that are independent of (L, ρ).
3) Upper bound on the cardinality of C: As shown in the

previous subsections, the cardinalities of C1 and C2 can be
upper-bounded by R̄C1

(L, T, ρ) and R̄C2
(L, T, ρ) (cf. (105)

and (113)). Therefore, the cardinality of C, i.e., |C| = M , can
be upper-bounded as

logM ≤ log
(
eLR̄C1

(L,T,ρ) + eLR̄C2
(L,T,ρ)

)
= LR̄C1

(L, T, ρ)

+ log
(
1 + eL(R̄C2

(L,T,ρ)−R̄C1
(L,T,ρ))

)
. (116)

By the asymptotic behaviors of Θ(T, ρ), KŪ (T, ρ), and
KD2

(T, ρ) (cf. (96), (86), and (89)), we have that Θ(T, ρ) ≥
Θ(T )/2, T 2Ṽ (T )−KŪ (T, ρ) ≤ 2T 2Ṽ (T ), and KD2

(T, ρ) ≤
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Θ(T )/8 for ρ ≥ ρ0 and a sufficiently large ρ0. Thus, for
ρ ≥ ρ0,

R̄C2
(L, T, ρ)− R̄C1

(L, T, ρ)

= −1

2
Θ(T, ρ) +

√
T 2Ṽ (T )−KŪ (T, ρ)

L
Q−1(ϵ)

+KD2
(T, ρ) +KC2

(L, T )−KC1
(L, T )

≤ −Θ(T )

8
+

√
2T 2Ṽ (T )

L
Q−1(ϵ)

+KC2
(L, T )−KC1

(L, T ). (117)

Similarly, by the asymptotic behaviors of KC1(L, T ) and
KC2

(L, T ) (cf. (106) and (115)), we have that√
2T 2Ṽ (T )

L
Q−1(ϵ) +KC2

(L, T )−KC1
(L, T ) ≤ Θ(T )

16
(118)

for L ≥ L0 and a sufficiently large L0. Consequently,

R̄C2(L, T, ρ)− R̄C1(L, T, ρ) ≤ −Θ(T )

16
(119)

for ρ ≥ ρ0 and L ≥ L0. Together with (116), this allows us
to upper-bound the cardinality of C as

logM

L
≤ R̄C1(L, T, ρ) +

1

L
log
(
1 + e−L

Θ(T )
16

)
(120)

for ρ ≥ ρ0 and L ≥ L0. The second term on the RHS of (120)
decays super-exponentially in L. We thus conclude from (105)
and (120) that

R∗(L, T, ϵ, ρ) =
logM

LT

≤ J̄D1
(T, ρ)

T
−

√
Ṽ (T )−KŪ (T, ρ)

L
Q−1(ϵ)

+KD1
(T, ρ) +KMC(L, T ) (121)

where

KMC(L, T ) ≜ KC1
(L, T ) +

1

L
log
(
1 + e−L

Θ(T )
16

)
(122)

is a function of L and T that satisfies

|KMC(L, T )| ≤ A
logL

L
, L ≥ L0 (123)

for some constants A and L0 that are independent of (L, ρ).
Comparing (84) with (9), we note that

J̄D1(T, ρ)

T
= Ĩ(T, ρ) +KJ̄(T, ρ) (124)

where KJ̄(T, ρ) is a function of T and ρ that vanishes as
ρ → ∞. We can thus write (121) as

R∗(L, T, ϵ, ρ) ≤ Ĩ(T, ρ) +KMC(T, ρ)

−

√
Ṽ (T )−KŪ (T, ρ)

L
Q−1(ϵ) +KMC(L, T ) (125)

where KMC(T, ρ) ≜ KD1(T, ρ) + KJ̄(T, ρ). Note that
K̃ξ(T, ρ), ξ ∈ {MC, Ū} satisfy (11), and KMC(L, T ) satisfies
(12).

V. CONCLUSION

We presented a high-SNR normal approximation for the
maximum coding rate R∗(L, T, ϵ, ρ) achievable over nonco-
herent MIMO Rayleigh block-fading channels using an error-
correcting code that spans L coherence intervals of length T ,
satisfies a per-block power constraint ρ, and achieves a proba-
bility of error not larger than ϵ. While the approximation was
derived under the assumption that the number of coherence
intervals L and the SNR ρ tend to infinity, numerical analyses
suggest that it becomes accurate already for moderate SNR
values and coherence intervals.

The obtained normal approximation complements the
nonasymptotic bounds presented in [23], [24], whose eval-
uation is computationally demanding. Furthermore, it lays a
theoretical foundation for analytical analyses that study the be-
havior of the maximum coding rate as a function of system pa-
rameters such as SNR, number of coherence intervals, number
of antennas, or blocklength. Inter alia, it enables an analysis of
the fundamental tradeoff between diversity, multiplexing, and
channel-estimation cost at finite blocklength. In Section III-C,
we applied the normal approximation to determine how many
of the nt available transmit antennas should be employed in
order to optimize the maximal coding rate at finite blocklength.
Indeed, there is a tradeoff between multiplexing gain and cost
of estimating the fading coefficients, which both grow with
the number of active transmit antennas. While this tradeoff is
trivial with respect to channel capacity, the maximum coding
rate has a more intricate dependence on the number of active
transmit antennas at finite blocklength. Last but not least, our
normal approximation may serve as a proxy for the maximum
coding rate in the analysis of communication protocols for
short-packet wireless communication systems, similarly to the
normal approximations used in [6]–[15].

APPENDIX I
PROOF OF LEMMA 2

To prove Lemma 2, we analyze in Appendix I-A the USTM
information density i(U)(X;Y) and express it in terms of
the singular values of Y.5 The asymptotic behavior of these
singular values as ρ → ∞ is studied in Appendix I-B. The con-
vergence of the channel dispersion is proved in Appendix I-C.
Some auxiliary derivations are deferred to Appendix I-D.

A. The USTM Information Density i(U)(X;Y)

As argued in [24, App. A], the conditional distribution of
the USTM information density i(U)(X;Y) given X =

√
Tρ
nt

U

does not depend on U. Without loss of generality, we can thus
set in the following X =

√
Tρ
nt

U with

U =

[
Int

0(T−nt)×nt

]
. (126)

Consider the SVD H = UHSHVH
H, where UH and VH are

unitary matrices of dimensions nt × nt and nr × nr, respec-
tively, and SH is an (nt×nr)-dimensional rectangular diagonal

5Throughout this appendix, the subscript ℓ is immaterial and therefore
omitted.
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matrix containing the nt singular values σH,1, . . . , σH,nt
of

H. Then, XH can be expressed as XH = aUUHSHVH
H,

where a ≜
√
Tρ/nt. Using the unitary invariant property [39,

Ch. 5.2] and the circular symmetry of the complex Gaussian
matrix W [40, App. A], [28, Lemma 16], conditioned on X,
the random matrix Y = XH +W has the same conditional
distribution as Ỹ = aUUHΣH + W, where ΣH is an
(nt×nt)-dimensional diagonal matrix containing the singular
values σH,1, . . . , σH,nt

[28, Lemma 16]. Hence,

Ỹ =

[
aΣ̃H 0
0 0

]
+

[
W11 W12

W21 W22

]
(127)

where Σ̃H ≜ UHΣH, and where W11,W12,W21, and W22

are submatrices of dimensions nt × nt, nt × (nr − nt), (T −
nt) × nt, and (T − nt) × (nr − nt), respectively, with i.i.d.
CN (0, 1) entries that are independent of H.

We next use that, for X = aU,

tr(ỸH(IT +XXH)−1Ỹ)

=
a2

1 + a2
tr(HHH) + tr(WH

21W21) + tr(WH
22W22)

+
2a

1 + a2
Re
(

tr(Σ̃H
HW11)

)
+

1

1 + a2
tr(WH

11W11)

+
1

1 + a2
tr(WH

12W12) (128)

where Re(·) denotes the part. Consequently, the conditional
pdf of Y given X = aU satisfies

fY|X(Ỹ|aU)

=
e−tr{ỸH(IT+a2UUH)−1Ỹ}

πTnr det(IT + a2UUH)nr

=
e
− a2

1+a2 tr(HHH)− 2a
1+a2 Re(tr(Σ̃H

HW11))

πTnr (1 + a2)ntnr
×

×e
−tr(WH

21W21)−tr(WH
22W22)−

tr(WH
11W11)+tr(WH

12W12)

1+a2 . (129)

We next consider the output pdf f
(U)
Y induced by USTM

channel inputs and the channel (3). To this end, we denote
the singular values of Y arranged in decreasing order by
σ1, . . . ,σnr

. Then, by expressing Y in terms of its SVD
Y = UYΣYVH

Y, where UY and VY are (truncated) unitary
matrices and ΣY is a diagonal matrix containing the singular
values σ1, . . . ,σnr , the pdf f (U)

Y can be written as [29]

f
(U)
Y (Y) =

fUY
(UY)fΣY

(σ1, . . . , σnr
)fVY

(VY)

J(T,ΣY)
(130)

for Y = UYΣYV
H
Y , where ΣY is a diagonal matrix containing

the singular values of Y. In (130), J(T,ΣY) is the Jacobian
of the SVD, i.e.,

J(T,ΣY) =
∏

1≤i<j≤nr

(σ2
i − σ2

j )
2

nr∏
i=1

σ
2(T−nr)+1
i (131)

and the pdfs of UY and VY are given by fUY
(UY) =

Γnr (T )

πnr(T−1) and fVY
(VY) =

Γnr (nr)

2nrπn2
r

. We next define

σ̄i ≜

{√
nt

Tρσi, i = 1, . . . , nt

σi, i = nt + 1, . . . , nr.
(132)

It follows that

fΣY
(σ1, . . . , σnr

) =

(
Tρ

nt

)nt/2

fσ̄(σ̄1, . . . , σ̄nr
) (133)

and

J(T,ΣY) = J̄(T, Σ̄Y)

(
nt

Tρ

)nt(T+nr−nt−1/2)

(134)

where fσ̄ denotes the joint pdf of σ̄1, . . . , σ̄nr and

J̄(T, Σ̄Y) ≜

(
nr∏
i=1

σ̄
2(T−nr)+1
i

)( ∏
1≤i<j≤nt

(σ̄2
i − σ̄2

j )
2

)
×

×

( ∏
nt+1≤i<j≤nr

(σ̄2
i − σ̄2

j )
2

)(
nt∏
i=1

nr∏
j=nt+1

(
σ̄2
i −

nt

Tρ
σ̄2
j

)2
)
.

(135)

Finally, we denote by σ̃i, i = 1, . . . , nr the random
variables that are obtained by replacing in (132) the singular
values σi by the singular values of Ỹ. Since Ỹ has the
same distribution as Y, it follows that (σ̃1, . . . , σ̃nr ) have
the same joint distribution as (σ̄1, . . . , σ̄nr

), and the joint pdf
of (σ̃1, . . . , σ̃nr

), denoted by fσ̃ , is equal to fσ̄ .
Combining (129)–(135), we obtain that the USTM informa-

tion density i(U)(X;Y) satisfies

i(U)(X;Y)
d
= log

fY|X(Ỹ|aU)
f
(U)
Y (Ỹ)

= nt(T − nt) log
Tρ

nt
+ log

J̄(T, Σ̃Ỹ)

fσ̃(Σ̃Ỹ)

− Ξ(H,W)−∆Ξ(ρ,H,W) (136)

where

Ξ(H,W) ≜ tr(HHH) + tr(WH
21W21) + tr(WH

22W22)

+ Tnr log π + log
Γnr

(T )Γnr
(nr)

2nrπnr(T−1)+n2
r

(137a)

∆Ξ(ρ,H,W) ≜
tr(WH

11W11) + tr(WH
12W12)− tr(HHH)

1 + a2

+
2a

1 + a2
Re
(

tr(Σ̃H
HW11)

)
+ ntnr log

(
1 +

1

a2

)
(137b)

and where, with a slight abuse of notation, we denote by
Σ̃Ỹ both the random variables (σ̃1, . . . , σ̃nr

) and the diagonal
matrix that contains these random variables.

In order to characterize the convergence of the channel
dispersion, we next analyze the asymptotic behavior of the
RHS of (136). This, in turn, requires an asymptotic analysis of
Σ̃Ỹ and of fσ̃ , which we shall carry out in the next subsection.

B. Asymptotics of Σ̃Ỹ and fσ̃

Let ς1, . . . , ςnt
be the ordered nonzero singular values of H,

and let ςnt+1, . . . , ςnr
be the ordered nonzero singular values

of W22. The following lemmas concern the convergence of
(σ̃1, . . . , σ̃nr ) to (ς1, . . . , ςnr ) and of fσ̄ to fς (where fς
denotes the joint pdf of (ς1, . . . , ςnr )).

Lemma 15 (Yang-Durisi-Riegler’13): The singular values
(σ̃1, . . . , σ̃nr

) and (ς1, . . . , ςnr
) and their corresponding pdfs

satisfy the following:
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1)
∑nr

i=1 E
[
σ̃2
i

]
≤ K1, where K1 is a finite constant inde-

pendent of ρ.
2) For any subset Σ̃ ⊆ {σ̃1, . . . , σ̃nr

}, the pdf of Σ̃ satisfies
fΣ̃(Σ̃) ≤ K2 for every Σ̃ and ρ ≥ ρ0, where K2 and ρ0
are finite constants independent of ρ.

3) fσ̃ converges pointwise to fς as ρ → ∞.
Proof: The boundedness of

∑nr

i=1 E
[
σ̃2
i

]
and fσ̃ (Parts 1)

and 2)) was shown in [29, App. B]. The boundedness of
fΣ̃ follows by marginalizing the pdf fσ̃ , characterized in
[29, App. A], over {σ̃1, . . . , σ̃nr

} \ Σ̃ and by bounding the
corresponding integrals. Part 3) is [29, Lemma 12].

Lemma 16 (Zheng-Tse’02): As ρ → ∞, the singular values
(σ̃1, . . . , σ̃nr

) converge almost surely to (ς1, . . . , ςnr
).

Proof: The proof of Lemma 16 follows the steps outlined
in [28, App. F]. Indeed, the convergence of (σ̃1, . . . , σ̃nr

) to
(ς1, . . . , ςnr

) is determined by the asymptotic behavior of the
eigenvalues (λ̃1, . . . , λ̃nr

) of ỸHỸ.
We shall first consider the eigenvalues that are bounded in ρ.

So let λ̃ be an eigenvalue of ỸHỸ that satisfies limρ→∞ λ̃ <
∞. It follows that the characteristic polynomial

f(λ̃) ≜ det(λ̃Inr − ỸHỸ) (138)

is zero. Using (127), f(λ̃) can be written as

f(λ̃) = det

([
A B
BH D

])
(139)

where

A ≜ λ̃Int
−
(
aΣ̃H +W11

)H(
aΣ̃H +W11

)
−WH

21W21 (140a)
B ≜ −

(
aΣ̃H

HW12 +WH
11W12 +WH

21W22

)
(140b)

D ≜ λ̃Inr−nt −
(
WH

12W12 +WH
22W22

)
. (140c)

Next note that, since λ̃ is bounded, 1
a2A converges almost

surely to −Σ̃H
HΣ̃H as ρ (and hence also a) tends to infinity.

Since det(Σ̃H) > 0, it follows that limρ→∞ |det(A)| > 0.
We can therefore use the Schur complement to express the
characteristic polynomial as

f(λ̃) = det(A) det(D−BHA−1B). (141)

Furthermore, f(λ̃) = 0 implies that det(D−BHA−1B) = 0.
It can be shown that, as ρ → ∞,

BHA−1B → −WH
12W12, almost surely. (142)

It thus follows from the continuity of the determinant that
det(D−BHA−1B) converges almost surely to det(λ̃Inr−nt

−
WH

22W22). We conclude that ỸHỸ has nr − nt bounded
eigenvalues λ̃ that converge almost surely to the eigenvalues
of WH

22W22 as ρ → ∞. Clearly, these are the nr − nt

smallest eigenvalues and correspond to the singular values
(σ̃nt+1, . . . , σ̃nr

), since the remaining eigenvalues are un-
bounded. It follows that (σ̃nt+1, . . . , σ̃nr

) converge almost
surely to the nr − nt nonzero singular values of W22.

We next consider the unbounded eigenvalues of ỸHỸ. Let
λ̃ = a2σ̃2 for some σ̃ > 0. Since λ̃ is unbounded, it follows
that limρ→∞ |det(D)| > 0. We can therefore use again the
Schur complement to express the characteristic polynomial as

f(λ̃) = det(D) det(A−BD−1BH). (143)

Furthermore, f(λ̃) = 0 implies that det(A−BA−1BH) = 0.
It can be shown that, as ρ → ∞,

1

a2
A → σ̃Int

− Σ̃H
HΣ̃H, almost surely (144a)

1

a
B → −Σ̃H

HW12, almost surely (144b)

D−1 → 0, almost surely. (144c)

It thus follows that det( 1
a2A− 1

a2BA−1BH) converges almost
surely to det(σ̃2Int − Σ̃H

HΣ̃H). Consequently, as ρ → ∞, the
scaled eigenvalue σ̃2 converges almost surely to an eigenvalue
of Σ̃H

HΣ̃H. It follows that (σ̃1, . . . , σ̃nt
) converge almost

surely to the nt nonzero singular values of H.

C. The Convergence of the Channel Dispersion
In Appendix I-D, we shall show that

lim
ρ→∞

Var
(
i(U)(X;Y)

)2
= Var

(
i∗(ρ, ς,H,W)

)2
(145)

where

i∗(ρ, ς,H,W) ≜ nt(T − nt) log
Tρ

nt
− log fς(Σ̃ς)

+ log J̃(T, Σ̃ς)− Ξ(H,W) (146)

and

J̃(T, Σ̃ς) ≜

(
nr∏
i=1

ς
2(T−nr)+1
i

) ∏
1≤i<j≤nt

(ς2i − ς2j )
2

×

×

( ∏
nt+1≤i<j≤nr

(ς2i − ς2j )
2

)(
nt∏
i=1

ς
4(nr−nt)
i

)
. (147)

For future reference, I∗(T, ρ) ≜ E[i∗(ρ, ς,H,W)] is given by

I∗(T, ρ) = nt(T − nt) log
ρ

nt
+ nt(T − nt) log

T

e

+ log
Γnt(nt)

Γnt
(T )

+ (T − nt)

nt−1∑
i=0

Ψ(nr − i) (148)

Similar to (136), we denote by Σ̃ς both the random variables
(ς1, . . . , ςnr

) and a diagonal matrix containing these random
variables. To compute the expected value in (148), we use
Lemma 16 together with a change of variable to express
the pdfs of (ς1, . . . , ςnt

) and (ςnt+1, . . . , ςnr
) in terms of

the pdfs of H and W22, respectively. After some algebraic
manipulations, we obtain

log J̃(T, Σ̃ς)− log fς(Σ̃ς)− Ξ(H,W) = log
Γnt

(nt)

Γnt(T )

+ (T − nt) log det(H
HH)− tr(WH

21W21) (149)

whose expected value can be evaluated using that∑nt

i=1 E[log(ς
2
i )] =

∑nt−1
i=0 Ψ(nr − i) (Lemma 7) and

E[tr(WH
21W21)] = nt(T − nt). We next note that

Var
(
i∗(ρ, ς,H,W)

)
= nt(T − nt) + (T − nr)

2
nt−1∑
i=0

Ψ ′(nr − i) (150)

which is equal to (10). In (150), we used that H and W21 are
independent, and that Var

(
log det(HHH)

)
=
∑nt−1

i=0 Ψ ′(nt−
i) (Lemma 7). Lemma 2 follows therefore directly from (145).
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D. Proof of (145)

By (136), we have that

U(T, ρ) = E

[(
nt(T − nt) log

Tρ

nt
+ log

J̄(T, Σ̃Ỹ)

fσ̃(Σ̃Ỹ)

− Ξ(H,W)−∆Ξ(ρ,H,W)− I(T, ρ)

)2]
. (151)

We next note that

lim
ρ→∞

E
[(
∆Ξ(ρ,H,W)

)2]
= 0 (152)

from which we obtain that, for every 0 < ε < 1, there exists
a sufficiently large ρ0 such that

E
[(
∆Ξ(ρ,H,W)

)2] ≤ ε, ρ ≥ ρ0. (153)

Indeed, the absolute value of ∆Ξ(ρ,H,W) converges almost
surely to zero as ρ → ∞ and is bounded by∣∣tr(WH

11W11)
∣∣+ ∣∣tr(WH

12W12)
∣∣+ ∣∣tr(HHH)

∣∣
+2
∣∣∣Re

(
tr(Σ̃H

HW11)
)∣∣∣+ ntnr log

(
1 +

nt

Tρ0

)
(154)

for ρ ≥ ρ0, which has a finite second moment. The claim
(152) thus follows from the dominated convergence theorem.
We next note that, by (42a), there exists a sufficiently large
ρ0 > 0 such that

|I(T, ρ)− I∗(T, ρ)| ≤ ε, ρ ≥ ρ0. (155)

Defining

Û(T, ρ) ≜ E

[(
nt(T − nt) log

Tρ

nt
+ log

J̄(T, Σ̃Ỹ)

fσ̃(Σ̃Ỹ)

− Ξ(H,W)− I∗(T, ρ)

)2
]

(156)

we can then approximate U(T, ρ) by Û(T, ρ) as√
Û(T, ρ)− 2ε ≤

√
U(T, ρ) ≤

√
Û(T, ρ) + 2ε. (157)

Consequently, the limit of U(T, ρ) as ρ → ∞ follows from
the limit of Û(T, ρ) upon letting ε tend to zero from above.

To analyze Û(T, ρ), we next define the set

Bε ≜

{
Σ ∈ D+

nr
: ε ≤ Σii ≤

1

ε
, i = 1, . . . , nr; fσ̃(Σ) ≥ ε;

and J̄(T,Σ) ≥ ε

}
(158)

where D+
nr

denotes the set of (nr ×nr)-dimensional diagonal
matrices with non-negative, real-valued entries and Σii denotes
the i-th diagonal element of Σ. We shall study the asymptotic
behavior of Û(T, ρ) as ρ → ∞ by dividing the expected value
into two parts, depending on whether Σ̃Ỹ lies in Bε, and by
letting then ε tend to zero from above. To this end, we define

Û(T, ρ,S) ≜ E

[(
nt(T − nt) log

Tρ

nt
+ log

J̄(T, Σ̃Ỹ)

fσ̃(Σ̃Ỹ)

− Ξ(H,W)− I∗(T, ρ)

)2

1
{
Σ̃Ỹ ∈ S

}]
(159)

and

Ũ(T, ρ,S) ≜ E

[(
nt(T − nt) log

Tρ

nt
+ log

J̃(T, Σ̃Ỹ)

fς(Σ̃Ỹ)

− Ξ(H,W)− I∗(T, ρ)

)2

1
{
Σ̃Ỹ ∈ S

}]
(160)

for S ⊆ D+
nr

. Consequently, Û(T, ρ) can be written as

Û(T, ρ) = Û(T, ρ,Bε) + Û(T, ρ,Bc
ε). (161)

In the following subsections, we analyze the terms on the RHS
of (161) separately.

1) Limit of Û(T, ρ,Bε): By Lemma 15, fσ̃ converges
pointwise to fς . It then follows from Egoroff’s theorem [41,
Th. 2.5.5] that, for every ε > 0, there exists a set Aε of
probability less than ε such that fσ̃ converges uniformly to
fς on B̃ε ≜ Bε \ Aε.6 Thus, there exists a sufficiently large
ρ0 > 0 such that

|fσ̃(Σ)− fς(Σ)| < ε2, Σ ∈ B̃ε, ρ ≥ ρ0 (162)

in which case |log fσ̃(Σ)− log fς(Σ)| ≤ ε
1−ε . Similarly, there

exists a sufficiently large ρ0 > 0 such that∣∣J̄(T,Σ)− J̃(T,Σ)
∣∣ ≤ ε2, Σ ∈ B̃ε, ρ ≥ ρ0 (163)

and, hence, | log J̄(T,Σ)− log J̃(T,Σ)| ≤ ε
1−ε .

We next write Û(T, ρ,Bε) as

Û(T, ρ,Bε) = Û(T, ρ, B̃ε) + Û(T, ρ,Bε ∩ Aε). (164)

Using (162)–(163), we can then approximate Û(T, ρ, B̃ε) as√
Ũ(T, ρ, B̃ε)−

2ε

1− ε
≤
√
Û(T, ρ, B̃ε)

≤
√
Ũ(T, ρ, B̃ε) +

2ε

1− ε
(165)

so the limit of Û(T, ρ, B̃ε) as ρ → ∞ follows from the limit
of Ũ(T, ρ, B̃ε) upon letting ε tend to zero from above.

We next apply the dominated convergence theorem to
evaluate the limit of Ũ(T, ρ, B̃ε) as ρ → ∞. Indeed, after
algebraic manipulations similar to the ones that lead to (149),
it can be shown that

nt(T − nt) log
Tρ

nt
+ log

J̃(T, Σ̃Ỹ)

fς(Σ̃Ỹ)
− Ξ(H,W)− I∗(T, ρ)

= (T − nt)

nt∑
i=1

log σ̃2
i +

nr∑
i=1

σ̃2
i − tr(HHH)

− tr(WH
21W21)− tr(WH

22W22) + nt(T − nt)

− (T − nt)

nt−1∑
i=0

Ψ(nr − i) (166)

which on the set

B̃ε,1 ≜

{
Σ ∈ D+

nr
: ε ≤ Σii ≤

1

ε
, i = 1, . . . , nr

}
(167)

6Without loss of generality, we can assume that Aε decreases monotoni-
cally to a set of probability zero, i.e., Aε1 ⊇ Aε2 for ε1 ≥ ε2. Indeed, if fσ̃
converges uniformly to fς on Bε \Aε1 and Bε \Aε2 , then it also converges
uniformly on Bε \ Ãε2 , where Ãε2 = Aε1 ∩ Aε2 . The set Ãε2 satisfies
Aε1 ⊇ Ãε2 and has probability less than ε2 (because Ãε2 ⊆ Aε2 ), hence
the claim follows.
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is bounded by a random variable of finite second moment.
Furthermore, by Lemma 16, the RHS of (166) converges
almost surely to

(T − nt)

nt∑
i=1

log ς2i − (T − nt)

nt−1∑
i=0

Ψ(nr − i)

− tr(WH
21W21) + nt(T − nt) (168)

as ρ → ∞, which is equal to i∗(ρ, ς,H,W)− I∗(T, ρ) since∑nt

i=1 log ς
2
i = log det(HHH). Further using that, by (162)–

(163),
B̃ε,2 ⊆ B̃ε ⊆ B̃ε,1 (169)

where

B̃ε,2 ≜
{
Σ ∈ D+

nr
\ Aε : ε ≤ Σii ≤ 1/ε, i = 1, . . . , nr;

fς(Σ) ≥ ε− ε2; and J̃(T,Σ) ≥ ε− ε2
}

(170)

it follows from the dominated convergence theorem that

E
[
(i∗(ρ, ς,H,W)− I∗(T, ρ))

2
1{Σ̃ς ∈ B̃ε,2}

]
≤ lim

ρ→∞
Ũ(T, ρ, B̃ε)

≤ E
[
(i∗(ρ, ς,H,W)− I∗(T, ρ))

2
1{Σ̃ς ∈ B̃ε,1}

]
. (171)

Noting that both B̃ε,1 and B̃ε,2 increase monotonically to
D+

nr
as ε ↓ 0, we then obtain from (165) and the monotone

convergence theorem that

lim
ε↓0

lim
ρ→∞

Û(T, ρ, B̃ε) = Var
(
i∗(ρ, ς,H,W)

)
. (172)

We conclude the analysis of Û(T, ρ,Bε) by showing that

lim
ε↓0

lim
ρ→∞

Û(T, ρ,Bε ∩ Aε) = 0. (173)

Indeed, by Part 2) of Lemma 15 and the definitions of Bε and
J̄(T,Σ), we have that

| log fσ̃(Σ)|+ | log J̄(T,Σ)| ≤ κ log
1

ε
, Σ ∈ Bε (174)

for some κ that only depends on T , nr, and nt. Using that
(a+ b)2 ≤ 2a2 + 2b2, we then obtain that[
nt(T−nt) log

Tρ

nt
+ log

J̄(T, Σ̃Ỹ)

fσ̃(Σ̃Ỹ)
− Ξ(H,W)− I∗(T, ρ)

]2
≤ 2

(
Ξ(H,W) + I∗(T, ρ)− nt(T − nt) log

Tρ

nt

)2

+ 2κ2 log2(ε) (175)

We can thus upper-bound Û(T, ρ,Bε ∩ Aε) as

Û(T, ρ,Bε ∩ Aε)

≤ 2κ2 log2(ε) Pr
[
Σ̃Ỹ ∈ Bε ∩ Aε

]
+ 2E

[(
Ξ(H,W)

+ I∗(T, ρ)− nt(T − nt) log
Tρ

nt

)2

1
{
Σ̃Ỹ ∈ Bε ∩ Aε

}]
≤ 2

√
E

[(
Ξ(H,W) + I∗(T, ρ)− nt(T − nt) log

Tρ

nt

)4]
ε

+ 2κ2 log2(ε)ε (176)

where we used the Cauchy-Schwarz inequality and that
Pr[Σ̃Ỹ ∈ Bε ∩ Aε] ≤ Pr[Σ̃Ỹ ∈ Aε] ≤ ε. The term
Ξ(H,W)+ I∗(T, ρ)−nt(T −nt) log(Tρ/nt) is independent
of ρ and has a finite fourth moment. Consequently, the RHS
of (176) tends to zero as ε ↓ 0, from which (173) follows. To
conclude, (164), (172), and (173) demonstrate that

lim
ε↓0

lim
ρ→∞

Û(T, ρ,Bε) = Var
(
i∗(ρ, ς,H,W)

)
. (177)

2) Limit of Û(T, ρ,Bc
ε): We shall show that

lim
ε↓0

lim
ρ→∞

Û(T, ρ,Bc
ε) = 0. (178)

To this end, we use that (a + b + c)2 ≤ 9a2 + 9b2 + 9c2 for
any real numbers (a, b, c) to upper-bound Û(T, ρ,Bc

ε) as

Û(T, ρ,Bc
ε)

≤ 9E

[(
Ξ(H,W) + I∗(T, ρ)

− nt(T − nt) log
Tρ

nt

)2

1
{
Σ̃Ỹ ∈ Bc

ε

}]
+ 9E

[(
log fσ̃(Σ̃Ỹ)

)2
1
{
Σ̃Ỹ ∈ Bc

ε

}]
+ 9E

[(
log J̄(T, Σ̃Ỹ)

)2
1
{
Σ̃Ỹ ∈ Bc

ε

}]
. (179)

We next analyze each term on the RHS of (179) separately:
1) Using the Cauchy-Schwarz inequality, the first term on the
RHS of (179) can be upper-bounded by the square-root of

81E

[(
Ξ(H,W) + I∗(T, ρ)− nt(T − nt) log

Tρ

nt

)4]
×

× Pr
[
Σ̃Ỹ ∈ Bc

ε

]
. (180)

The expected value in (180) is independent of ρ and finite.
Furthermore, by (169), we have Bc

ε ⊆ B̃c
ε,2 and B̃ε,2 is

independent of ρ and increases monotonically to D+
nr

as
ε ↓ 0. It thus follows from the continuity of measures that
supρ>0 Pr[Σ̃Ỹ ∈ Bc

ε] → 0 as ε ↓ 0. Consequently, the first
term on the RHS of (179) vanishes as ρ → ∞ and then ε ↓ 0.
2) The second expected value on the RHS of (179) can be
divided into the two terms

E
[(
log fσ̃(Σ̃Ỹ)

)2
1
{
Σ̃Ỹ ∈ Bc

ε

}]
= E

[(
log fσ̃(Σ̃Ỹ)

)2
1
{
Σ̃Ỹ ∈ Bc

ε ∩ A∥Σ∥,r
}]

+ E
[(
log fσ̃(Σ̃Ỹ)

)2
1
{
Σ̃Ỹ ∈ Bc

ε ∩ Ac
∥Σ∥,r

}]
(181)

where
A∥Σ∥,r ≜

{
Σ ∈ D+

nr
: ∥Σ∥F ≤ r

}
(182)

for some r that we let tend to infinity at the end of the proof.
By Part 2) of Lemma 15, fσ̃ ≤ K2. Consequently,

fσ̃ log2 fσ̃ is bounded by max{4/e2,K2 log
2(K2)} and

E
[(
log fσ̃(Σ̃Ỹ)

)2
1
{
Σ̃Ỹ ∈ Bc

ε ∩ A∥Σ∥,r
}]

=

∫
Bc

ε∩A∥Σ∥,r

fσ̃(Σ) log
2 fσ̃(Σ)dΣ

≤ max{4/e2,K2 log
2(K2)}λ

(
Bc
ε ∩ A∥Σ∥,r

)
(183)
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where λ(·) denotes the Lebesgue measure. By (169), we have
Bc
ε∩A∥Σ∥,r ⊆ B̃c

ε,2∩A∥Σ∥,r which, for a fixed r, is bounded,
independent of ρ, and decreases to the empty set as ε ↓ 0. It
follows from the continuity of measures that the first expected
value on the RHS of (181) vanishes as ρ → ∞ and then ε ↓ 0.

As for the second term on the RHS of (181), we further
divide the set Bc

ε ∩Ac
∥Σ∥,r into Bc

ε ∩Ac
∥Σ∥,r ∩Afσ̃ and Bc

ε ∩
Ac

∥Σ∥,r ∩ Ac
fσ̃

, where

Afσ̃ ≜
{
Σ ∈ D+

nr
: fσ̃(Σ) ≤ ∥Σ∥−nr−1

F

}
. (184)

When r > e2/(nr+1), we have that

fσ̃(Σ) log
2 fσ̃(Σ) ≤ (nr + 1)2

log2(∥Σ∥F)

∥Σ∥nr+1
F

(185)

for Σ ∈ Ac
∥Σ∥,r ∩ Afσ̃ . Consequently,

E
[(
log fσ̃(Σ̃Ỹ)

)2
1
{
Σ̃Ỹ ∈ Bc

ε ∩ Ac
∥Σ∥,r ∩ Afσ̃

}]
≤ (nr + 1)2

∫
∥Σ∥F>r

log2(∥Σ∥F)

∥Σ∥nr+1
F

dΣ

≤ (nr + 1)2
5π

nr
2

Γ(nr

2 )

log2(r)

r
(186)

where we bounded the integral by performing a change of
variable from Σ to ∥Σ∥F. Moreover, when r > K

1/(nr+1)
2 ,

log2 fσ̃(Σ) ≤ (nr + 1)2 log2(∥Σ∥F) (187)

for Σ ∈ Ac
∥Σ∥,r ∩ Ac

fσ̃
. Since x 7→ log2(x) is a concave

function for x ≥ e, it thus follows from Jensen’s inequality
that, for r > max{K1/(nr+1)

2 , e},

E
[(
log fσ̃(Σ̃Ỹ)

)2
1
{
Σ̃Ỹ ∈ Bc

ε ∩ Ac
∥Σ∥,r ∩ Ac

fσ̃

}]
≤ (nr + 1)2

∫
∥Σ∥F>r

fσ̃(Σ) log
2(∥Σ∥F)dΣ

≤ (nr + 1)2 Pr
[
∥Σ̃Ỹ∥F > r

]
log2 E

[
∥Σ̃Ỹ∥F

∣∣ ∥Σ̃Ỹ∥F > r
]

≤ (nr + 1)2 Pr
[
∥Σ̃Ỹ∥F > r

]
log2

( √
K1

Pr
[
∥Σ̃Ỹ∥F > r

]) (188)

where the last step follows by upper-bounding the condi-
tional expectation by E[∥Σ̃Ỹ∥F]/Pr[∥Σ̃Ỹ∥F > r], and by
then applying Part 1) of Lemma 15. Applying Chebyshev’s
inequality together with Part 1) of Lemma 15, and noting that
the function x 7→ log2(x/a) is monotonically increasing for
x > ae2, this can be further upper-bounded by

E
[(
log fσ̃(Σ̃Ỹ)

)2
1
{
Σ̃Ỹ ∈ Bc

ε ∩ Ac
∥Σ∥,r ∩ Ac

fσ̃

}]
≤ (nr + 1)2

K1

r2
log2

(
r2√
K1

)
(189)

for r > max{K1/(nr+1)
2 , e,

√
K1e

2}. With (186) and (189),
we can upper-bound the second expected value on the RHS
of (181) as

E
[(
log fσ̃(Σ̃Ỹ)

)2
1
{
Σ̃Ỹ ∈ Bc

ε ∩ Ac
∥Σ∥,r

}]
≤ (nr + 1)2

(
5π

nr
2

Γ(nr

2 )

log2(r)

r
+

K1

r2
log2

(
r2√
K1

))
(190)

which is independent of ρ and ε, and vanishes as r → ∞. We
thus obtain from (181), (183), and (190) that the second term
on the RHS of (179) vanishes as we let first ρ → ∞, then
ε ↓ 0, and then r → ∞.
3) We upper-bound the third term on the RHS of (179) using
the definition of J̄(T, Σ̄Y) in (135) and that

|a1+. . .+aµ|ν ≤ cµ,ν
(
|a1|ν+. . .+|aµ|ν

)
, µ, ν ∈ N (191)

for some positive constant cµ,ν that only depends on µ and ν.
It follows that(

log J̄(T, Σ̃Ỹ)
)2

≤ cµ,ν
(
2(T − nr) + 1

)2 nr∑
i=1

log2(σ̃i)

+ 4cµ,ν
∑

1≤i<j≤nt

log2(σ̃2
i − σ̃2

j )

+ 4cµ,ν
∑

nt<i<j≤nt

log2(σ̃2
i − σ̃2

j )

+ 4cµ,ν

nt∑
i=1

nr∑
j=nt+1

log2
(
σ̃2
i −

nt

Tρ
σ̃2
j

)
. (192)

To show that the RHS of (179) vanishes as we first let ρ → ∞
and then ε ↓ 0, it thus suffices to show that

lim
ε↓0

lim
ρ→∞

E
[
log2(σ̃i)1

{
Σ̃Ỹ ∈ Bc

ε

}]
= 0 (193a)

lim
ε↓0

lim
ρ→∞

E
[
log2(σ̃2

i − σ̃2
j )1
{
Σ̃Ỹ ∈ Bc

ε

}]
= 0 (193b)

lim
ε↓0

lim
ρ→∞

E

[
log2

(
σ̃2
i −

nt

Tρ
σ̃2
j

)
1
{
Σ̃Ỹ ∈ Bc

ε

}]
= 0 (193c)

for the combinations of indices (i, j) indicated in (192).
To prove (193a), we bound the expected value as

E
[
log2(σ̃i)1

{
Σ̃Ỹ ∈ Bc

ε

}]
≤ E

[
log2(σ̃i)1

{
Σ̃Ỹ ∈ Bc

ε

}
1

{
δ ≤ σ̃i ≤

1

δ

}]
+ E

[
log2(σ̃i)1

{
σ̃i < δ

}]
+ E

[
log2(σ̃i)1

{
σ̃i >

1

δ

}]
(194)

for some δ > 0 that we shall let tend to zero from above at
the end of the proof. The first term on the RHS of (194) can
be upper-bounded as

E

[
log2(σ̃i)1

{
Σ̃Ỹ ∈ Bc

ε

}
1

{
δ ≤ σ̃i ≤

1

δ

}]
≤ log2(δ) Pr

[
Σ̃Ỹ ∈ Bc

ε

]
. (195)

As noted before, supρ>0 Pr[Σ̃Ỹ ∈ Bc
ε] → 0 as ε ↓ 0 by the

continuity of measures. Consequently, the first term on the
RHS of (194) vanishes as we first let ρ → ∞, then ε ↓ 0, and
then δ ↓ 0.

For δ ≤ 1, the second term on the RHS of (194) can be
bounded as

E
[
log2(σ̃i)1 {σ̃i < δ}

]
≤
∫

σ<δ,

fσ̃i
(σ)≤σ−1/2

fσ̃i
(σ) log2(σ)dσ
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+

∫
σ<δ,

fσ̃i
(σ)>σ−1/2

fσ̃i(σ) log
2(σ)dσ

≤
∫ δ

0

log2(σ)√
σ

dσ + 4

∫ δ

0

fσ̃i
(σ) log2

(
fσ̃i

(σ)
)
dσ (196)

where in the last step we bounded the first integral by upper-
bounding fσ̃i

by σ−1/2, and we bounded the second integral
by noting that, for σ < δ < 1, log2(σ) = log2(1/σ) and by
upper-bounding 1/σ by f2

σ̃i
. The first integral on the RHS of

(196) can be evaluated directly. For the second integral, we
use that, by Part 2) of Lemma 15, fσ̃ log2 fσ̃ is bounded by
max{4/e2,K2 log

2(K2)}. It follows that

E
[
log2(σ̃i)1 {σ̃i < δ}

]
≤ 40 log2(δ)

√
δ + δmax{4/e2,K2 log

2(K2)} (197)

which implies that the second term on the RHS of (194)
vanishes as we first let ρ → ∞, then ε ↓ 0, and then δ ↓ 0.

As for the third term on the RHS of (194), we recall that
x 7→ log2(x) is a concave function for x ≥ e. Consequently,
by following the same steps as in (188)–(189), we obtain that,
for δ ≤ (max{e,

√
K1e

2})−1,

E

[
log2(σ̃i)1

{
σ̃i >

1

δ

}]
≤ K1δ

2 log2
(√

K1δ
2
)
. (198)

Thus, the third term on the RHS of (194) also vanishes as we
first let ρ → ∞, then ε ↓ 0, and then δ ↓ 0.

Combining (194), (195), (197), and (198), we obtain (193a).
We next prove (193b). To this end, we use that σ̃2

i − σ̃2
j =

(σ̃i − σ̃j)(σ̃i + σ̃j) and the inequality (a+ b)2 ≤ 2a2 + 2b2

to upper-bounded the expected value in (193b) as

E
[
log2(σ̃2

i − σ̃2
j )1
{
Σ̃Ỹ ∈ Bc

ε

}]
≤ 2E

[
log2(σ̃i − σ̃j)1

{
Σ̃Ỹ ∈ Bc

ε

}]
+ 2E

[
log2(σ̃i + σ̃j)1

{
Σ̃Ỹ ∈ Bc

ε

}]
. (199)

We continue similarly to the proof of (193a). Indeed, we can
bound the expected values on the RHS of (199) as

E
[
log2(σ̃i − σ̃j)1

{
Σ̃Ỹ ∈ Bc

ε

}]
≤ E

[
log2(σ̃i − σ̃j)1

{
Σ̃Ỹ ∈ Bc

ε

}
1

{
δ ≤ σ̃i − σ̃j ≤

1

δ

}]
+ E

[
log2(σ̃i − σ̃j)1{σ̃i − σ̃j < δ}

]
+ E

[
log2(σ̃i − σ̃j)1

{
σ̃i − σ̃j >

1

δ

}]
(200)

and

E
[
log2(σ̃i + σ̃j)1

{
Σ̃Ỹ ∈ Bc

ε

}]
≤ E

[
log2(σ̃i + σ̃j)1

{
Σ̃Ỹ ∈ Bc

ε

}
1

{
δ ≤ σ̃i + σ̃j ≤

1

δ

}]
+ E

[
log2(σ̃i + σ̃j)1

{
σ̃i + σ̃j < δ

}]
+ E

[
log2(σ̃i + σ̃j)1

{
σ̃i + σ̃j >

1

δ

}]
. (201)

The first terms on the RHSs of (200) and (201) are upper-
bounded by log2(δ) Pr[Σ̃Ỹ ∈ Bc

ε], which tends to zero as ε ↓ 0

by the continuity of measures. Hence, these terms vanish as
we first let ρ → ∞, then ε ↓ 0, and then δ ↓ 0.

As for the remaining terms, we next note that the random
variables αij ≜ σ̃i− σ̃j and βij ≜ σ̃i+ σ̃j have the joint pdf

fαij ,βij
(α, β) =

1

2
fσi,σj

(
α+ β

2
,
β − α

2

)
(202)

for α ≥ 0 and β > α. By marginalizing over α or β, and
by bounding the corresponding integral, it can be shown that
both fαij

and fβij
are bounded. Furthermore, by Part 1) of

Lemma 15, the second moments of αij and βij are bounded,
too. We can thus follow the steps (196)–(198) to show that
the second and third terms on the RHSs of (200) and (201)
also vanish as we first let ρ → ∞, then ε ↓ 0, and then δ ↓ 0.
Thus, (193b) follows.

Finally, to prove (193c), we can follow along the lines of
the proof of (193b). Indeed, we have that

E

[
log2

(
σ̃2
i −

nt

Tρ
σ̃2
j

)
1
{
Σ̃Ỹ ∈ Bc

ε

}]
≤ 2E

[
log2

(
σ̃i −

nt

Tρ
σ̃j

)
1
{
Σ̃Ỹ ∈ Bc

ε

}]
+ 2E

[
log2

(
σ̃i +

nt

Tρ
σ̃j

)
1
{
Σ̃Ỹ ∈ Bc

ε

}]
. (203)

We can then bound the expected values depending on whether
αρ,ij ≜ σ̃i − nt

Tρ σ̃j and βρ,ij ≜ σ̃i +
nt

Tρ σ̃j lie in one of
the intervals [δ, 1/δ], (0, δ), or (1/δ,∞). In the first case, the
expected values are bounded by log2(δ) Pr[Σ̃Ỹ ∈ Bc

ε], which
vanishes as we first let ρ → ∞, then ε ↓ 0, and then δ ↓ 0. For
the latter two cases, we note that the marginal pdfs fαρ,ij

and
fβρ,ij

as well as the second moments of αρ,ij and βρ,ij are
bounded. We can thus follow the steps (196)–(198) to show
that these expected values vanish as we first let ρ → ∞, then
ε ↓ 0, and then δ ↓ 0. Thus, (193c) follows.

3) Summary: By (161), we can express Û(T, ρ) as
Û(T, ρ,Bε) + Û(T, ρ,Bc

ε). As shown in Appendix I-D1, the
first term converges to Var

(
i∗(ρ, ς,H,W)

)
as we first let

ρ → ∞ and then ε ↓ 0; cf. (177). As shown in Appendix I-D2,
the second term converges to zero as we first let ρ → ∞ and
then ε ↓ 0; cf. (178). Since, by (157), Û(T, ρ) converges to
U(T, ρ) as we let ε tend to zero from above, we conclude that

lim
ρ→∞

U(T, ρ) = lim
ε↓0

lim
ρ→∞

Û(T, ρ)

= Var
(
i∗(ρ, ς,H,W)

)
(204)

which is (145).

APPENDIX II
PROOF OF LEMMA 3

The result that U(T, ρ) is uniformly bounded in ρ ≥ ρ0 for a
sufficiently large ρ0 (that only depends on T ) follows directly
from Lemma 2. Indeed, according to this lemma, U(T, ρ) can
be approximated as

U(T, ρ) = T 2Ṽ (T ) +KU (T, ρ) (205)

where KU (T, ρ) is a function of T and ρ that satisfies
limρ→∞ KU (T, ρ) = 0. Since Ṽ (T ) is independent of ρ and
finite, the claim thus follows.
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We next show that E[|i(U)(X;Y)− I(T, ρ)|3] is uniformly
bounded in ρ ≥ ρ0 for sufficiently large ρ0. Indeed, by
following similar steps as in the proof of Lemma 2, it can
be shown that

lim
ρ→∞

E
[∣∣i(U)(X;Y)− I(T, ρ)

∣∣3]
= E

[∣∣i∗(ρ, ς,H,W)− I∗(T, ρ)
∣∣3]. (206)

Furthermore, by the definitions of i∗(ρ, ς,H,W) and I∗(T, ρ)
in (146) and (148), we have that

E
[∣∣i∗(ρ, ς,H,W)− I∗(T, ρ)

∣∣3]
= E

[∣∣∣∣∣(T − nt)nt − tr(WH
21W21) + (T − nt) log

(
nt∏
i=1

ς2i

)

− (T − nt)E

[
log

(
nt∏
i=1

ς2i

)]∣∣∣∣∣
3]

≤ c2,3E
[∣∣tr(WH

21W21)
∣∣3]+ c2,3(T − nt)

3n3
t

+ 2c2,3 |T − nt|3 E

[∣∣∣∣∣log
(

nt∏
i=1

ς2i

)∣∣∣∣∣
3]

(207)

where we use (191) in the last step.
Note that each term on the RHS of (207) is independent

of ρ and bounded. Indeed, the first term on the RHS of (207)
is the third absolute moment of a gamma-distributed random
variable with parameters (T − nt, 1). As for the second term
on the RHS of (207), by the definition of ς1, . . . , ςnt , we have∣∣∣∣∣log

(
nt∏
i=1

ς2i

)∣∣∣∣∣ = ∣∣log det(HH
ℓ Hℓ)

∣∣ . (208)

Since log det(HH
ℓ Hℓ) is independent of ρ and its third absolute

moment is finite, it follows that the second term on the RHS of
(207) is bounded, too. We conclude that E[|i∗(ρ, ς,H,W)−
I∗(T, ρ)|3] is bounded, which together with (206) yields that

sup
ρ≥ρ0

E
[∣∣i(U)(X;Y)− I(T, ρ)

∣∣3] < ∞ (209)

for sufficiently large ρ0 > 0. This proves Lemma 3.

APPENDIX III
MISMATCHED INFORMATION DENSITY UPPER BOUND

We show that, conditioned on Xℓ = Xℓ, the mismatched
information density jℓ(Xℓ;Yℓ) can be upper-bounded by a
term that has the same distribution as j̄(Dℓ,Z

′
ℓ,Z

′′
ℓ ,Hℓ,Qℓ)

defined in (61). To this end, we first use that
∑nt

i=1 σ
2
i,ℓ =

tr
(
YH

ℓ Yℓ

)
−
∑nr

i=nt+1 σ
2
i,ℓ to write the third, fourth, and fifth

terms on the RHS of (60) as

nt

Tρ

nt∑
i=1

σ2
i,ℓ +

nr∑
i=nt+1

σ2
i,ℓ − tr

(
YH

ℓ

(
IT + XℓX

H
ℓ

)−1
Yℓ

)
= tr

(
YH

ℓ ΥℓYℓ

)
+

(
1− nt

Tρ

) nr∑
i=nt+1

σ2
i,ℓ (210)

where
Υℓ ≜

nt

Tρ
IT −

(
IT + XℓX

H
ℓ

)−1
. (211)

We next use that we can assume without loss of optimality that
Xℓ is a T×nt rectangular diagonal matrix with diagonal entries
d1,ℓ, . . . , dnt,ℓ, so the channel output Yℓ can be expressed as

Yℓ =

(
DℓHℓ +W1,ℓ

W2,ℓ

)
(212)

where Dℓ ≜ diag
{
d1,ℓ, . . . , dnt,ℓ

}
, and W1,ℓ and W2,ℓ denote

the first nt rows and the last (T−nt) rows of Wℓ, respectively.
It can then be shown that

tr
(
YH

ℓ ΥℓYℓ

)
= tr

(
(DℓHℓ +W1,ℓ)

H
Υ1,ℓ (DℓHℓ +W1,ℓ)

)
+

(
nt

Tρ
− 1

)
tr
(
WH

2,ℓW2,ℓ

)
(213)

where the matrix Υ1,ℓ contains the first nt rows and columns
of Υℓ, i.e.,

Υ1,ℓ ≜
nt

Tρ
Int

−
(
Int

+ D2
ℓ

)−1
. (214)

We continue by upper-bounding
∑nr

i=nt+1 σ
2
i,ℓ following the

steps in [28, p. 377]. Specifically, we use that DℓHℓ +W1,ℓ

has rank nt, so we can find a semi-unitary (nr − nt) × nr

matrix Q0 (possibly depending on Hℓ and W1,ℓ) such that
Q0(DℓHℓ + W1,ℓ)

H = 0. Together with (212), this implies
that tr

(
Q0Y

H
ℓ YℓQ

H
0

)
= tr(Q0W

H
2,ℓW2,ℓQ

H
0 ). Furthermore,

it follows from [39, Cor. 4.3.39] that
nr∑

i=nt+1

σ2
i,ℓ = min

Q∈C(nr−nt)×nr :

QQH=Inr−nt

tr
(
QYH

ℓ YℓQ
H
)

≤ tr
(
Q̃YH

ℓ YℓQ̃
H
)

(215)

for any (nr − nt) × nr matrix Q̃ satisfying Q̃Q̃H = Inr−nt .
By applying (215) with Q̃ = Q0, we thus obtain that

nr∑
i=nt+1

σ2
i,ℓ ≤ tr

(
Q0W

H
2,ℓW2,ℓQ

H
0

)
. (216)

We next consider a unitary nr × nr matrix Q that contains
Q0 as a submatrix. Let Q1 denote the submatrix composed of
the remaining rows of Q so that

Q =

(
Q0

Q1

)
. (217)

It then follows that

tr
(
WH

2,ℓW2,ℓ

)
= tr(Q0W

H
2,ℓW2,ℓQ

H
0 ) + tr(Q1W

H
2,ℓW2,ℓQ

H
1 ). (218)

Combining (213), (216), and (218), we obtain

tr
(
YH

ℓ ΥℓYℓ

)
+

(
1− nt

Tρ

) nr∑
i=nt+1

σ2
i,ℓ

≤ tr
(
(DℓHℓ +W1,ℓ)

H
Υ1,ℓ (DℓHℓ +W1,ℓ)

)
+

(
nt

Tρ
− 1

)
tr
(
Q1W

H
2,ℓW2,ℓQ

H
1

)
. (219)

Using that the matrices Hℓ, W1,ℓ, and W2,ℓ have i.i.d.
CN (0, 1) entries, both traces on the RHS of (219) have
gamma distributions. Specifically, we have that, conditioned
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on Xℓ = Dℓ, DℓHℓ + W1,ℓ has the same distribution as
(Int + D)1/2Hℓ [28, p. 377]. Furthermore, Q1 depends on
Q0 (which in turn may depend on Hℓ and W1,ℓ), but it is
independent of W2,ℓ. It can then be shown that

tr
(
(DℓHℓ +W1,ℓ)

H
Υ1,ℓ (DℓHℓ +W1,ℓ)

)
d
=

nt

Tρ
tr
(
HH(Int

+ Dℓ)H
)
− tr

(
HHH

)
d
=

nt∑
i=1

(
nt + ntd

2
i,ℓ

Tρ
− 1

)
Z ′
i,ℓ (220a)(

nt

Tρ
− 1

)
tr
(
Q1W

H
2,ℓW2,ℓQ

H
1

)
d
=

nt − Tρ

Tρ

nt∑
i=1

Z ′′
i,ℓ (220b)

where Z ′
i,ℓ and Z ′′

i,ℓ were defined after (61). In fact, it follows
from (220a) that Z ′

i,ℓ is given by the squared Euclidean norm
of the i-th row of Hℓ. Thus, (210) can be upper-bounded by
a term that, given Xℓ = Xℓ, has the same distribution as

nt∑
i=1

(
nt + ntd

2
i,ℓ

Tρ
− 1

)
Z ′
i,ℓ −

Tρ− nt

Tρ

nt∑
i=1

Z ′′
i,ℓ. (221)

It remains to upper-bound the last two terms on the RHS of
(60). To this end, we follow along the lines of [29, Sec. IV-A].
Indeed, we begin by upper-bounding

log

(
nt∏
i=1

nr∏
j=nt+1

(σ2
i,ℓ − σ2

j,ℓ)

)

≤ (nr − nt) log

(
nt∏
i=1

σ2
i,ℓ

)
(222)

using that σ2
j,ℓ ≥ 0, j = nt + 1, . . . , nr. To bound the RHS

of (222) and the second-to-last term on the RHS of (60), we
next use that, conditioned on Xℓ = Dℓ, YH

ℓ Yℓ has the same
distribution as HH

ℓ (Int
+D2

ℓ)Hℓ +QH
ℓ Qℓ [28, p. 377], where

Qℓ was defined after (61). It then follows from Weyl’s theorem
[39, Th. 4.3.1] that (cf. [29, Sec. IV-A])

log

(
nt∏
i=1

σ2
i,ℓ

)
≤ log det

((
Int

+ D2
ℓ

)
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)Int

)
= log det

(
Int + D2

ℓ

)
+ log det

(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)

(
Int

+ D2
ℓ

)−1)
(223)

where we used that HH
ℓ

(
Int

+ D2
ℓ

)
Hℓ and

(
Int

+ D2
ℓ

)
HℓH

H
ℓ

have the same nt nonzero eigenvalues [39, Th. 1.3.20].
Combining (221)–(223) with (61), we conclude that, con-

ditioned on Xℓ = Xℓ, jℓ(Xℓ;Yℓ) can be upper-bounded by a
term that has the same distribution as

ntnr log
Tρ

nt
+ log

Γnt(nt)

Γnt
(T )

+

nt∑
i=1

(
nt + ntd

2
i,ℓ

Tρ
− 1

)
Z ′
i,ℓ

− Tρ− nt

Tρ

nt∑
i=1

Z ′′
i,ℓ + (T − nt − nr) log det

(
Int

+ D2
ℓ

)
+ (T − nt) log det

(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)

(
Int

+ D2
ℓ

)−1)
(224)

which is j̄(Dℓ,Z
′
ℓ,Z

′′
ℓ ,Hℓ,Qℓ).

APPENDIX IV
PROOF OF LEMMA 8

A. Proof of (66a)

By the definitions of j̄(Dℓ,Z
′
ℓ,Z

′′
ℓ ,Hℓ,Qℓ) and J̄(Dℓ, T, ρ)

in (61) and (63), we have that

Ū(D, T, ρ)

= E

[(
nt∑
i=1

(
nt

Tρ
+

ntd
2
i,ℓ

Tρ
− 1

)
(Z ′

i,ℓ − nr)

− Tρ− nt

Tρ

nt∑
i=1

(
Z ′′
i,ℓ − (T − nt)

)
+ (T − nt) log det

(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(Int+D2)−1

)
− (T − nt)×

× E
[
log det

(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(Int

+D2)−1
)])2]

≤ c3,2

nt∑
i=1

(
nt

Tρ
+

ntd
2
i,ℓ

Tρ
− 1

)2

Var
(
Z ′
i,ℓ

)
+ c3,2

(
Tρ− nt

Tρ

)2 nt∑
i=1

Var
(
Z ′′
i,ℓ

)
+ c3,2(T − nt)

2×
× E

[
log2 det

(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(Int

+ D2)−1
)]

≤ c3,2

(
nt

Tρ0
+ nt

)2

nrnt + c3,2

(
1 +

nt

Tρ0

)2

nt(T − nt)

+ c3,2(T − nt)
2×

× E
[
log2 det

(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(Int

+D2)−1
)]

(225)

where the second step follows from (191) and because E[(X−
E[X])2] ≤ E[X2] for every random variable X; the third step
follows by bounding d2i,ℓ ≤ Tρ, ρ ≥ ρ0, and |Tρ−nt|/(Tρ) ≤
1+nt/(Tρ0), and by computing the variances of Z ′

i,ℓ and Z ′′
i,ℓ.

It remains to upper-bound the third term on the RHS of
(225). To this end, we first note that

log det
(
HℓH

H
ℓ

)
≤ log det

(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(Int + D2)−1

)
≤ log det

(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)Int

)
≤ nt log (1 + Λ(Hℓ,Qℓ)) (226)

where
Λ(Hℓ,Qℓ) ≜ tr

(
HℓH

H
ℓ

)
+ λ1(Q

H
ℓ Qℓ). (227)

In (226), the first two inequalities follow because det(A+B) ≥
det(A) for every pair of positive definite matrices A and B
[39, Th. 7.8.21] and because (Int + D2)−1 ⪯ Int ; the last
inequality follows from Hadamard’s inequality [39, Th. 7.8.1]
and because every diagonal element of HℓH

H
ℓ is upper-

bounded by tr
(
HℓH

H
ℓ

)
. Therefore,

E
[
log2 det

(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(Int

+ D2)−1
)]

≤ c2,2E
[
log2 det

(
HℓH

H
ℓ

)]
+ c2,2n

2
tE
[
log2 (1 + Λ(Hℓ,Qℓ))

]
. (228)
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By Lemma 7, the first expected value on the RHS of (228) is

E
[
log2 det

(
HℓH

H
ℓ

)]
=

(
nt−1∑
i=0

Ψ(nr − i)

)2

+

nt−1∑
i=0

Ψ ′(nr − i). (229)

To bound the second expected value, we use that the function
x 7→ log2(1 + x) is concave for x ≥ e− 1. Consequently,

E
[
log2

(
1 + Λ(Hℓ,Qℓ)

)]
= E

[
log2

(
1 + Λ(Hℓ,Qℓ)

)
1{Λ(Hℓ,Qℓ) ≤ 2}

]
+ E

[
log2

(
1 + Λ(Hℓ,Qℓ)

)
1{Λ(Hℓ,Qℓ) > 2}

]
≤ Pr

[
Λ(Hℓ,Qℓ) > 2

]
log2

(
1 +

E [Λ(Hℓ,Qℓ)]

Pr [Λ(Hℓ,Qℓ) > 2]

)
+ log2(3)

≤ sup
0<δ≤1

{
δ log2

(
1 +

ntnr + (T − nr)nr

δ

)}
+ log2(3) (230)

where the second step follows by applying Jensen’s inequality
to the second expected valued and by noting that

E
[
Λ(Hℓ,Qℓ)

∣∣ Λ(Hℓ,Qℓ) > 2
]
≤

E
[
Λ(Hℓ,Qℓ)

]
Pr
[
Λ(Hℓ,Qℓ) > 2

] ;
the last step follows because E[tr(HℓH

H
ℓ )] = ntnr and

E[λ1(Q
H
ℓ Qℓ)] ≤ E[tr(QH

ℓ Qℓ)] = (T − nt)nr, and by opti-
mizing over δ = Pr[Λ(Hℓ,Qℓ) > 2].

Since δ 7→ δ log2(1+(ntnr+(T −nr)nr)/δ) is continuous
on 0 < δ ≤ 1 and vanishes as δ ↓ 0, (225)–(230) yield that

sup
ρ≥ρ0

sup
D∈Dnt

Ū(D, T, ρ) < ∞. (231)

This is (66a).

B. Proof of (66b)
By the definitions of j̄(Dℓ,Z

′
ℓ,Z

′′
ℓ ,Hℓ,Qℓ) and J̄(Dℓ, T, ρ)

in (61) and (63), we have that

S̄(D, T, ρ)

= E

[∣∣∣∣∣
nt∑
i=1

(
nt

Tρ
+

ntd
2
i,ℓ

Tρ
− 1

)(
Z ′
i,ℓ − E[Z ′

i,ℓ]
)

−Tρ− nt

Tρ

nt∑
i=1

(
Z ′′
i,ℓ − E[Z ′′

i,ℓ]
)

+(T − nt) log det
(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(Int + D2)−1

)
−(T − nt)×

× E
[
log det

(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(Int

+ D2)−1
)]∣∣∣∣∣

3]

≤ 2c2+4nt,3

(
nt∑
i=1

∣∣∣∣ nt

Tρ
+

ntd
2
i,ℓ

Tρ
− 1

∣∣∣∣3E[|Z ′
i,ℓ|3

]
+

∣∣∣∣Tρ− nt

Tρ

∣∣∣∣3 nt∑
i=1

E
[∣∣Z ′′

i,ℓ

∣∣3]+ (T − nt)
3×

× E
[∣∣log det(HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(Int

+ D2)−1
)∣∣3])

≤ 2c2+4nt,3nt

∣∣∣∣ nt

Tρ0
+ nt

∣∣∣∣3Γ(nr + 3)

Γ(nr)

+2c2+4nt,3nt

∣∣∣∣1 + nt

Tρ0

∣∣∣∣3Γ(T − nt + 3)

Γ(T − nt + 3)

+2c2+4nt,3(T − nt)
3×

× E
[∣∣log det(HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(Int + D2)−1

)∣∣3] (232)

where the second step follows from (191) and because
|E[X]|3 ≤ E[|X|3] for every random variable X; the third
step follows because by bounding d2i,ℓ ≤ Tρ, ρ ≥ ρ0, and
|Tρ− nt|/(Tρ) ≤ 1 + nt/(Tρ0), and by evaluating the third
moment of the gamma-distributed random variable Z ′′

i,ℓ.
It remains to upper-bound the third term on the RHS of

(232). By (226) and (191), we have that∣∣log det (HℓH
H
ℓ + λ1(Q

H
ℓ Qℓ)(Int + D2)−1

)∣∣3
≤ c2,3

∣∣log det (HℓH
H
ℓ

)∣∣3
+ c2,3n

3
t log

3
(
1 + Λ(Hℓ,Qℓ)

)
. (233)

The expected value of | log det(HℓH
H
ℓ )|3 is finite. Moreover,

the function x 7→ log3(1 + x) is concave for x ≥ e2 − 1. By
following similar steps as in (230), it can thus be shown that

E
[
log3

(
1 + Λ(Hℓ,Qℓ)

)]
≤ log3(8)

+ sup
0<δ≤1

{
δ log3

(
1 +

ntnr + (T − nr)nr

δ

)}
. (234)

Since δ 7→ δ log3(1 + (ntnr + (T − nr)nr)/δ) is continuous
on 0 < δ ≤ 1 and vanishes as δ ↓ 0, (232)–(234) yield that

sup
ρ≥ρ0

sup
D∈Dnt

S̄(D, T, ρ) < ∞. (235)

This is (66b).

APPENDIX V
PROOF OF LEMMA 9

Recall that (cf. (61) and (63))

Ū(D, T, ρ)

= E

[(
nt∑
i=1

(
nt

Tρ
+

ntd
2
i,ℓ

Tρ
− 1

)
(Z ′

i,ℓ − nr)

− Tρ− nt

Tρ

nt∑
i=1

(Z ′′
i,ℓ − (T − nt))

+ (T − nt) log det
(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(Int

+ D2)−1
)

− (T − nt)×

× E
[
log det

(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(Int

+ D2)−1
)])2]

.

(236)

To prove Lemma 9, we first show that

Ū(D, T, ρ) = Ū∗(D, T, ρ) +KŪ (D, T, ρ) (237)

where KŪ (D, T, ρ) is a function of D, T , and ρ that satisfies

lim
ρ→∞

sup
D∈D1

|KŪ (D, T, ρ)| = 0; (238)
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Ū∗(D, T, ρ) ≜ Var
(
j̄∗(D,Z′

ℓ,Z
′′
ℓ ,Hℓ)

)
; and

j̄∗(D,Z′
ℓ,Z

′′
ℓ ,Hℓ)

≜ ntnr log
Tρ

nt
+ log

Γnt
(nt)

Γnt
(T )

+

nt∑
i=1

(
ntd

2
i,ℓ

Tρ
− 1

)
Z ′
i,ℓ

−
nt∑
i=1

Z ′′
i,ℓ + (T − nt − nr) log det

(
Int + D2

)
+ (T − nt) log det

(
HℓH

H
ℓ

)
. (239)

We prove (237) by bounding (Ū(D, T, ρ) − Ū∗(D, T, ρ))2 as
follows. For ease of exposition, let

∆(D,Z′
ℓ,Z

′′
ℓ ,Hℓ,Qℓ)

≜ j̄(D,Z′
ℓ,Z

′′
ℓ ,Hℓ,Qℓ)− J̄(D, T, ρ) (240a)

∆∗(D,Z′
ℓ,Z

′′
ℓ ,Hℓ)

≜ j̄∗(D,Z′
ℓ,Z

′′
ℓ ,Hℓ)− J̄∗(D, T, ρ). (240b)

It follows that(
Ū(D, T, ρ)− Ū∗(D, T, ρ)

)2
=
(
E
[(
∆(D,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ)−∆∗(D,Z′

ℓ,Z
′′
ℓ ,Hℓ)

)
×

×
(
∆(D,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ) + ∆∗(D,Z′

ℓ,Z
′′
ℓ ,Hℓ)

)])2
≤ E

[(
∆(D,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ)−∆∗(D,Z′

ℓ,Z
′′
ℓ ,Hℓ)

)2]×
× c2,2

(
Ū(D, T, ρ) + Ū∗(D, T, ρ)

)
(241)

where the second step follows from the Cauchy-Schwarz in-
equality and from (191). By Lemma 8, Ū(D, T, ρ) is bounded
in ρ and D. Similarly, it follows from (191) that

Ū∗(D, T, ρ)

≤ c3,2
(ntTα− Tρ)2

(Tρ)2
Var

(
nt∑
i=1

Z ′
i,ℓ

)
+ c3,2Var

(
nt∑
i=1

Z ′′
i,ℓ

)
+ c3,2(T − nt)

2Var
[
log det

(
HℓH

H
ℓ

))
= c3,2

(ntTα− Tρ)2

(Tρ)2
nrnt + c3,2nt(T − nt)

+ c3,2(T − nt)
2
nt−1∑
i=0

Ψ ′(nr − i) (242)

where we used that the variances of Z ′
t,ℓ, Z ′′

t,ℓ, and
log det

(
HℓH

H
ℓ

)
are nt, (T − nt), and

∑nt−1
i=0 Ψ ′(nr − i),

respectively. Consequently, Ū∗(D, T, ρ) is bounded in (ρ,D).
We thus obtain (237) by showing that the first expected

value on the RHS of (241) vanishes as ρ → ∞ uniformly in
D ∈ D1. To this end, we first note that

∆(D,Z′
ℓ,Z

′′
ℓ ,Hℓ,Qℓ)−∆∗(D,Z′

ℓ,Z
′′
ℓ ,Hℓ)

=
nt

Tρ

nt∑
i=1

(Z ′
i,ℓ − nr) +

nt

Tρ

nt∑
i=1

(
Z ′′
i,ℓ − (T − nt)

)
+ (T − nt) log

det
(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(Int + D2)−1

)
det
(
HℓHH

ℓ

)
− (T − nt)×

× E

[
log

det
(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(Int + D2)−1

)
det
(
HℓHH

ℓ

) ]
. (243)

Using that E[(X−E[X])2] ≤ E[X2], we can thus upper-bound
the first expected value on the RHS of (241) as

E
[(
∆(D,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ)−∆∗(D,Z′

ℓ,Z
′′
ℓ ,Hℓ)

)2]
≤ c3,2

((
nt

Tρ

)2

ntnr +

(
nt

Tρ

)2

nt(T − nt) + (T − nt)
2×

× E

[
log2

(
det
(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(Int

+ D2)−1
)

det
(
HℓHH

ℓ

) )])
.

(244)

Since det(A+B) ≥ det(A) for every pair of positive definite
matrices A and B [39, Th. 7.8.21], the fraction inside the log-
arithm function is greater than or equal to one. Consequently,
an upper bound on this fraction yields an upper bound on the
squared logarithm. Using that d2i ≥ δ̄ρ, i = 1, . . . , nt, for
D ∈ D1, we obtain

(
Int

+ D2
)−1 ≤ (1 + δ̄ρ)−1Int

, so for
D ∈ D1, we can further upper-bound (244) as

E
[(
∆(D,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ)−∆∗(D,Z′

ℓ,Z
′′
ℓ ,Hℓ)

)2]
≤ c3,2

((
nt

Tρ

)2

ntnr +

(
nt

Tρ

)2

nt(T − nt) + (T − nt)
2×

× E

[
log2

(
det
(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(1 + δ̄ρ)−1Int

)
det
(
HℓHH

ℓ

) )])
.

(245)

The RHS of (245) is independent of D and vanishes by the
dominated convergence theorem. Indeed, we have

lim
ρ→∞

log2 det
(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(1 + δ̄ρ)−1Int

)
= log2 det

(
HℓH

H
ℓ

)
(246)

by the continuity of the logarithm function and the determi-
nant. Furthermore, by (191),

log2
(
det
(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(1 + δ̄ρ)−1Int

)
det
(
HℓHH

ℓ

) )
≤ c2,2 log

2 det
(
HℓH

H
ℓ

)
+ c2,2 log

2 det
(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)Int

)
(247)

because the numerator on the LHS of (247) is monotonically
decreasing in ρ. The expected value of the RHS of (245)
is finite (cf. (228)–(230)), hence the dominated convergence
theorem applies and

lim
ρ→∞

E

[
log2

(
det
(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(1 + δ̄ρ)−1Int

)
det
(
HℓHH

ℓ

) )]
= 0. (248)

From (241)–(248), we obtain that

lim
ρ→∞

sup
D∈D1

(
Ū(D, T, ρ)− Ū∗(D, T, ρ)

)2
= 0 (249)

which is (237).
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We next lower-bound Ū∗(D, T, ρ) for D ∈ D1. Indeed,

Ū∗(D, T, ρ)

= E

[(
nt∑
i=1

(
ntd

2
i,ℓ

Tρ
− 1

)
(Z ′

i,ℓ − nr)−
nt∑
i=1

(
Z ′′
i,ℓ − (T − nt)

)
+ (T − nt) log det

(
HℓH

H
ℓ

)
− (T − nt)E

[
log det

(
HℓH

H
ℓ

)])2]

= Var

(
nt∑
i=1

Z ′′
i,ℓ

)
+ E

[(
nt∑
i=1

(
ntd

2
i,ℓ

Tρ
− 1

)
(Z ′

i,ℓ − nr)

+ (T − nt)
(
log det

(
HℓH

H
ℓ

)
− E

[
log det

(
HℓH

H
ℓ

)]))2]

≥ E

[(
nt∑
t=1

(
Z ′′
t,ℓ − (T − nt)

))2]
= (T − nt)nt (250)

where the second step follows because {Z ′′
1,1, . . . , Z

′′
nt,L

}
and {HL, Z ′

1,1, . . . , Z
′
nt,L

} are independent, and the last step
follows because {Z ′′

1,1, . . . , Z
′′
nt,L

} are i.i.d. random variables
with variance (T − nt).

Combining (250) with (237), we obtain that

Ū(D, T, ρ) ≥ (T − nt)nt +KŪ (D, T, ρ) (251)

which proves Lemma 9.

APPENDIX VI
PROOF OF LEMMA 10

Recall that Ū(D, T, ρ) = E
[
∆2(D,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ)

]
, where

∆(D,Z′
ℓ,Z

′′
ℓ ,Hℓ,Qℓ) was defined in (240a). Further let

∆−(x,D,Z
′
ℓ,Z

′′
ℓ ,Hℓ,Qℓ) ≜ ∆

(√
xD,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ

)
−∆(D,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ) (252a)

∆+(x,D,Z
′
ℓ,Z

′′
ℓ ,Hℓ,Qℓ) ≜ ∆

(√
xD,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ

)
+∆(D,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ) (252b)

for x > 0. Using that

∆2

(√
ρ

α
D,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ

)
−∆2(D,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ)

= ∆−

(
ρ

α
,D,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ

)
∆+

(
ρ

α
,D,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ

)
(253)

it follows from the Cauchy-Schwarz inequality that

Ū

(√
ρ

α
D, T, ρ

)
− Ū(D, T, ρ)

≤

√
E

[
∆2

−

(
ρ

α
,D,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ

)]
×

×

√
E

[
∆2

+

(
ρ

α
,D,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ

)]
(254)

We next note that

sup
ρ≥ρ0

sup
D∈Dnt

E

[
∆2

+

(
ρ

α
,D,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ

)]
≤ 2 sup

ρ≥ρ0

sup
D∈Dnt

Ū

(√
ρ

α
D, T, ρ

)
+2 sup

ρ≥ρ0

sup
D∈Dnt

Ū (D, T, ρ)

≤ 4Ū (T ) (255)

for some constant Ū(T ) that only depends on T and any
ρ0 ≥ 0. Here, the first inequality follows from (252b),
the inequality (a1 + a2)

2 ≤ 2a21 + 2a22, and because
Ū(D, T, ρ) = E

[
∆2(D,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ)

]
; the second inequal-

ity follows from Lemma 8. We further have that

E
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+

(
ρ

α
,D,Z′
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′′
ℓ ,Hℓ,Qℓ

)]
= E
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ρ
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)
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+ ρ
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ℓ Qℓ)Int
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ρ
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ℓ Qℓ)Int
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det
(
HℓHH
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+ D2) + λ1(QH

ℓ Qℓ)Int

) ])2]
.

(256)

Consequently, using the inequalities E[(X−E[X])2] ≤ E[X2]
and (a1 + a2)

2 ≤ 2a21 + 2a22, we obtain

E

[
∆2

+

(
ρ

α
,D,Z′

ℓ,Z
′′
ℓ ,Hℓ,Qℓ

)]
≤ 2

(
ρ

α
− 1

)2

E

[(
nt∑
i=1

ntd
2
i,ℓ

Tρ
(Z ′

i,ℓ − nr)

)2]
+ 2(T − nt)

2×

× E

[
log2

(
det
(
HℓH

H
ℓ (Int

+ ρ
αD

2) + λ1(Q
H
ℓ Qℓ)Int

)
det
(
HℓHH

ℓ (Int
+ D2) + λ1(QH

ℓ Qℓ)Int

) )]
≤ 2

(
ρ

α
− 1

)2

n3
tnr + 2(T − nt)

2×

× E

[
log2

(
det
(
HℓH

H
ℓ (Int +

ρ
αD

2) + λ1(Q
H
ℓ Qℓ)Int

)
det
(
HℓHH

ℓ (Int
+ D2) + λ1(QH

ℓ Qℓ)Int

) )]
≤ 2n2

t

( ρ
α
− 1
)2 (

ntnr + (T − nt)
2
)

(257)

where the second step follows by bounding d2i,ℓ ≤ Tρ and
because Z ′

1,ℓ, . . . , Z
′
nt,ℓ

are i.i.d. with variance nr; and the
third step follows by upper-bounding the second term as shown
below (see (259)–(263)).

Combining (254)–(257), and using that, by the lemma’s
assumptions, we have Tα ≥ Tρ(1 − δ) and 0 < δ < 1/2,
so (ρ/α − 1)2 ≤ δ2/(1 − δ)2 ≤ 4δ2, we obtain that
Ū
(√

ρ
αD, T, ρ

)
− Ū(D, T, ρ) is upper-bounded by

Ū

(√
ρ

α
D, T, ρ

)
− Ū(D, T, ρ) ≤ δΥ(T ) (258)
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where Υ(T ) ≜ 4nt

√
2Ū(T )(ntnr + (T − nt)2).

It remains to prove the last step in (257). To this end, we
first note that, since ρ

α ≥ 1,

det
(
HℓH

H
ℓ (Int

+ ρ
αD

2) + λ1(Q
H
ℓ Qℓ)Int

)
det
(
HℓHH

ℓ (Int
+ D2) + λ1(QH

ℓ Qℓ)Int

) ≥ 1. (259)

An upper bound on the expected value in the second-to-last
line in (257) thus follows by upper-bounding the logarithm
inside the expected value. We have

E

[
log2

(
det
(
HℓH

H
ℓ (Int

+ ρ
αD

2) + λ1(Q
H
ℓ Qℓ)Int

)
det
(
HℓHH

ℓ (Int
+ D2) + λ1(QH

ℓ Qℓ)Int

) )]
= E

[
log2 det

(
Int +A−1

ℓ

(
ρ

α
− 1

)
D2

)]
(260)

where

Aℓ ≜ (Int
+ D2) + λ1(Q

H
ℓ Qℓ)(HℓH

H
ℓ )

−1. (261)

This follows by writing ρ
αD

2 = D2+
(
ρ
α − 1

)
D2 and by mul-

tiplying the matrices inside the determinants in the numerator
and denominator by A−1

ℓ (HℓH
H
ℓ )

−1.7

Using that log det(A) ≤ tr(A − Int) for every nt × nt

positive-definite matrix A, (260) can be upper-bounded as

E

[
log2 det

(
Int +A−1

ℓ

(
ρ

α
− 1

)
D2

)]
≤ E

[(
tr
(
A−1

ℓ

( ρ
α
− 1
)
D2
))2

]

≤ E

[( nt∑
k=1

λk

(
A−1

ℓ

)
λk

(( ρ
α
− 1
)
D2
))2

]

≤

(
nt∑
k=1

1

λk (Int + D2)
λk

(( ρ
α
− 1
)
D2
))2

=
( ρ
α
− 1
)2( nt∑

k=1

d2k
1 + d2k

)2

≤
( ρ
α
− 1
)2

n2
t (262)

where λk(A) denotes the k-th largest eigenvalue of the matrix
A. Here, the second step is by von Neumann’s trace inequality
[39, Th. 8.7.6]; the third step follows because, by Weyl’s
theorem [39, Th. 4.3.1],

λk

(
A−1

ℓ

)
=

1

λk

(
Aℓ

) ≤ 1

λk(Int
+ D2)

. (263)

Combining (260) and (262) yields (257) and concludes the
proof of Lemma 10.

APPENDIX VII
PROOF OF LEMMA 11

We begin by noting that, for every D ∈ Dnt
,

J̄(D, T, ρ) = J̄∗(D, T, ρ) +KD1
(D, T, ρ) (264)

7The matrix HℓH
H
ℓ has a complex Wishart distribution so, for nr ≥ nt,

it is invertible with probability one [42, Th. 3.1.4].

where J̄∗(D, T, ρ) is defined in (82) and

KD1(D, T ) ≜
nt

Tρ
(ntnr + nt(T − nt)) + (T − nt)×

× E

[
log

det
(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(Int + D2)−1

)
det(HℓHH

ℓ )

]
. (265)

Since det(A+B) ≥ det(A) for every pair of positive definite
matrices A and B [39, Th. 7.8.21], we have KD1

(D, T ) ≥ 0.
Furthermore, for D ∈ D1, we have d2i ≥ δ̄ρ, i = 1, . . . , nt.
This implies that

(
Int

+D2
)−1 ≤ (1+δ̄ρ)−1Int

. Consequently,

KD1(D, T )

≤ nt

Tρ
(ntnr + nt(T − nt)) + (T − nt)×

× E

[
log

det
(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(1 + δ̄ρ)−1Int

)
det(HℓHH

ℓ )

]
≜ KD1

(T, ρ), D ∈ D1. (266)

We further have that∣∣∣log det(HℓH
H
ℓ + λ1(Q

H
ℓ Qℓ)

(
1 + δ̄ρ

)−1
Int

)∣∣∣
≤
∣∣log det (HℓH

H
ℓ

)∣∣
+ log

(
1 + det

(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)Int

))
(267)

whose expected value is finite (cf. (226)–(230)).8 By the
continuity of the logarithm function and the determinant, and
by the dominated convergence theorem, we thus have that

lim
ρ→∞

sup
D∈D1

E
[
log det

(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)

(
1 + δ̄ρ

)−1
Int

)]
= E

[
log det

(
HℓH

H
ℓ

)]
. (268)

Combining (268) with (266) yields then that

J̄(D, T, ρ) ≤ J̄∗(D, T, ρ) +KD1
(T, ρ) (269)

for a nonnegative constant KD1
(T, ρ) that only depends on

T and ρ and that satisfies limρ→∞ KD1(T, ρ) = 0. Since
KD1(T, ρ) does not depend on D ∈ D1, this gives

sup
D∈D1

{
J̄(D, T, ρ)−

√
Ū(D, T, ρ)

L
Q−1(ϵ)

}

≤ sup
D∈D1

{
J̄∗(D, T, ρ)−

√
Ū(D, T, ρ)

L
Q−1(ϵ)

}
+KD1(T, ρ). (270)

We next show that, for ρ ≥ ρ0, L ≥ L0 and sufficiently
large ρ0 and L0, the supremum over D ∈ D1 can be replaced
by a supremum over all matrices D ∈ Dnt that satisfy tr(D2) ≥
Tρ (1−K(T )/L). To this end, we show first that, for ρ ≥ ρ(1)

and a sufficiently large ρ(1), we can assume without loss of
optimality that

tr(D2) ≥ Tρ

(
1− K(1)(T, ρ(1))√

L

)
(271)

for a constant K(1)(T, ρ(1)) that depends on T and ρ(1). We
then gradually improve this bound on the trace until we obtain
the desired result.

8Equations (229)–(230) demonstrate that the expected values of the
squared logarithms are finite. This implies that the expected values of the
absolute values of the logarithms are finite, too, since by Jensen’s inequality
E[|X|] ≤

√
E[X2] for any random variable X .
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A. Lower Bound on tr(D2): First Round

Recall that α = tr(D2)/T , and define D̄ ≜ D/
√
α. Clearly,

tr(D̄2) = T and, for D ∈ D1, ntδ̄ρ/T ≤ α ≤ ρ. We then
compare

J̄∗(
√
ρD̄, T, ρ)−

√
Ū(

√
ρD̄, T, ρ)

L
Q−1(ϵ) (272)

with

J̄∗(
√
αD̄, T, ρ)−

√
Ū(

√
αD̄, T, ρ)

L
Q−1(ϵ). (273)

Intuitively, every α for which (272) is larger than (273) is
suboptimal and can be discarded without loss of optimality,
since multiplying the matrix D by

√
ρ/α would increase the

difference (273).
To formalize this argument, we define the function

fL,ρ(α, D̄) ≜ J̄∗(
√
ρD̄, T, ρ)−

√
Ū(

√
ρD̄, T, ρ)

L
Q−1(ϵ)

− J̄∗(
√
αD̄, T, ρ) +

√
Ū(

√
αD̄, T, ρ)

L
Q−1(ϵ) (274)

and analyze for which values of ntδ̄ρ/T ≤ α ≤ ρ it is
nonnegative. Indeed, Lemma 8 implies that there exists an
Ū(T ) that depends on T and an arbitrary ρ0 > 0 such that

0 ≤ Ū(D, T, ρ) ≤ Ū(T ), D ∈ Dnt
, ρ ≥ ρ0. (275)

Consequently, when T = nt +nr, the function fL,ρ(·) can be
lower-bounded as

fL,ρ(α, D̄)

=
Tρ− Tα

Tρ
ntnt

−

√ Ū(
√
ρD̄, T, ρ)

L
−
√

Ū(
√
αD̄, T, ρ)

L

Q−1(ϵ)

≥ Tρ− Tα

Tρ
ntnt −

√
Ū(T )

L
Q−1(ϵ) (276)

which is positive if

α < ρ

1−

√
Ū(T )Q

−1(ϵ)
ntnr√

L

 . (277)

It follows that we can assume without loss of optimality that
tr(D2) ≥ Tρ

(
1−K(1)(T, ρ0)/

√
L
)

, where

K(1)(T, ρ0) =
√

Ū(T )
Q−1(ϵ)

ntnr
. (278)

Similarly, when T > nt + nr, the function fL,ρ(·) can be
lower-bounded as

fL,ρ(α, D̄)

=
Tρ− Tα

Tρ
ntnt + (T − nt − nr) log

det(Int
+ ρD̄2)

det(Int + αD̄2)

−

√ Ū(
√
ρD̄, T, ρ)

L
−
√

Ū(
√
αD̄, T, ρ)

L

Q−1(ϵ)

≥ (T − nt − nr) log
det(Int

+ ρD̄2)

det(Int + αD̄2)
−
√

Ū(T )

L
Q−1(ϵ)

≜ f (1)

L,ρ
(α, D̄). (279)

Using that D̄ is a diagonal matrix, the first derivative of f (1)(·)
with respect to α can be computed as

∂

∂α
f (1)

L,ρ
(α, D̄) = −(T − nt − nr)

nt∑
i=1

d̄2i
1 + αd̄2i

(280)

where d̄i denotes the i-th diagonal element of D̄. Furthermore,
by definition, we have d̄i = di/

√
α, so for every D ∈ D1

d̄2i ≥ δ̄ρ

α
≥ δ̄, i = 1, . . . , nt (281)

since, for such D, we have that d2i ≥ δ̄ρ and ntδ̄ρ/T ≤ α ≤ ρ.
It follows that

∂

∂α
f (1)

L,ρ
(α, D̄) ≤ −(T − nt − nr)nt

δ̄

1 + αδ̄
(282)

which is strictly negative and bounded away from zero for
every ntδ̄ρ/T ≤ α ≤ ρ. Thus, f (1)

L,ρ
(·) is a strictly decreasing

function of ntδ̄ρ/T ≤ α ≤ ρ.
We next note that

f (1)

L,ρ
(ρ, D̄) = −

√
Ū(T )

L
Q−1(ϵ) (283)

and

f (1)

L,ρ

(
ntδ̄ρ

T
, D̄

)
= (T − nt − nr) log

det(Int
+ ρD̄2)

det(Int
+ ntδ̄ρ

T D̄2)
−
√

Ū(T )

L
Q−1(ϵ)

≥ (T − nt − nr)nt log
1 + ρδ̄

1 + ntδ̄2

T ρ
−
√

Ū(T )

L
Q−1(ϵ) (284)

where the inequality follows because the first term is mono-
tonically increasing in the diagonal elements of D̄ and d̄2i ≥ δ̄,
i = 1, . . . , nt. The first term on the RHS of (284) depends on
ρ but not on L, and it converges to

(T − nt − nr)nt log
T

ntδ̄
(285)

as ρ → ∞. Since δ̄, as defined in (54), is strictly smaller than
T/nt, this expression is strictly positive. Similarly, the second
term on the RHS of (284) depends on L but not on ρ. Thus,
we can find a ρ(1) such that, for ρ ≥ ρ(1) and T > nt + nr,

(T − nt − nr)nt log
1 + ρδ̄

1 + ntδ̄2

T ρ
≥ 1

2
log

T

ntδ̄
. (286)

This in turn implies that

f (1)

L,ρ

(
ntδ̄ρ

T
, D̄

)
≥ 1

4
log

T

ntδ̄
> 0 (287)

for ρ ≥ ρ(1) and

L ≥ L(1) ≜ 16Ū(T )

(
Q−1(ϵ)

log T
ntδ̄

)2

. (288)
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We conclude that, when T > nt + nr, ρ ≥ ρ(1), and
L ≥ L(1), α 7→ f (1)

L,ρ
(α, D̄) is a strictly decreasing function

that is positive at α = ntδ̄ρ/T and negative at α = ρ. We
can thus find an α

(1)
0 (D̄, L, ρ) such that f (1)

L,ρ
(α, D̄) > 0 for

α < α
(1)
0 (D̄, L, ρ) and f (1)

L,ρ
(α, D̄) ≤ 0 for α ≥ α

(1)
0 (D̄, L, ρ).

Defining

δ
(1)
0 (D̄, L, ρ) ≜ 1− α

(1)
0 (D̄, L, ρ)

ρ
(289)

this implies that we can assume without loss of optimality that
α ≥ ρ(1−δ

(1)
0 (D̄, L, ρ)). We next show that, for ρ ≥ ρ(1) and

L ≥ L(1), we have that δ(1)0 (D̄, L, ρ) ≤ K(1)(T, ρ(1))/
√
L for

a constant K(1)(T, ρ0) that depends on T and ρ(1). It then
follows that, for such ρ and L, we can assume without loss
of optimality that tr(D2) ≥ Tρ

(
1−K(1)(T, ρ0)/

√
L
)
.

To upper-bound δ
(1)
0 (D̄, L, ρ), we apply the mean value

theorem [43, Th. 5.10] to express f (1)

L,ρ
(·) as

f (1)

L,ρ
(ρ, D̄) = f (1)

L,ρ
(ρ, D̄)− f (1)

L,ρ
(α

(1)
0 (D̄, L, ρ), D̄)

=

∫ ρ

α
(1)
0 (D̄,L,ρ)

ḟ
(1)

L,ρ
(α, D̄)dα

= ρδ
(1)
0 (D̄, L, ρ)ḟ

(1)

L,ρ
(α̃, D̄) (290)

for some α̃ between α
(1)
0 (D̄, L, ρ) and ρ. Here, we denote

by ḟ
(1)

L,ρ
(·) the derivative of α 7→ f (1)

L,ρ
(α, D̄) with respect

to α. In (290), the first step follows because, by definition,
f (1)

L,ρ
(α

(1)
0 (D̄, L, ρ), D̄) = 0; the last step follows by the

definition of δ
(1)
0 (D̄, L, ρ). Together with (280)–(283), this

yields that, for every ρ ≥ ρ(1),

δ
(1)
0 (D̄, L, ρ) =

f (1)

L,ρ
(ρ, D̄)

ρḟ
(1)

L,ρ
(α̃, D̄)

=

√
Ū(T )
L Q−1(ϵ)

ρ(T − nt − nr)
∑nt

i=1
d̄2
i

1+α̃d̄2
i

≤ K(1)(T, ρ(1))√
L

(291)

where

K(1)(T, ρ(1)) ≜

(
1 +

1

δ̄ρ(1)

) √
Ū(T )Q−1(ϵ)

(T − nt − nr)nt
. (292)

In (291), the third step follows by bounding d̄2i ≥ δ̄, α̃ ≤ ρ,
and ρ ≥ ρ(1).

B. Lower Bound on tr(D2): k-th Round

Suppose that, for ρ ≥ ρ(k−1) and L ≥ L(k−1) (for some
ρ(k−1) and L(k−1)), we can assume without loss of optimality
that

tr(D2) ≥ Tρ
(
1− δ(k−1)

)
. (293)

We next show that, in this case, we can also assume without
loss of optimality that

tr(D2) ≥ Tρ

(
1−

√
K(T )δ(k−1)

L

)
(294)

for ρ ≥ ρ0, L ≥ L0, and sufficiently large ρ0 and L0 that
depend on (T, ρ(1), L(1)) but not on (ρ, L, k), where K(T ) is
a constant that depends on T . Indeed, using Lemma 10, we
can lower-bound Ū(

√
αD̄, T, ρ) as

Ū(
√
αD̄, T, ρ) ≥ Ū(

√
ρD̄, T, ρ)−Υ(T )δ(k−1) (295)

where Υ(T ) is a constant that depends on T . Together with
the bound

√
a− b ≥

√
a−

√
b, a ≥ b, this yields that√

Ū(
√
αD̄, T, ρ)

L
≥

√
Ū(

√
ρD̄, T, ρ)

L
−
√

Υ(T )δ(k−1)

L
.

(296)

Note that the condition Ū(
√
ρD̄, T, ρ) ≥ Υ(T )δ(k−1), required

to apply the inequality
√
a− b ≥

√
a −

√
b, is satisfied

for sufficiently large ρ and L. Indeed, by Lemma 13, we
have that Ū(

√
ρD̄, T, ρ) ≥ T 2Ṽ (T )/2 for ρ ≥ ρ′ and

some sufficiently large ρ′, where Ṽ (T ) was defined in (10).
Furthermore, δ(1) = K(1)(T, ρ(1))/

√
L and, as we shall show

in (314)–(317) below, we have δ(k) ≤ δ(k−1), k = 2, 3, . . .
for L ≥ L◦ with L◦ defined in (316). We thus obtain that
Ū(

√
ρD̄, T, ρ) ≥ Υ(T )δ(k−1), k = 2, 3, . . . when ρ ≥ ρ′ and

L ≥ L′ ≜ max

{
L◦,

(
2Υ(T )K(1)(T, ρ(1))

T 2Ṽ (T )

)2
}
. (297)

We next use (296) to lower-bound fL,ρ(·). Indeed, when T =
nt + nr, we have

fL,ρ(α, D̄)

=
Tρ− Tα

Tρ
ntnt

−

√ Ū(
√
ρD̄, T, ρ)

L
−
√

Ū(
√
αD̄, T, ρ)

L

Q−1(ϵ)

≥ Tρ− Tα

Tρ
ntnt −

√
Υ(T )δ(k−1)

L
Q−1(ϵ) (298)

which is positive if

α < ρ

1−

√√√√(Q−1(ϵ)
ntnr

)2
Υ(T )δ(k−1)

L

 . (299)

It follows that we can assume without loss of optimality that
(294) holds for L0 = L′ and

K(T ) = Υ(T )

(
Q−1(ϵ)

ntnr

)2

. (300)

We next consider the case where T > nt + nr. In this case,
we can lower-bound fL,ρ(·) as

fL,ρ(α, D̄)

=
Tρ− Tα

Tρ
ntnt + (T − nt − nr) log

det(Int
+ ρD̄2)

det(Int + αD̄2)

−

√ Ū(
√
ρD̄, T, ρ)

L
−
√

Ū(
√
αD̄, T, ρ)

L

Q−1(ϵ)
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≥ (T − nt − nr) log
det(Int + ρD̄2)

det(Int
+ αD̄2)

−
√

Υ(T )δ(k−1)

L
Q−1(ϵ)

≜ f (k)

L,ρ
(α, D̄). (301)

Since f (k)

L,ρ
(·) differs from f (1)

L,ρ
(·) only in terms that are

independent of α, it follows that

∂

∂α
f (k)

L,ρ
(α, D̄) = ḟ

(1)

L,ρ
(α, D̄). (302)

Consequently, α 7→ f (k)

L,ρ
(α) is a strictly decreasing function

on ntδ̄ρ/T ≤ α ≤ ρ. Furthermore,

f (k)

L,ρ
(ρ, D̄) = −

√
Υ(T )δ(k−1)

L
Q−1(ϵ) (303)

and

f (k)

L,ρ

(
ntδ̄ρ

T
, D̄

)
= (T − nt − nr) log

det(Int
+ ρD̄2)

det(Int
+ ntδ̄ρ

T D̄2)

−
√

Υ(T )δ(k−1)

L
Q−1(ϵ)

≥ (T − nt − nr)nt log
1 + ρδ̄

1 + ntδ̄2

T ρ

−
√

Υ(T )δ(k−1)

L
Q−1(ϵ) (304)

similar to (284). Following the same steps as in (285)–(287),
we can lower-bound the function f (k)

L,ρ
(·) as

f (k)

L,ρ

(
ntδ̄ρ

T
, D̄

)
≥ 1

4
log

T

ntδ̄
> 0 (305)

for ρ ≥ ρ(1) and

L ≥ L(k) ≜ 16Υ(T )δ(k−1)

(
Q−1(ϵ)

log T
ntδ̄

)2

, k = 2, 3, . . .

(306)
Since δ(1) = K(1)(T, ρ(1))/

√
L, we have that

L(2)

L(1)
=

Υ(T )K(1)(T, ρ(1))√
LŪ(T )

(307)

and
L(k)

L(k−1)
=

δ(k−1)

δ(k−2)
, k = 3, 4, . . . (308)

The former ratio is less than or equal to 1 if

L ≥ L′′ ≜

(
Υ(T )K(1)(T, ρ(1))

Ū(T )

)2

. (309)

The latter ratio is less than or equal to 1 since δ(k) ≤ δ(k−1),
k = 2, 3, . . . for L ≥ L◦, as we shall show in (314)–(317).
Comparing (297) with (309), we further note that L′′ ≤ L′

since Ṽ (T )T 2/2 ≤ Ū(T ) for ρ ≥ ρ′. Consequently,

fL,ρ

(
ntδ̄ρ

T
, D̄

)
≥ 1

4
log

T

ntδ̄
> 0, k = 2, 3, . . . (310)

for ρ ≥ max{ρ(1), ρ′} and L ≥ max{L(1), L′}.
We conclude that, when T > nt + nr, ρ ≥ max{ρ(1), ρ′},

and L ≥ max{L(1), L′}, α 7→ f (k)

L,ρ
(α, D̄) is a strictly

decreasing function that is positive at α = ntδ̄ρ/T and
negative at α = ρ. We can thus find an α

(k)
0 (D̄, L, ρ) such

that f (k)

L,ρ
(α, D̄) > 0 for α(k)

0 (D̄, L, ρ) and f (k)

L,ρ
(α, D̄) ≤ 0 for

α ≥ α
(k)
0 (D̄, L, ρ). Defining

δ
(k)
0 (D̄, L, ρ) ≜ 1− α

(k)
0 (D̄, L, ρ)

ρ
(311)

this implies that we can assume without loss of optimality that
α ≥ ρ(1− δ

(k)
0 (D̄, L, ρ)). Following the steps in (290)–(291),

and using (302), it can be shown that, for ρ ≥ max{ρ(1), ρ′}
and some α̃ between ntδ̄ρ/T and ρ,

δ
(k)
0 (D̄, L, ρ) =

f (k)

L,ρ
(ρ, D̄)

ρḟ
(1)

L,ρ
(α̃, D̄)

=

√
Υ(T )δ(k−1)

L Q−1(ϵ)

ρ(T − nt − nr)
∑nt

i=1
d̄2
i

1+α̃d̄2
i

≤
√

K(T )δ(k−1)

L
(312)

for

K(T ) = Υ(T )

(
1 +

1

δ̄ρ(1)

)2(
Q−1(ϵ)

(T − nt − nr)nt

)2

. (313)

Thus, we can assume without loss of optimality that (294)
holds with ρ0 = max{ρ(1), ρ′} and L0 = max{L(1), L′}.

It remains to show that δ(k) ≤ δ(k−1), k = 2, 3, . . . Indeed,
by (294),

δ(k) =

√
K(T )δ(k−1)

L
, k = 2, 3, . . . (314)

Since δ(1) = K(1)(T, ρ(1))/
√
L, we obtain for k = 2 that

δ(2)

δ(1)
=

√
K(T )

K(1)(T, ρ(1))L1/2
(315)

which is less than or equal to 1 if

L ≥ L◦ ≜

(
K(T )

K(1)(T, ρ(1))

)2

. (316)

Furthermore, if δ(k−1) ≤ δ(k−2), then we also have δ(k) ≤
δ(k−1), since the square-root function is a monotonically
increasing:

δ(k) =

√
K(T )δ(k−1)

L
≤
√

K(T )δ(k−2)

L
= δ(k−1). (317)

We conclude that δ(k) ≤ δ(k−1), k = 2, 3, . . . for L ≥ L◦.
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C. Lower Bound on tr(D2): Limit as k → ∞
In the previous section, we have demonstrated that, for ρ ≥

ρ0 and L ≥ L0, we can assume without loss of optimality that

tr(D2) ≥ Tρ

(
1−

√
K(T )δ(k−1)

L

)
, k = 1, 2, . . . (318)

where

δ(1) =
K(1)(T, ρ(1))√

L
(319a)

δ(k) =

√
K(T )δ(k−1)

L
, k = 2, 3, . . . (319b)

Since ρ0 and L0 do not depend on k, this implies that we can
assume without loss of optimality that

tr(D2) ≥ Tρ

(
1−

√
K(T )δ

L

)
, ρ ≥ ρ0, L ≥ L0 (320)

where δ ≜ limk→∞ δ(k) is the limit of the sequence {δ(k)},
which exists since the sequence is nonnegative and decreasing.
We next determine δ. By the continuity of the square-root
function, we obtain from (319b) that δ must satisfy

δ =

√
K(T )δ

L
. (321)

This equation has the two solutions

δ = 0 and δ =
K(T )

L
. (322)

It follows that δ ≤ K(T )/L, which together with (320)
demonstrates that, for ρ ≥ ρ0 and L ≥ L0, we can assume
without loss of optimality that

tr(D2) ≥ Tρ

(
1− K(T )

L

)
. (323)

Applied to (270), this in turn demonstrates that

sup
D∈D1

{
J̄(D, T, ρ)−

√
Ū(D, T, ρ)

L
Q−1(ϵ)

}

≤ sup
D∈Dnt :

tr(D2)≥Tρ(1−K(T )
L )

{
J̄∗(D, T, ρ)−

√
Ū(D, T, ρ)

L
Q−1(ϵ)

}

+KD1(T, ρ), ρ ≥ ρ0, L ≥ L0 (324)

which is Lemma 11.

APPENDIX VIII
PROOF OF LEMMA 12

To maximize J̄∗(D, T, ρ) over D ∈ D1, we note that
the term in J̄∗(D, T, ρ) that depends on D is (T − nt −
nr) log det(Int

+ D2). By the concavity of the logarithm
function and Jensen’s inequality, we have for all diagonal
matrices D satisfying tr(D2) ≤ Tρ

log det(Int
+ D2) ≤ nt log

(
1 +

Tρ

nt

)
(325)

which holds with equality if d2i = Tρ/nt, i = 1, . . . , nt. Since
δ̄, as defined in (54), does not exceed T/nt, this choice of d2i

satisfies d2i ≥ δ̄ρ and, hence, the corresponding D lies in D1.
Thus,

sup
D∈D1

log det(Int
+ D2) = nt log

(
1 +

Tρ

nt

)
(326)

which together with the definition of J̄∗(D, T, ρ) in (82)
proves Lemma 12.

APPENDIX IX
PROOF OF LEMMA 13

By replacing in (237) D by
√
ρ/αD, we obtain that

Ū
(√

ρ/αD, T, ρ
)

= Ū∗
(√

ρ/αD, T, ρ
)
+KŪ

(√
ρ/αD, T, ρ

)
(327)

where KŪ (D, T, ρ) is a function of D, T , and ρ that satisfies
limρ→∞ supD∈D1

|KŪ (D, T, ρ)| = 0.
We next evaluate Ū∗(D̃, T, ρ) for D̃ =

√
ρ/αD. Note

that the trace of D̃ is equal to Tρ, so the corresponding
α̃ = tr(D̃2)/T is equal to ρ. It follows that

Ū∗
(√

ρ

α
D, T, ρ

)
= E

[(
nt∑
i=1

(
ntd

2
i,ℓ

Tα
− 1

)
(Z ′

i,ℓ − nr)−
nt∑
i=1

(
Z ′′
i,ℓ − (T − nt)

)
+ (T − nt)

(
log det

(
HℓH

H
ℓ

)
− E

[
log det

(
HℓH

H
ℓ

)]))2]

= Var

(
nt∑
i=1

(
ntd

2
i,ℓ

Tα
− 1

)
Z ′
i,ℓ

)
+Var

(
nt∑
i=1

Z ′′
i,ℓ

)
+ (T − nt)

2Var
(
log det(HℓH

H
ℓ )
)

+ 2(T − nt)×

×
nt∑
i=1

(
ntd

2
i,ℓ

Tα
− 1

)
E
[
(Z ′

i,ℓ − nr) log det(HℓH
H
ℓ )
]

≥ Var

(
nt∑
i=1

Z ′′
i,ℓ

)
+ (T − nt)

2Var
(
log det(HℓH

H
ℓ )
)

= nt(T − nt) + (T − nt)
2
nt−1∑
i=0

Ψ ′(nr − i) (328)

where the second step follows because {Z ′′
1,1, . . . , Z

′′
nt,L

} and
{HL, Z ′

1,1, . . . , Z
′
nt,L

} are independent, so the term depending
on {Z ′′

1,1, . . . , Z
′′
nt,L

} is uncorrelated with the other terms; the
third step follows because the first term is nonnegative and the
last term is zero, since E[(Z ′

i,ℓ−nr) log det
(
HℓH

H
ℓ

)
] does not

depend on i and the sum over i is zero because d21,ℓ + . . . +
d2nt,ℓ

= Tα; the fourth step follows because the variance of
log det(HℓH

H
ℓ ) is

∑nt−1
i=0 Ψ ′(nr − i) (Lemma 7).

The RHS of (328) is equal to T 2Ṽ (T ) (with Ṽ (T ) given
in (10)), so

Ū

(√
ρ

α
D, T, ρ

)
≥ T 2Ṽ (T ) +KŪ (D, T, ρ) (329)

where, with a slight abuse of notation, we replace
KŪ (

√
ρ/αD, T, ρ) by KŪ (D, T, ρ). Since the set of matrices
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D̃1 ≜ {D̃ ∈ Dnt
: D̃ =

√
ρ/αD,D ∈ D1} is contained in D1,

we have that

sup
D∈D1

∣∣∣∣KŪ

(√
ρ

α
D, T, ρ

)∣∣∣∣ ≤ sup
D∈D1

|KŪ (D, T, ρ)| (330)

so the constant KŪ (D, T, ρ) in (329) satisfies
limρ→∞ supD∈D1

|KŪ (D, T, ρ)| = 0. This proves the
lemma.

APPENDIX X
PROOF OF LEMMA 14

We begin with (264) and optimize over D ∈ D2. A lower
bound on J̄(D, T, ρ) follows by noting that KD1(D, T ) ≥ 0,
so for every D ∈ Dnt

J̄(D, T, ρ) ≥ J̄∗(D, T, ρ). (331)

To obtain an upper bound, and to optimize J̄∗(D, T, ρ) over
D ∈ D2, we have to distinguish between the different cases of
d2i , i = 1, . . . , nt that can occur for D ∈ D2. Indeed, without
loss of optimality, assume that the diagonal elements of D are
ordered so that d1 ≤ d2 ≤ . . . ≤ dnt

. Then, for every D ∈ D2,
we have that

d2i ≤ δ̄ρ, i = 1, . . . , nk (332a)
d2i > δ̄ρ, i = nk + 1, . . . nt (332b)

for some nk = 1, . . . , nt. We need to distinguish between the
following two cases:

1) di tends to infinity as ρ → ∞ for all i = 1, . . . , nt;
2) there exists a finite ρ̄ such that di ≤ ρ̄ for i = 1, . . . , ns

and some ns = 1, . . . , nk.
We analyze the former case in Appendix X-A and the latter
case in Appendix X-B. We then combine both cases in
Appendix X-C.

A. Unbounded di

When limρ→∞ di = ∞ for every i = 1, . . . , nt, we can
find a ξ(ρ) satisfying limρ→∞ ξ(ρ) = ∞ such that d2i ≥ ξ(ρ),
i = 1, . . . , nt. It follows from (264) and (265) that

J̄(D, T, ρ)

= J̄∗(D, T, ρ) +
nt

Tρ
(ntnr + nt(T − nt)) + (T − nt)×

× E

[
log

det
(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(Int

+ D2)−1
)

det
(
HℓHH

ℓ

) ]
≤ J̄∗(D, T, ρ) +

nt

Tρ
(ntnr + nt(T − nt)) + (T − nt)×

× E

[
log

det
(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(1 + ξ(ρ))−1Int

)
det
(
HℓHH

ℓ

) ]
≜ J̄∗(D, T, ρ) +KD2

(T, ρ) (333)

where the last step should be viewed as the definition of
KD2

(T, ρ). Consequently,

J̄(D, T, ρ) ≤ J̄∗(D, T, ρ) +KD2(T, ρ) (334)

and, by the dominated convergence theorem,
limρ→∞ KD2

(T, ρ) = 0.

We next optimize J̄∗(D, T, ρ) over D ∈ D2. To this end,
we recall that the only term in J̄∗(D, T, ρ) that depends on D
is (T − nt − nr) log det(Int +D2). Defining

∑nk

i=1 d
2
i ≜ d̄nk

,
and using the concavity of the logarithm function and Jensen’s
inequality, we have that, for all diagonal matrices D in D2,

log det(Int + D2)

=

nk∑
i=1

log(1 + d2i ) +

nt∑
i=nk+1

log(1 + d2i )

≤ nk log

(
1 +

d̄nk

nk

)
+ (nt − nk) log

(
1 +

Tρ− d̄nk

nt − nk

)
≤ log

(
1 + δ̄ρ

)
+ (nt − 1) log

(
1 +

Tρ− δ̄ρ

nt − 1

)
(335)

where the second step follows from Jensen’s inequality and
because

∑nt

i=1 d
2
i ≤ Tρ, so

∑nt

i=nk+1 d
2
i ≤ Tρ − d̄nk

; the
third step follows because the expression is monotonically
increasing in d̄nk

≤ nk δ̄ρ and monotonically decreasing in
nk = 1, . . . , nt.

The inequality (335) holds with equality if d21 = δ̄ρ and
d2i = (Tρ− δ̄ρ)/(nt − 1), i = 2, . . . , nt. It follows that

sup
D∈D2

J̄∗(D, T, ρ)

= ntnr log
Tρ

nt
+ log

Γnt(nt)

Γnt
(T )

− nt(T − nt)

+ (T − nt)E
[
log det

(
HℓH

H
ℓ

)]
+ (T − nt − nr) log

(
(1 + δ̄ρ)

(
1 +

T − δ̄

nt − 1
ρ

)nt−1
)

≜ J̄D2
(T, ρ). (336)

We conclude from (334) and (336) that, when di tends to
infinity as ρ → ∞ for every i = 1, . . . , nt, we have that

sup
D∈D2

J̄(D, T, ρ) ≤ J̄D2
(T, ρ) +KD2

(T, ρ). (337)

B. Bounded di

For every D ∈ Dnt
, the term J̄(D, T, ρ) can be upper-

bounded as

J̄(D, T, ρ)

= ntnr log
Tρ

nt
+ log

Γnt
(nt)

Γnt(T )
+

(
Tα− Tρ

Tρ

)
nrnt

− nt(T − nt) +
nt

Tρ
(ntnr + nt(T − nt))

+ (T − nt − nr) log det
(
Int

+ D2
)

+ (T − nt)E
[
log det

(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)(Int

+D2)−1
)]

≤ ntnr log
Tρ

nt
+ log

Γnt
(nt)

Γnt(T )
− nt(T − nt)

+
nt

Tρ

(
ntnr + nt(T − nt)

)
+ (T − nt − nr) log det

(
Int

+ D2
)

+ (T − nt)E
[
log det

(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)Int

)]
. (338)

To optimize the RHS of (338) over D, we note that
the only term that depends on D is again (T − nt −
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nr) log det
(
Int

+ D2
)
. Following similar steps as in (335), it

can be shown that, for all matrices D satisfying

d2i ≤ ρ̄, i = 1, . . . , ns (339a)
d2i ≤ δ̄ρ, i = ns + 1, . . . , nk (339b)
d2i > δ̄ρ, i = nk + 1, . . . , nt (339c)

for some ns = 1, . . . , nk, nk = 1, . . . , nt, and ρ ≥ ρ̄/δ̄, we
have that

log det
(
Int

+ D2
)

≤ ns log (1 + ρ̄) + (nk − ns) log
(
1 + δ̄ρ

)
+ (nt − nk) log

(
1 +

Tρ− nsρ̄− (nk − ns)δ̄ρ

nt − nk

)
≤ log (1 + ρ̄) + (nt − 1) log

(
1 +

Tρ− ρ̄

nt − 1

)
(340)

where the second inequality follows because, for ρ ≥ ρ̄/δ̄, the
expression is monotonically decreasing in ns and nk. Thus,
for all matrices D satisfying (339) and ρ ≥ ρ̄/δ̄,

J̄(D, T, ρ)

≤ ntnr log
Tρ

nt
+ log

Γnt
(nt)

Γnt
(T )

− nt(T − nt)

+
nt

Tρ
(ntnr + nt(T − nt))

+ (T − nt − nr) log

(
(1 + ρ̄)

(
1 +

Tρ− ρ̄

nt − 1

)nt−1
)

+ (T − nt)E
[
log det

(
HℓH

H
ℓ + λ1(Q

H
ℓ Qℓ)Int

)]
≜ J̄ ′

D2
(T, ρ). (341)

C. Combining both cases

We obtain from (331) and (336) that

sup
D∈D2

J̄(D, T, ρ) ≥ J̄D2
(T, ρ). (342)

Similarly, we obtain from (337) and (341) that, for ρ ≥ ρ̄/δ̄,

sup
D∈D2

J̄(D, T, ρ)

≤ max
{
J̄D2

(T, ρ) +KD2
(T, ρ), J̄ ′

D2
(T, ρ)

}
. (343)

We next show that, for sufficiently large ρ, J̄ ′
D2

(T, ρ) ≤
J̄D2

(T, ρ) +KD2
(T, ρ). Hence, for such ρ,

sup
D∈D2

J̄(D, T, ρ) ≤ J̄D2
(T, ρ) +KD2

(T, ρ). (344)

Indeed,

J̄D2(T, ρ)− J̄ ′
D2

(T, ρ)

= log

(
(1 + δ̄ρ)

(
1 +

T − δ̄

nt − 1
ρ

)nt−1
)

− log

(
(1 + ρ̄)

(
1 +

Tρ− ρ̄

nt − 1

)nt−1
)

+(T − nt)E

[
log

det
(
HℓH

H
ℓ

)
det
(
HℓHH

ℓ + λ1(QH
ℓ Qℓ)Int

)]

= log

(
1 + δ̄ρ

1 + ρ̄

)
+ (nt − 1) log

(
nt − 1 + Tρ− δ̄ρ

nt − 1 + Tρ− ρ̄

)
+(T − nt)E

[
log

det
(
HℓH

H
ℓ

)
det
(
HℓHH

ℓ + λ1(QH
ℓ Qℓ)Int

)]. (345)

The first term on the RHS of (345) tends to infinity as ρ → ∞.
The remaining terms are bounded in ρ ≥ ρ̄/δ̄. Thus, for ρ ≥ ρ0
and a sufficiently large ρ0, the RHS of (345) is strictly positive.
Since KD2

(T, ρ) vanishes as ρ → ∞, (344) follows.
Combining (344) with (342), we conclude that

J̄D2(T, ρ) ≤ sup
D∈D2

J̄(D, T, ρ)

≤ J̄D2
(T, ρ) +KD2

(T, ρ) (346)

for a sufficiently large ρ0, and ρ ≥ ρ0, which is Lemma 14.
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