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The Shannon Lower Bound is Asymptotically Tight
Tobias Koch, Member, IEEE

Abstract—The Shannon lower bound is one of the few lower
bounds on the rate-distortion function that holds for a large
class of sources. In this paper, which considers exclusively norm-
based difference distortion measures, it is demonstrated that
its gap to the rate-distortion function vanishes as the allowed
distortion tends to zero for all sources having finite differential
entropy and whose integer part has finite entropy. Conversely, it
is demonstrated that if the integer part of the source has infinite
entropy, then its rate-distortion function is infinite for every finite
distortion level. Thus, the Shannon lower bound provides an
asymptotically tight bound on the rate-distortion function if, and
only if, the integer part of the source has finite entropy.

Index Terms—Rate-distortion theory, Rényi information di-
mension, Shannon lower bound.

I. INTRODUCTION

SUPPOSE that we wish to quantize a memoryless, d-
dimensional source with a distortion not larger than D.

More specifically, suppose a source produces the sequence of
independent and identically distributed (i.i.d.), d-dimensional,
real-valued, random vectors {Xk, k ∈ Z} (where Z denotes
the set of integers) according to the distribution PX, and
suppose that we employ a vector quantizer that produces a
sequence of reconstruction vectors {X̂k, k ∈ Z} satisfying

lim
n→∞

1

n

n∑
k=1

E
[∥∥Xk − X̂k

∥∥r] ≤ D (1)

for some norm ‖ · ‖ and some r > 0. (We use lim to denote
the limit superior and lim to denote the limit inferior.) Rate-
distortion theory states that if for every blocklength n and
distortion constraint D we quantize the sequence of source
vectors X1, . . . ,Xn to one of enR(D) possible sequences
of reconstruction vectors X̂1, . . . , X̂n, then the smallest rate
R(D) (in nats per source vector) for which there exists a vector
quantizer satisfying (1) is given by [1], [2]

R(D) = inf
PX̂|X : E[‖X−X̂‖r]≤D

I
(
X; X̂

)
(2)

where the infimum is over all conditional distributions of X̂
given X for which

E
[∥∥X− X̂

∥∥r] ≤ D (3)
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and where the expectation in (3) is computed with respect to
the joint distribution PXPX̂|X. Here and throughout the paper
we omit the time indices where they are immaterial. The rate
R(D) as a function of D is referred to as the rate-distortion
function.

Unfortunately, the rate-distortion function is unknown ex-
cept in a few special cases. It therefore needs to be assessed
by means of upper and lower bounds. Arguably, for sources
with a probability density function (pdf) and finite differential
entropy h(X), the most important lower bound is the Shannon
lower bound [1], [2], which for a d-dimensional, real-valued
source and the distortion constraint (3) is given by [3]

RSLB(D) = h(X) +
d

r
log

1

D

− d

r
log
( r
d

(
VdΓ(1 + d/r)

)r/d
e
)
. (4)

Here log(·) denotes the natural logarithm, Vd denotes the
volume of the d-dimensional unit ball {x ∈ Rd : ‖x‖ ≤ 1},
and Γ(·) denotes the Gamma function. While this lower bound
is tight only for some special sources, it converges to the
rate-distortion function as the allowed distortion D tends
to zero, provided that the source satisfies some regularity
conditions; see, e.g., [4]–[7]. A finite-blocklength refinement
of the Shannon lower bound has recently been given by
Kostina [8], [9].

To the best of our knowledge, the most general proof of the
asymptotic tightness of the Shannon lower bound is due to
Linder and Zamir [7]. While Linder and Zamir considered
more general distortion measures, specialized to the norm-
based distortion (3), they showed the following.

Theorem 1 (Linder and Zamir [7, Cor. 1]): Suppose that X
has a pdf and that h(X) is finite. Assume further that there
exists an α > 0 such that E[‖X‖α] < ∞. Then the Shannon
lower bound is asymptotically tight, i.e.,

lim
D↓0

{
R(D)−RSLB(D)

}
= 0. (5)

Proof: See [7].
The theorem’s conditions are very mild and satisfied by
the most common source distributions. In fact, Theorem 1
demonstrates that the Shannon lower bound provides a good
approximation of the rate-distortion function for small distor-
tions even if there exists no quantizer with a finite number of
codevectors and of finite distortion, i.e., when E[‖X‖r] =∞.
However, the theorem’s conditions are more stringent than
the ones sometimes encountered in analyses of the rate and
distortion redundancies of high-resolution quantizers. This is
relevant because the Shannon lower bound is often used as a
benchmark against which the performance of such quantizers
is measured.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIT.2016.2604254

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



2

For example, Gish and Pierce [10] studied the smallest
output entropy that can be achieved via scalar quantization
with given expected quadratic distortion, i.e.,

Rs(D) = inf
q : E[(X−q(X))2]≤D

H
(
q(X)

)
(6)

where the infimum is over all deterministic mappings q(·)
from the source alphabet X to some (countable) reconstruc-
tion alphabet X̂ satisfying E

[
(X − q(X))2

]
≤ D. For one-

dimensional sources that have a pdf satisfying some continuity
and decay constraints, they showed that the asymptotic excess
rate with respect to the rate-distortion function is given by

lim
D↓0

{
Rs(D)−R(D)

}
=

1

2
log

πe

6
. (7)

They further showed that this excess rate can be achieved by a
uniform quantizer, hence the well-known result that “uniform
quantizers are asymptotically optimal as the allowed distortion
tends to zero.”1 Since the rate-distortion function R(D) is in
general unknown, they showed instead that

lim
D↓0

{
Rs(D)−RSLB(D)

}
=

1

2
log

πe

6
. (8)

This is equivalent to (7) whenever the Shannon lower bound
is asymptotically tight.

A dual formulation of (7) was given by Zador [12] as
the smallest asymptotic excess distortion with respect to the
distortion-rate function as the rate tends to infinity. While
Zador’s original derivation was flawed, a rigorous proof of
the same result was given by Gray, Linder, and Li [13]. In
their work, they consider d-dimensional source vectors X that
have a pdf, whose differential entropy is finite, and that satisfy

H(bXc) <∞. (9)

Here bac, a = (a1, . . . , ad) ∈ Rd denotes the element-
wise floor-function, i.e., bac = (ba1c, . . . , badc) ∈ Zd where
ba`c denotes the largest integer not larger than a`. In words,
condition (9) demands that quantizing the source with a cubic
lattice quantizer of unit-volume cells gives rise to a discrete
random vector of finite entropy. This ensures that the quantizer
output can be further compressed using a lossless variable-
length code of finite expected length. Koch and Vazquez-Vilar
[14], [15] recently demonstrated that these assumptions are
also sufficient to recover Gish and Pierce’s result (7).

As we shall argue below, (9) is weaker than the assumption
E[‖X‖α] < ∞ required in Theorem 1 for the asymptotic
tightness of the Shannon lower bound. One may thus wonder
whether there are sources for which the performance of high-
resolution quantizers can be evaluated but the Shannon lower
bound does not constitute a relevant performance benchmark.
In this paper, we demonstrate that this is not the case. We show
that for sources that have a pdf and whose differential entropy
is finite, the Shannon lower bound (4) is asymptotically tight
if (9) is satisfied. Conversely, we demonstrate that for sources

1The fact that, in the high-resolution case, the expected quadratic distortion
of uniform scalar quantization exceeds the least distortion achievable by
any quantization scheme whatsoever by a factor of only πe/6 was already
discovered by Koshelev in 1963. See [11] and references therein for more
details.

that do not satisfy (9), the rate-distortion function is infinite
for any finite distortion level. Hence, condition (9) is necessary
and sufficient for the asymptotic tightness of the Shannon
lower bound.

The quantity H(bXc) in (9) is intimately related with the
Rényi information dimension [16], defined as

d(X) , lim
m→∞

H (bmXc /m)

logm
, if the limit exists (10)

which in turn coincides with the rate-distortion dimension
introduced by Kawabata and Dembo [17]; see also [18].
Generalizing Proposition 1 in [18] to the vector case, it can be
shown that the Rényi information dimension is finite if, and
only if, (9) is satisfied and that a sufficient condition for finite
Rényi information dimension is E[log(1 + ‖X‖)] <∞, which
in turn holds for any source vector for which E[‖X‖α] <∞
for some α > 0. Thus, (9) is indeed weaker than the
assumption that E[‖X‖α] <∞.

It is common to assume that the differential entropy of the
source is finite, since otherwise the Shannon lower bound
(4) is uninteresting. We next briefly discuss how (9) and
the assumption of a finite differential entropy are related.
As demonstrated, e.g., in the proof of Theorem 3 in [19],
a finite H(bXc) implies that h(X) < ∞. In fact, one can
show that if (9) holds and the random vector X has a pdf,
then h(X) ≤ H(bXc) [20, Cor. 1]. Conversely, one can find
sources for which the differential entropy is finite but H(bXc)
is infinite. For example, consider a one-dimensional source
with pdf

fX(x) =
∞∑
m=2

pmm1

{
m ≤ x ≤ m+

1

m

}
, x ∈ R (11)

where

pm =
1

Km log2m
, m = 2, 3, . . . (12a)

K =

∞∑
m=2

1

m log2m
(12b)

and 1{·} denotes the indicator function. It is easy to check
that for such a source

H(bXc) =
∞∑
m=2

pm log
1

pm

=
∞∑
m=2

logK + logm+ 2 log logm

Km log2m

=∞ (13)

and

h(X) = −
∫
fX(x) log fX(x) dx

=
∞∑
m=2

logK + 2 log logm

Km log2m

<∞. (14)

(See remark after Theorem 1 in [16, pp. 197–198].) Thus, for
sources satisfying h(X) > −∞, a finite H(bXc) implies a
finite differential entropy but not vice versa.
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II. MAIN RESULTS

The main results of this paper are presented in the fol-
lowing two theorems: Theorem 2 demonstrates that the gap
between the Shannon lower bound and the rate-distortion
function vanishes as the allowed distortion tends to zero for all
sources having finite differential entropy and finite H(bXc).
Theorem 3 demonstrates that if H(bXc) is infinite, then
the rate-distortion function of X is infinite for every finite
distortion level. These two results imply that, for sources
with finite differential entropy, the Shannon lower bound is
asymptotically tight if, and only if, H(bXc) is finite.

Theorem 2 (Asymptotic Tightness): Suppose that the d-
dimensional, real-valued source X has a pdf. Further assume
that H(bXc) <∞ and |h(X)| <∞. Then the Shannon lower
bound is asymptotically tight, i.e.,

lim
D↓0

{
R(D)−RSLB(D)

}
= 0. (15)

Proof: See Section III.
Theorem 3 (Finite Rate-Distortion Function): For every

distortion level D > 0, the rate-distortion function R(D) of
the d-dimensional, real-valued source X is finite if, and only
if, H(bXc) <∞.

Proof: See Section IV.
In all fairness, we should mention that Linder and Zamir

also presented conditions for the asymptotic tightness of the
Shannon lower bound that are weaker than the ones presented
in Theorem 1; see [7, Th. 1]. Specifically, they showed that the
Shannon lower bound is asymptotically tight if X has a pdf, if
h(X) is finite, and if there exists a function δ : Rd → [0,∞)
satisfying the following:2

(i) For every D > 0, the equations

a(D)

∫
Rd
e−s(D)δ(x) dx = 1 (16a)

a(D)

∫
Rd
δ(x)e−s(D)δ(x) dx = D (16b)

have a unique pair of solutions
(
a(D), s(D)

)
. Moreover,

a(D) and s(D) are continuous functions of D.
(ii) Let WD be a random vector with pdf

x 7→ a(D)e−s(D)δ(x).

Then WD ⇒ 0 as D → 0, where we use “⇒” to denote
convergence in distribution and 0 denotes the all-zero
vector.

(iii) Let ZD be a random vector that is independent of X and
has pdf

z 7→
(
d

r

) d
r−1

1

VdΓ(d/r)D
d
r

e−
d
rD ‖z‖

r

. (17)

Then δ(·) satisfies 0 < E[δ(X)] <∞ and E[δ(X + ZD)]
tends to E[δ(X)] as D tends to zero.

It is unclear whether there exists a function δ(·) with
the above properties that allows us to prove the asymptotic
tightness of the Shannon lower bound for all source vectors

2These conditions correspond to the conditions in [7, Th. 1] where ρ(x) =
‖x‖r , x ∈ Rd.

X satisfying H(bXc) < ∞ and |h(X)| < ∞. In fact,
even if there existed such a function, proving that it satisfies
the required conditions may be complicated. Fortunately, the
existence of such a function is not essential. Indeed, the proof
of Theorem 2 follows closely the proof of Theorem 1 in [7]
but avoids the use of δ(·).

III. PROOF OF THEOREM 2

The first steps in our proof are identical to the ones in the
proof of Theorem 1 in [7]. To keep this paper self-contained,
we reproduce all the steps.

To prove asymptotic tightness of RSLB(D), we derive an
upper bound on R(D) whose gap to RSLB(D) vanishes as D
tends to zero. In view of (2), an upper bound on R(D) follows
by choosing X̂ = X+ZD, where ZD is a d-dimensional, real-
valued, random vector that is independent of X and has pdf
(17). It can be shown that ZD satisfies E[‖ZD‖r] = D; see,
e.g., [3, Sec. VI]. It follows that

R(D) ≤ I(X; X + ZD)

= h(X + ZD)− h(ZD). (18)

Furthermore, by evaluating h(ZD) and comparing the result
with (4), we have

RSLB(D) = h(X)− h(ZD). (19)

Combining (18) and (19) gives

0 ≤ R(D)−RSLB(D) ≤ h(X + ZD)− h(X). (20)

Thus, asymptotic tightness of the Shannon lower bound fol-
lows by proving that

lim
D↓0

h(X + ZD) ≤ h(X). (21)

To this end, we follow the steps (17)–(21) in [7] but with
Y∆(D) and Y∆(0) there replaced by the random vectors YD

and Y0 having the respective pdfs

fYD
(y) =

∑
i∈Zd

Pr
(
bX + ZDc = i

)
1{byc = i} (22a)

fY0
(y) =

∑
i∈Zd

Pr
(
bXc = i

)
1{byc = i} (22b)

for y ∈ Rd. It follows that

D(fX+ZD‖fYD
) = H(bX + ZDc)− h(X + ZD) (23)

and
D(fX‖fY0

) = H(bXc)− h(X) (24)

where D(f‖g) denotes the relative entropy between the pdfs
f and g [21, Eq. (9.46)].

The random vector ZD has the same pdf as D1/rZ1, where
Z1 denotes ZD for D = 1. Consequently, ZD → 0 almost
surely as D tends to zero and, hence, also in distribution. Since
X and ZD are independent, it follows that X + ZD ⇒ X as
D tends to zero. Furthermore, since X has a pdf and the set
Zd is countable, the probability Pr(X ∈ Zd) is zero, so [22,
Th. 2.8.1, p. 122]

lim
D↓0

Pr
(
bX + ZDc = i

)
= Pr

(
bXc = i

)
, i ∈ Zd. (25)
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We thus conclude that fYD
converges pointwise to fY0

, which
by Scheffe’s lemma [23, Th. 16.12] implies that YD ⇒ Y0

as D tends to zero.
By the lower semicontinuity of relative entropy (see, e.g.,

the proof of Lemma 4 in [24] and references therein), it follows
that

lim
D↓0

D(fX+ZD‖fYD
) ≥ D(fX‖fY0

). (26)

Together with (23) and (24), this yields

lim
D↓0

{
H(bX+ZDc)−h(X+ZD)

}
≥ H(bXc)−h(X). (27)

Since H(bXc) <∞ and |h(X)| <∞, the claim (21) follows
from (27) by showing that H(bX+ZDc) tends to H(bXc) as
D tends to zero. To this end, we need the following lemma,
which we state in its most general form since it may be of
independent interest.

Lemma 1: Let X and Z be independent, d-dimensional,
real-valued random vectors. Assume that E[‖Z‖r] <∞.
(i) If H(bXc) = ∞, then H(bX + εZc) = ∞ for every

ε ≥ 0.
(ii) If H(bXc) <∞ and Pr(X ∈ Zd) = 0, then

lim
ε↓0

H(bX + εZc) = H(bXc). (28)

Proof: See appendix.
The random vector ZD is independent of X and has the

same pdf as D1/rZ1, where Z1 satisfies E[‖Z1‖r] = 1. Fur-
thermore, by assumption, H(bXc) <∞ and Pr(X ∈ Zd) = 0
(since X has a pdf and Zd is countable). It thus follows from
Part (ii) of Lemma 1 that

lim
D↓0

H(bX + ZDc) = lim
D↓0

H(bX +D1/rZ1c)

= H(bXc). (29)

Combining (29) with (27) yields (21), which in turn demon-
strates that the Shannon lower bound is asymptotically tight
if H(bXc) <∞ and |h(X)| <∞. This proves Theorem 2.

IV. PROOF OF THEOREM 3
To show that H(bXc) < ∞ implies R(D) < ∞ for

every D > 0, we upper-bound the rate-distortion function by
choosing X̂ in (2) as

X̂ =
bmXc
m

, for some positive integer m. (30)

For m sufficiently large, this choice satisfies the distortion
constraint (3). Indeed, on a finite-dimensional vector space
any two norms are within a constant factor of one another
[25, Cor. 5.4.5, p. 272], so

c ‖z‖1 ≤ ‖z‖ ≤ c̄ ‖z‖1, z ∈ Rd (31)

for some constants c̄ ≥ c > 0, where

‖z‖1 , |z1|+ . . .+ |zd|, z = (z1, . . . , zd) ∈ Rd

denotes the L1-norm. Since each component of |X − X̂| is
upper-bounded by 1/m, we thus have that ‖X− X̂‖ ≤ c̄d/m.
Hence,

E
[∥∥X− X̂

∥∥r] ≤ D, for m ≥ c̄d

D1/r
. (32)

It follows that, for m ≥ c̄d/D1/r,

R(D) ≤ H
(
X̂
)

= H

(
bmXc
m

)
. (33)

Furthermore, by generalizing (11) in [16] to the vector case,
we obtain

H

(
bmXc
m

)
≤ H(bXc) + d logm. (34)

Thus, H(bXc) <∞ implies that R(D) <∞ for every D > 0.
To prove that H(bXc) =∞ implies R(D) =∞ for every

D > 0, we show that I(X; X̂) =∞ for every pair of random
vectors (X, X̂) satisfying (3) and H(bXc) =∞. To this end,
we follow along the lines of the proof of Theorem 6 in [20,
App. A]. Indeed, it follows from the data processing inequality
[26, Cor. 7.16] that for any arbitrary Υ > 0

I(X; X̂) ≥ I
(
gΥ(bXc); bX̂c

)
(35)

where the function gΥ : Rd → [−Υ,Υ]d clips its argument to
the hypercube [−Υ,Υ]d, i.e.,

gΥ(x) , max{min{x,Υ},−Υ}, x ∈ Rd. (36)

In (36), Υ denotes the d-dimensional vector (Υ, . . . ,Υ), and
max{·, ·} and min{·, ·} denote the component-wise maximum
and minimum, respectively. Since H

(
gΥ(bXc)

)
is finite, the

mutual information on the right-hand side (RHS) of (35) can
be written in the form

I
(
gΥ(bXc); bX̂c

)
= H

(
gΥ(bXc)

)
−H

(
gΥ(bXc)

∣∣ bX̂c) (37)

which is well-defined.
We first show that the second entropy on the RHS of (37) is

bounded in Υ for every pair of vectors (X, X̂) satisfying (3).
Using basic properties of entropy together with the fact that
the entropy of a function of a random variable is less than or
equal to the entropy of the random variable itself [21, Ex. 5,
p. 43], we obtain

H
(
gΥ(bXc)

∣∣ bX̂c) ≤ H(bX− X̂c
)

+H
(
bXc

∣∣ bX̂c, bX− X̂c
)
. (38)

Since E
[
log(1 + ‖X − X̂‖)

]
< ∞ for all (X, X̂) satisfying

(3), generalizing Proposition 1 in [18] to the vector case yields
that

H
(
bX− X̂c

)
<∞. (39)

Furthermore, denoting Y = X− X̂, we obtain

H
(
bXc

∣∣ bX̂c, bX− X̂c
)

= H
(
bX̂ + Yc

∣∣ bX̂c, bYc)
≤ d log 2 (40)

since, given bX̂c and bYc, each component of bX̂ + Yc can
only take on the values bX̂`c + bY`c and bX̂`c + bY`c + 1.
Combining (38)–(40) yields

sup
Υ>0

H
(
gΥ(bXc)

∣∣ bX̂c) <∞. (41)

We next show that if H(bXc) =∞, then

lim
Υ→∞

H
(
gΥ(bXc)

)
=∞. (42)
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Since Υ > 0 is arbitrary, it then follows from (35) and (37)
that

I(X; X̂) ≥ lim
Υ→∞

{
H
(
gΥ(bXc)

)
−H

(
gΥ(bXc)

∣∣ bX̂c)}
(43)

which by (41) and (42) is infinite. Hence, I(X; X̂) = ∞
for every pair of random vectors (X, X̂) satisfying (3) and
H(bXc) =∞, which implies that the rate-distortion function
R(D) is infinite for every D > 0.

To prove (42), we note that

H
(
gΥ(bXc)

)
≥

∑
i∈Zd∩(−Υ,Υ)d

Pr
(
bXc = i

)
log

1

Pr
(
bXc = i

) (44)

because Pr(gΥ(bXc) = i) log
(
1/Pr(gΥ(bXc) = i)

)
≥ 0 for

i /∈ (−Υ,Υ)d and Pr(gΥ(bXc) = i) = Pr(bXc = i) for
i ∈ (−Υ,Υ)d. Since the summands in (44) are nonnegative,
the RHS of (44) converges to H(bXc) as Υ tends to infinity.
This proves (42) and concludes the proof of Theorem 3.

V. CONCLUSIONS

The Shannon lower bound is one of the few lower bounds
on the rate-distortion function that hold for a large class
of sources. We have demonstrated that this lower bound is
asymptotically tight as the allowed distortion vanishes for
all sources having finite differential entropy and finite Rényi
information dimension. Conversely, we have demonstrated that
if the source has infinite Rényi information dimension, then
the rate-distortion function is infinite for any finite distortion
level.

Assuming finite Rényi information dimension is tantamount
to assuming that quantizing the source with a cubic lattice
quantizer of unit-volume cells gives rise to a discrete random
vector of finite entropy. The latter assumption is natural in rate-
distortion theory and often encountered. To this effect, we have
demonstrated that this assumption is not only natural, but it
is also a necessary and sufficient condition for the asymptotic
tightness of the Shannon lower bound.

For ease of exposition, we have only considered norm-based
difference distortion measures, which is less general than the
distortion measures studied, e.g., by Linder and Zamir in [7].
While our analysis could probably be generalized to more
general distortion measures, we have refrained from doing so,
because we believe that it would obscure the analysis without
offering much more insight.

APPENDIX

A. Proof of Lemma 1: Part (i)

We shall show by contradiction that if H(bXc) =∞, then
H(bX + εZc) = ∞ for every ε ≥ 0. So let us assume that
H(bXc) = ∞, but that there exists an ε ≥ 0 for which
H(bX + εZc) < ∞. It then follows that, for any arbitrary
Υ > 0, the difference H(bX+εZc)−H

(
bX+εZc

∣∣ gΥ(bXc)
)

is well-defined and equal to I
(
bX + εZc; gΥ(bXc)

)
. (The

function gΥ(·) has been defined in (36).) Consequently, by
the nonnegativity of entropy,

H(bX + εZc) ≥ I
(
bX + εZc; gΥ(bXc)

)
. (45)

Furthermore, H
(
gΥ(bXc)

)
is finite, so the mutual information

on the RHS of (45) can also be written as

I
(
bX + εZc; gΥ(bXc)

)
= H

(
gΥ(bXc)

)
−H

(
gΥ(bXc)

∣∣ bX + εZc
)
. (46)

We next show that

sup
Υ>0

H
(
gΥ(bXc)

∣∣ bX + εZc
)
<∞. (47)

To this end, we follow the steps (38)–(40) in Section IV.
Indeed, as in (38), it can be shown that

H
(
gΥ(bXc)

∣∣ bX + εZc
)

≤ H
(
bεZc

)
+H

(
bXc

∣∣ bX + εZc, bεZc
)
. (48)

Generalizing Proposition 1 in [18] to the vector case then
yields that the first entropy on the RHS of (48) is finite,
since the lemma’s assumption E[‖Z‖r] < ∞ implies that
E[log(1 + ‖εZ‖)] <∞. Moreover, following the steps in (40),
the second entropy on the RHS of (48) can be upper-bounded
by

H
(
bXc

∣∣ bX + εZc, bεZc
)
≤ d log 2. (49)

The claim (47) thus follows.
Since Υ > 0 is arbitrary, (45) and (46) give

H(bX + εZc) ≥ lim
Υ→∞

{
H
(
gΥ(bXc)

)
−H

(
gΥ(bXc)

∣∣ bX + εZc
)}
. (50)

However, if H(bXc) = ∞ then, by (42) and (47), the RHS
of (50) is infinite, which contradicts the assumption that there
exists an ε ≥ 0 for which H(bX + εZc) < ∞. This proves
Part (i) of Lemma 1.

B. Proof of Lemma 1: Part (ii)

Using basic properties of entropy, we obtain

H(bX + εZc) ≤ H(bXc) +H
(
bX + εZc

∣∣ bXc)
≤ H(bXc) +H(Vε) (51)

and

H(bX + εZc) ≥ H(bXc)−H
(
bXc

∣∣ bX + εZc
)

≥ H(bXc)−H(Vε) (52)

where we define Vε , bX + εZc − bXc. Note that Vε can
also be written as Vε = bX̄ + εZc, where X̄ , X− bXc.

In view of (51) and (52), Part (ii) of Lemma 1 follows by
showing that H(Vε) vanishes as ε tends to zero. We begin by
writing this entropy as (see, e.g., [9, Eq. (81)])

H(Vε) = h
(
bX̄ + εZc+ U

)
(53)

where U is a d-dimensional random vector that is uniformly
distributed over the hypercube [0, 1)d and that is independent
of (X,Z). We next show that

lim
ε↓0

h
(
bX̄ + εZc+ U

)
= h(U). (54)
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The differential entropy of U is zero, so (53) and (54)
demonstrate that H(Vε) vanishes as ε tends to zero, thereby
proving Part (ii) of Lemma 1.

Since conditioning reduces entropy, we have

h
(
bX̄ + εZc+ U

)
≥ h(U). (55)

To prove (54), it thus remains to show that

lim
ε↓0

h
(
bX̄ + εZc+ U

)
≤ h(U). (56)

To this end, we follow along the lines of the proof of
Theorem 1 in [7] (see also the proof of Lemma 6.9 in [27]).
Let the random vectors Ỹε and Ỹ0 have the respective pdfs

fỸε
(y) =

( r
d

) d
r−1 1

VdΓ(d/r)σ
d
r
ε

e−
d
rσε
‖y‖r (57a)

fỸ0
(y) =

( r
d

) d
r−1 1

VdΓ(d/r)E[‖U‖r]
d
r

e−
d

rE[‖U‖r ]‖y‖
r

(57b)

for y ∈ Rd, where

σε , E
[
‖bX̄ + εZc+ U‖r

]
. (58)

It follows that

D
(
fbX̄+εZc+U

∥∥ fỸε

)
=
d

r
+ log

(
VdΓ(d/r)

(r/d)d/r−1

)
+
d

r
log σε − h(bX̄ + εZc+ U) (59)

and

D
(
fU
∥∥ fỸ0

)
=
d

r
+ log

(
VdΓ(d/r)

(r/d)d/r−1

)
+
d

r
log E[‖U‖r]− h(U). (60)

As we shall argue next, the pdf of bX̄+ εZc+U converges
pointwise to the pdf of U as ε tends to zero, so by Scheffe’s
lemma bX̄ + εZc + U ⇒ U as ε tends to zero. Indeed, the
pdf of bX̄ + εZc+ U is given by

fbX̄+εZc+U(x) =
∑
i∈Zd

Pr
(
bX̄ + εZc = i

)
1{bxc = i} (61)

for x ∈ Rd. Since E[‖Z‖r] <∞, we have that εZ→ 0 almost
surely as ε tends to zero, which implies that εZ⇒ 0 as ε tends
to zero. Furthermore, the independence of X and Z implies
that X̄ + εZ ⇒ X̄ as ε tends to zero. Since by assumption
Pr(X ∈ Zd) = 0, it follows that the probability Pr(X̄ ∈ Zd)
is zero, so [22, Th. 2.8.1, p. 122]

lim
ε↓0

Pr
(
bX̄ + εZc = i

)
= Pr

(
bX̄c = i

)
= 1{i = 0} (62)

for i ∈ Zd, where the last step follows because, by definition,
bX̄c = 0 almost surely. Applying (62) to (61), and noting that

fU(u) = 1{buc = 0} , u ∈ Rd (63)

the claim that fbX̄+εZc+U converges pointwise to fU as ε
tends to zero follows.

We next show that

lim
ε↓0

E
[
‖bX̄ + εZc+ U‖r

]
= E[‖U‖r] . (64)

Since fỸε
is a continuous function of σε, this implies that fỸε

converges pointwise to fỸ0
as ε tends to zero, so by Scheffe’s

lemma Ỹε ⇒ Ỹ0 as ε tends to zero.
To prove (64), we first note that, since the function x 7→ bxc

is continuous for x /∈ Z, and since on a finite-dimensional
vector space component-wise convergence is equivalent to
convergence with respect to ‖ · ‖ [25, p. 273], we have

lim
ε↓0
‖bx̄ + εzc+ u‖r = ‖bx̄c+ u‖r = ‖u‖r (65)

for every z ∈ Rd and u ∈ [0, 1)d, and for x̄ ∈ (0, 1)d.
Furthermore, for every 0 ≤ ε ≤ 1,

‖bx̄ + εzc+ u‖r ≤ c̄r‖bx̄ + εzc+ u‖r1
≤ c̄r‖|z|+ 3‖r1
≤ c̄r

(
‖z‖1 + 3d

)r
≤ c̄r

cr
(
‖z‖+ 3cd

)r
(66)

where 3 denotes the d-dimensional vector (3, . . . , 3) and c
and c̄ are as in (31). Here the first step follows from (31);
the second step follows because |bxc| ≤ |x| + 1, x ∈ R and
because the components of x̄ and u satisfy 0 ≤ x̄`, u` < 1;
the third step follows from the triangle inequality and because
‖3‖1 = 3d; and the last step follows again from (31).

The lemma’s assumptions E[‖Z‖r] <∞ and Pr(X ∈ Zd) =
0 imply that

E
[
c̄r

cr
(
‖Z‖+ 3cd

)r]
<∞ (67)

and
Pr
(
X̄ ∈ (0, 1)d

)
= 1 (68)

respectively. Consequently, (64) follows from (65) and the
dominated convergence theorem [22, Th. 1.6.9, p. 50].

We conclude that bX̄ + εZc+ U⇒ U and Ỹε ⇒ Ỹ0 as ε
tends to zero, so the lower semicontinuity of relative entropy
gives

lim
ε↓0

D
(
fbX̄+εZc+U

∥∥ fỸε

)
≥ D

(
fU
∥∥ fỸ0

)
. (69)

Combining (69) with (59) and (60), it follows that

lim
ε↓0

{
d

r
log σε − h(bX̄ + εZc+ U)

}
≥ d

r
log E[‖U‖r]− h(U) (70)

which together with (64) proves (56). This concludes the proof
of Part (ii) of Lemma 1.
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