Ejercicio 1

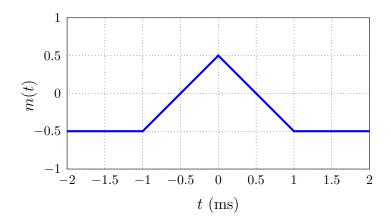
- a) La variable aleatoria λ tiene la función densidad de probabilidad $f_{\lambda}(x) = A(2\pi x)$ para $0 \le x \le 2\pi$. Encuentre el valor de A.
- b) El proceso aleatorio $Z(t,\lambda)$ se define como

$$Z(t,\lambda) = 3 + \lambda \cos(6000\pi t),$$

con λ siendo la variable aleatoria del apartado anterior. Calcule la media $m_Z(t)$ y autocorrelación $R_Z(t_1, t_2)$ del proceso $Z(t, \lambda)$.

- c) ¿Es el proceso $Z(t,\lambda)$ Gaussiano? ¿Y estacionario? ¿Y ergódigo? Justifique sus respuestas.
- d) El proceso $Y(t) = 3 + \cos(6000\pi t + \lambda)$, similar al anterior pero no igual, tiene densidad espectral de potencia

$$S_Y(jw) = 9 \cdot 2\pi \delta(w) + \frac{\pi}{2} (\delta(w + 6000\pi) + \delta(w - 6000\pi))$$


¿Cuál es la potencia total del proceso?

e) Una antena recibe Y(t) + N(t), donde Y(t) es la señal del apartado anterior y N(t) es ruido AWGN (aditivo, Gaussiano y blanco) con densidad espectral de potencia 10^{-12} W/Hz. El receptor pasa esta señal por un filtro paso bajo ideal con ancho de banda de 1500 Hz (es decir, deja pasar desde $w = -3000\pi$ hasta $w = 3000\pi$). ¿Cuál será la SNR en dB a la salida?

(2.5 puntos)

Ejercicio 2

Se desea transmitir el mensaje m(t) de la figura a un receptor a través de un canal con ruido Gaussiano blanco (observe que la señal toma valores en [-0.5, 0.5] y asuma que vale -0.5 fuera del intervalo dibujado):

Primero analizaremos la posibilidad de usar una modulación angular para transmitir el mensaje

- a) Dibuje $x_{FM}(t)$, la señal resultante de modular el mensaje anterior con una modulación de frecuencia (FM). El dibujo no necesita ser muy preciso y puede asumir la frecuencia portadora f_c y la constante de desviación k_f que desee, siempre y cuando sea razonable (deben verse más de 10 oscilaciones).
- b) ¿Cuál será el ancho de banda de la señal $x_{FM}(t)$? ¿y la potencia $P_{x_{FM}}$, asumiendo que la portadora tiene una amplitud $A_c = 1$?
- c) Para aumentar la eficiencia espectral, decidimos filtrar el mensaje m(t) antes de modularlo. Si usamos un filtro paso bajo con ancho de banda de 1 kHz ($W = 2\pi 1000$ rad), ¿cual será el ancho de banda aproximado de la señal modulada resultante? Asuma que la constante de desviación de frecuencia es $k_f = 2500$.

Ahora analizaremos la posibilidad de usar una modulación de amplitud

- d) Dibuje la densidad espectral de potencia de la señal $x_{AM}(t)$, resultante de modular el mensaje m(t) de la figura con una modulación AM convencional, si usamos un índice de modulación a=0.5 y una frecuencia portadora de 10kHz. De nuevo, el dibujo no necesita ser muy preciso.
- e) Calcule la eficiencia de potencia que ofrece la modulación AM convencional del apartado anterior.
- f) Describa las ventajas e inconvenientes de la modulación AM convencional respecto a la modulación de banda lateral única

(2,5 puntos)

Grados en Ingeniería : GITT + GISI

Ejercicio 3

Un sistema digital de comunicaciones transmite a una tasa de símbolo de 5 kbaudios. La constelación es

$$\mathbf{a}_0 = \begin{bmatrix} -3 \\ 0 \end{bmatrix} \quad \mathbf{a}_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \quad \mathbf{a}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \mathbf{a}_3 = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \quad \mathbf{a}_4 = \begin{bmatrix} 0 \\ -3 \end{bmatrix} \quad \mathbf{a}_5 = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad \mathbf{a}_6 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \mathbf{a}_7 = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

y el primer elemento de la base ortonormal es

$$\phi_0(t) = \begin{cases} A\cos(10^4\pi t) & \text{si } 0 \le t < 2 \times 10^{-4} \\ 0, & \text{en otro caso} \end{cases}$$

- a) Asumiendo que A es una constante no negativa, calcule su valor, elija el resto de elementos de la base ortonormal, explicando la razón de la elección, y dibuje las señales asociadas a los vectores \mathbf{a}_0 y \mathbf{a}_4 .
- b) Si sólo se transmiten \mathbf{a}_0 , \mathbf{a}_1 , \mathbf{a}_2 y \mathbf{a}_3 , todos con probabilidad 1/4:
 - 1) Realice una asignación binaria óptima y calcule la tasa de transmisión binaria del sistema.
 - II) Diseñe el decisor óptimo, calcule la probabilidad de error de símbolo exacta y aproxime la probabilidad de error de bit.
- c) Si se transmiten los 8 símbolos de forma equiprobable:
 - I) Calcule la energía media por símbolo y la tasa de transmisión binaria del sistema.
 - II) Diseñe el decisor óptimo y acote la probabilidad de error de símbolo mediante la cota de la unión.

_____(2,5 puntos)

Grados en Ingeniería : GITT + GISI

Ejercicio 4

Un canal discreto sin memoria tiene una entrada 4-ária, X, y una salida 3-ária, Y, con las siguientes probabilidades conjuntas entre valores de entrada y de salida:

$p_{X,Y}(x_i,y_j)$	x_0	x_1	x_2	x_3
y_0	$\frac{\alpha}{2}$	$\frac{\alpha}{2} \left(1 - \varepsilon \right)$	0	0
y_1	0	$rac{lpha}{2}arepsilon$	$\frac{1-\alpha}{2}\varepsilon$	0
y_2	0	0	$\frac{1-\alpha}{2}\left(1-\varepsilon\right)$	$\frac{1-\alpha}{2}$

- a) Represente el canal mediante su matriz de canal y su diagrama de flechas.
- b) Calcule H(X), H(Y), H(X,Y), H(X|Y), H(Y|X) e I(X,Y).
- c) Para el caso $\varepsilon = 1$, dibuje las medidas cuantitativas de información del apartado anterior en función de la variable $z = p_X(x_0) + p_X(x_1)$ para valores de z en el intervalo (0,1).
- d) Calcule la capacidad de este canal en el caso en que sólo se transmiten x_0 y x_1 .

(2.5 puntos)