Un sistema digital de comunicaciones transmite a una tasa binaria de 15 kbits/s y tiene asignado para su uso un ancho de banda de 5 kHz. El transmisor y el receptor usan filtros normalizados en raíz de coseno alzado con factor de caída α , y la secuencia transmitida A[n] es blanca.

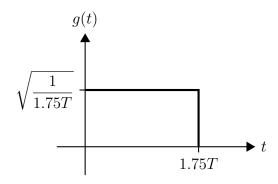
- a) Si se transmite en banda base con una modulación M-PAM con niveles normalizados, calcule la potencia de la señal transmitida, su ancho de banda y el orden de la constelación, M, en los siguientes casos:
 - I) El factor de caída es $\alpha = 0$.
 - II) El factor de caída es $\alpha = 0.75$.
- b) Si se transmite una modulación 8-QAM, $\alpha = 0$ y el canal ahora tiene una respuesta el impulso

$$h(t) = \operatorname{sinc}^2\left(10^4 \ t\right)$$

calcule el canal discreto equivalente, bien en el dominio temporal o en el frecuencial, cuando la frecuencia de la portadora es $f_c = 7.5$ kHz. A partir del mismo discuta si existirá o no interferencia intersimbólica durante la transmisión.

(2 puntos)

Considere un sistema digital de comunicaciones en banda base que transmite una modulación 2-PAM con niveles $\{\pm 2\}$ a una velocidad de símbolo $R_s=1/T$ baudios. Dicho sistema usa el siguiente filtro transmisor:



Asimismo, el receptor usa el filtro adaptado, es decir $f(t) = g^*(-t)$, el canal es $h(t) = \delta(t - T)$ y, por último, la varianza del ruido discreto es $\sigma_z^2 = 0.1$.

- a) Obtenga el retardo óptimo y las regiones de decisión del criterio MAP para estimar los símbolos transmitidos usando un detector sin memoria. Suponga que la SNR es suficientemente alta y que los símbolos son equiprobables.
- b) Calcule la probabilidad de error del sistema anterior.
- c) Diseñe el igualador de canal sin limitación de coeficientes a partir del criterio MMSE y obtenga la probabilidad de error a la salida del igualador. Indique, no es necesario que lo calcule, como se obtendría el retardo para obtener un igualador causal.
- d) Diseñe el igualador de canal de tres coeficientes a partir del criterio ZF y con un retardo en la decisión d=2.

<u>NOTA</u>: No es necesario que resuelva el sistema de ecuaciones, pero debe quedar claramente definido cada una de las variables.

__(2 puntos)

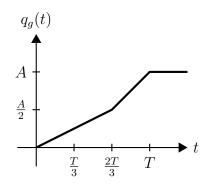
Se van a estudiar varios sistemas de comunicaciones que utilizan modulaciones angulares.

a) Un modulador de fase diferencial (DPSK) emplea una constelación QPSK con niveles normalizados

$$\mathbf{a}_0 = \begin{bmatrix} +1 \\ 0 \end{bmatrix}, \ \mathbf{a}_1 = \begin{bmatrix} 0 \\ +1 \end{bmatrix}, \ \mathbf{a}_2 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \ \mathbf{a}_3 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}.$$

Para este sistema, realice la asignación binaria y, asumiendo que el símbolo inmediatamente anterior (símbolo de referencia) es $A[-1] = \mathbf{a}_0$, obtenga la secuencia de símbolos A[n] asociada a la transmisión de la siguiente secuencia de bits

b) Para una modulación CPM, calcule A y el pulso g(t) correspondiente al $q_g(t)$ que se muestra en la figura

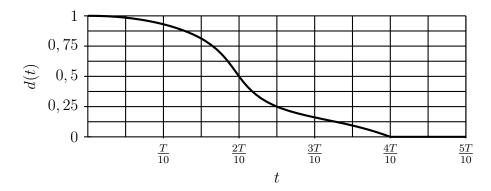


NOTA: $q_g(t)$ se extiende hasta ∞ .

c) Para la modulación CPM del apartado anterior, dibuje el árbol de fase correspondiente a 2 periodos de símbolo para una modulación con niveles $I[n] = \{\pm 2\}$.

(2 puntos)

- a) Un sistema de comunicaciones emplea una modulación OFDM con N=4 portadoras, prefijo cíclico de longitud C=1 y periodo de símbolo T.
 - I) Dada la respuesta conjunta del filtro reconstructor, canal equivalente en banda base y filtro receptor que se muestra en la figura, determine si existe ISI y/o ICI.

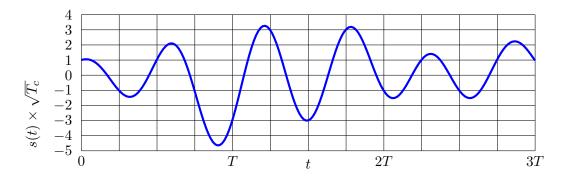


- II) Suponiendo que los 4 símbolos transmitidos en el primer intervalo de símbolo son $A_k[0] = -1$, donde k = 0, ..., 3, calcule las correspondientes salidas sin ruido de los moduladores para las 4 portadoras, es decir, $q_k[0]$, para k = 0, ..., 3.
- b) Un sistema de espectro ensanchado por secuencia directa, con factor de ensanchado N=4, tiene como secuencia de ensanchado

$$x[m] = a \, \delta[m] + \delta[m-1] + b \, \delta[m-2] + c \, \delta[m-3],$$

con $\{a, b, c\} \in \{\pm 1\}$. El filtro transmisor a tiempo de chip, T_c , es $g_c(t) = \frac{1}{\sqrt{T_c}} \operatorname{sinc}\left(\frac{t}{T_c}\right)$.

a) Si la transmisión de la secuencia de símbolos de información, A[n], genera la señal modulada en banda base, s(t), que se muestra en la figura



donde T denota el tiempo de símbolo de la secuencia de información transmitida, A[n], y donde remarcamos que la amplitud de la señal s(t) está escalada por un factor $\sqrt{T_c}$, obtenga los valores de a, b, y c, y los valores iniciales de la secuencia transmitida A[n].

b) La señal s(t) se transmite por un canal ideal, sin ruido, y en el receptor se filtra con un filtro adaptado al filtro transmisor a tiempo de chip, es decir, $f(t) = g_c(-t)$. La salida de este filtro receptor es v(t). Calcule v(t) a partir de s(t) y calcule las observaciones a la salida del mismo, q[n], para $n \in \{0, 1, 2\}$.

NOTA: Para este filtro transmisor a tiempo de chip, la función de ambigüedad temporal es $r_{g_c}(t) = g_c(t) * g_c(-t) = \text{sinc}\left(\frac{t}{T_c}\right)$.

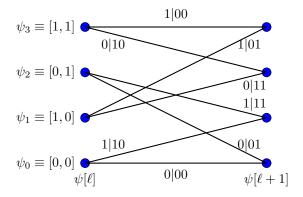
(2 puntos)

Para un cierto sistema de comunicaciones se van a evaluar dos posibles códigos de tasa 1/2:

o Un código bloque lineal con la siguiente tabla (parcial) de síndromes

			\mathbf{e}				\mathbf{s}	
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	1	0	0
0	1	0	0 0 0 0 1 0	0	0	0	1	0
0	0	1	0	0	0	0	0	1
0	0	0	1	0	0	1	1	0
0	0	0	0	1	0	1	0	1
0	0	0	0	0	1	0	1	1

o Un código convolucional con el siguiente diagrama de rejilla



- a) Para el código bloque lineal:
 - I) Complete la tabla de síndromes.
 - II) Obtenga la matriz generadora.
 - III) Calcule la capacidad de detección y corrección del código.
 - IV) Decodifique la siguiente palabra recibida usando decodificación por síndrome:

$$\mathbf{r} = [1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0].$$

- b) Para el código convolucional:
 - I) Obtenga la matriz generadora.
 - II) Calcule la distancia mínima y la capacidad de corrección.
 - III) Asumiendo que partimos y finalizamos en el estado cero, es decir $\psi_0 = [0 \ 0]$, decodifique la secuencia recibida usando el algoritmo de Viterbi:

$$\mathbf{r} = [0\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 1].$$

(2 puntos)