Un sistema digital de comunicaciones transmite a una tasa binaria de 64 Mbits/s utilizando por completo la banda entre 10 y 20 MHz. La secuencia transmitida, de una constelación QAM, es blanca. Los filtros transmisor y receptor son filtros en raíz de coseno alzado y el ruido es blanco y gausiano con densidad espectral de potencia $N_0/2$.

- a) Diseñe todos los parámetros del sistema: frecuencia de portadora, tasa de símbolo, orden de la constelación si sólo se consideran constelaciones QAM convencionales (no son utilizables constelaciones QAM en cruz), y factor de caída de los filtros transmisor y receptor.
- b) Si la respuesta en frecuencia del canal es

$$H(j\omega) = \frac{1}{1 + \left(\frac{\omega}{2\pi \cdot 10^7}\right)^2}$$

- I) Calcule el canal discreto equivalente, en el dominio del tiempo o de la frecuencia, y demuestre si existe o no interferencia entre símbolos.
- II) Calcule la densidad espectral de potencia del ruido filtrado muestreado z[n] y discuta si es o no blanco.

_(2 Puntos)

Se estudian las prestaciones al transmitir una constelación 2-PAM o BPSK, $A[n] = \{+1, -1\}$, a través de dos canales diferentes $p_1[n]$ and $p_2[n]$. Las constelaciones recibidas, dados los símbolos de entrada, se pueden encontrar en las dos tablas siguientes:

			A[n]	A[n-1]	A[n-2]	$o_2[n]$
	Canal 1		+1	+1	+1	+0.1
A[n]	A[n-1]	$o_1[n]$	+1	+1	-1	-0.3
+1	+1	+0.1	+1	-1	+1	+0.7
-1	+1	-0.3	+1	-1	-1	+0.3
+1	-1	+0.3	-1	+1	+1	-0.3
-1	-1	-0.1	-1	+1	-1	-0.7
			-1	-1	+1	+0.3
			-1	-1	-1	-0.1

a) Dada la secuencia transmitida:

Obtenga para cada uno de los canales, las secuencias recibidas $o_1[n]$ y $o_2[n]$ para $0 \le n \le 7$ en ausencia de ruido.

- b) Obtenga la respuesta de los dos canales discretos equivalentes.
- c) Si para ambos canales decidimos utilizar un detector de secuencia de máxima verosimilitud (MLSD), determine cual de los dos canales tiene las peores prestaciones cuando la varianza de ruido a la entrada del MLSD es $\sigma_z^2 = 1$. Justifique su respuesta.

_(2 Puntos)

a) Una modulación de fase diferencial utiliza la siguiente constelación

$$\mathbf{a}_0 = \begin{bmatrix} +1 \\ +1 \end{bmatrix}, \quad \mathbf{a}_1 = \begin{bmatrix} -1 \\ +1 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \quad \mathbf{a}_3 = \begin{bmatrix} +1 \\ -1 \end{bmatrix}$$

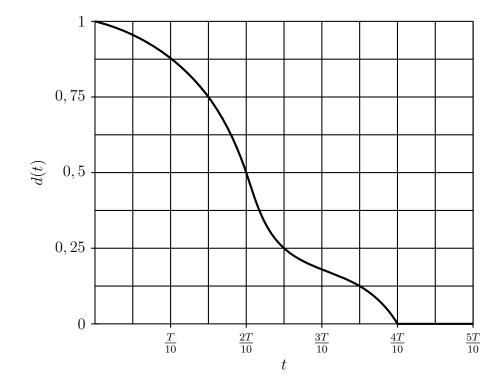
I) Realice la asignación binaria y con dicha asignación, asumiendo que $A[-1] = \mathbf{a}_0$, codifique la secuencia binaria

II) Obtenga la secuencia binaria asociada a las siguientes observaciones

$$q[0] = \begin{bmatrix} -0.4 \\ +1.4 \end{bmatrix}, \quad q[1] = \begin{bmatrix} +1.3 \\ +0.3 \end{bmatrix}, \quad q[2] = \begin{bmatrix} -1.4 \\ -0.5 \end{bmatrix}, \quad q[3] = \begin{bmatrix} -1.3 \\ -0.4 \end{bmatrix}$$

b) Se tienen dos conjuntos de frecuencias

$$C_1 = \{450, 550, 650, 750\} \text{ MHz}, \quad C_2 = \{400, 500, 600, 700\} \text{ MHz}$$


Uno de ellos se utiliza en los pulsos de una modulación CPFSK y el otro en los de una modulación MSK.

- I) Para el conjunto C_1 , indique si se utiliza para la CPFSK o la MSK explicando claramente por qué, obtenga el ancho de banda efectivo y la tasa de transmisión binaria.
- II) Repita el apartado anterior para el conjunto C_2 .

(2 Puntos)

Un sistema de comunicaciones emplea una modulación OFDM con N=4 portadoras y con periodo de símbolo T.

a) Si la señal transmitida atraviesa un canal cuya respuesta conjunta con el filtro reconstructor del transmisor a tiempo T/(N+C) y el correspondiente filtro receptor adaptado al transmisor es la de la siguiente figura (en un caso real la respuesta depende de la tasa de reconstrucción del filtro transmisor; por simplicidad, suponga que ésta es la respuesta para cualquier tasa)

determine si habrá ISI y/o ICI si no se utiliza prefijo cíclico. Si hubiera ISI y/o ICI, diseñe un sistema que elimine su efecto y que sea lo más eficiente desde un punto de vista espectral.

b) Calcule los canales discretos equivalentes $p_{k,i}[n]$ para el sistema diseñado en el apartado anterior.

(2 Puntos)

Considere un código bloque lineal con decodificación dura y que la constelación utilizada para la transmisión tiene una tasa de error de bit $BER=10^{-4}$. El código lineal tiene la siguiente tabla de síndromes:

			\mathbf{e}					\mathbf{s}	
0	0	0				0		0	0
0	0	0	0	0	0	1	1	1	0
0	0					0			
0	0					0			
0						0			
0	0	1	0	0	0	0	0	0	1
0	1	0	0			0			0
1	0	0	0	0	0	0	1	0	0

- a) Identifique los parámetros del código, i.e. k, n, y la tasa de codificación.
- b) Dada la tabla anterior, determine la capacidad de corregir errores que tiene el código y calcule la probabilidad de error.
- c) Calcule la matriz de control de paridad del código y una matriz generadora sistemática.
- d) Obtenga la capacidad de detección de errores que tiene el código y diga si es o no un código perfecto y por qué.
- e) Usando la anterior tabla de síndromes, obtenga la palabra transmitida más probable para las siguientes palabras recibidas:

$$\mathbf{r}_1 = [1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0]$$

(2 Puntos)