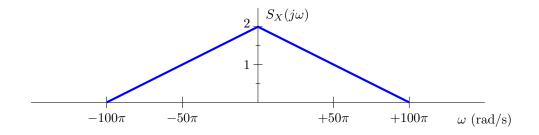
Grados en Ingeniería : GITT + GISI

Apellidos:	Calificación		
Nombre:			

Ejercicio 1

Un proceso aleatorio X(t), estacionario, tiene media $m_X = A$ y la densidad espectral de potencia de la figura



- a) Calcule la potencia del proceso X(t), y su función de autocorrelación.
- b) El proceso aleatorio X(t) se filtra con un filtro paso bajo de ancho de banda 25 Hz y ganancia en potencia G=2.
 - I) Calcule la media, la potencia y la función de autocorrelación del proceso filtrado, Y(t), y calcule y represente su densidad espectral de potencia, $S_Y(j\omega)$.
 - II) Si al proceso X(t) se le suma ruido térmico, y la temperatura de ruido es de 290° Kelvin, calcule la relación señal a ruido antes y después de filtrar con el filtro especificado la suma de X(t) y del ruido térmico.
- c) Se define el proceso aleatorio $Z(t) = X(t) \, \sin(500\pi t)$
 - I) Calcule la media del proceso $m_Z(t)$, la función de autocorrelación del proceso, $R_Z(t+\tau,t)$, y explique si el proceso es estacionario o cicloestacionario y por qué.
 - II) Calcule la potencia, y calcule y represente la densidad espectral de potencia de Z(t).

A continuación se indican los valores de algunas constantes de interés

- $\circ\,$ Constante de Boltzmann: 1,38 × 10^{-23} J/°K
- Constante de Plank: $6,62 \times 10^{-34} \text{ J} \cdot \text{s}$

(2.5 puntos)

Grados en Ingeniería : GITT + GISI

Ejercicio 2

Un sistema analógico de comunicaciones se diseña para transmitir una señal moduladora que tiene la siguiente densidad espectral de potencia

$$S_M(j\omega) = \begin{cases} A_M \left(1 - \cos\left(\pi \frac{\omega}{W}\right)\right), & \text{si } |\omega| \le W \\ 0, & \text{en otro caso} \end{cases}$$

donde $A_M = 2 \times 10^{-18}$, y $W = 2\pi B$ es el ancho de banda en rad/s, siendo B el ancho de banda en Hz, que para esta moduladora vale B = 500 kHz. Por simplicidad, se asume que en la transmisión la señal modulada no sufre ninguna atenuación, sólo se suma ruido térmico con el modelo estadístico habitual, y que el sistema funciona a una temperatura de ruido de 290°K.

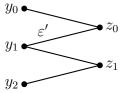
- a) Represente la densidad espectral de potencia de la señal moduladora, y calcule la relación señal a ruido a la salida del receptor si se transmite la señal en banda base sin modular y el receptor es un filtro paso bajo ideal de ancho de banda B Hz.
- b) Se utiliza ahora una modulación de doble banda lateral con una frecuencia de portadora $f_c = 100 \text{ MHz}$. Por simplicidad, considere que la amplitud de la portadora es $A_c = 1$.
 - I) Represente la densidad espectral de potencia de la señal modulada e indique el ancho de banda de esta señal
 - II) Si en el receptor se utiliza un receptor coherente con un filtro de ruido previo, y este filtro es un filtro ideal, dibuje la respuesta en frecuencia del filtro de ruido óptimo para este sistema (aquel que maximiza la relación señal a ruido) y calcule dicha relación señal a ruido, en dB, a la salida del receptor coherente si la potencia de la señal modulada a la entrada del receptor es de 2 pico-watios.
- c) Repita el apartado anterior para una modulación de banda lateral única de banda superior

NOTA:	en las	s represent	aciones,	las figuras	deben	estar	adecuada	amente	etiquetac	las en	los d	los e	ejes.
										- ((2.5)	nun	tos)

Ejercicio 4

Se tienen dos canales discretos equivalentes. El Canal A tiene las probabilidades de transición que se muestran en la tabla, y el Canal B tiene el diagrama de flechas de la figura.

$P_{Y X}\left(y_{j} x_{i}\right)$	x_0	x_1	x_2
y_0	$1-\varepsilon$	0	0
y_1	ε	0	0
y_2	0	1	1



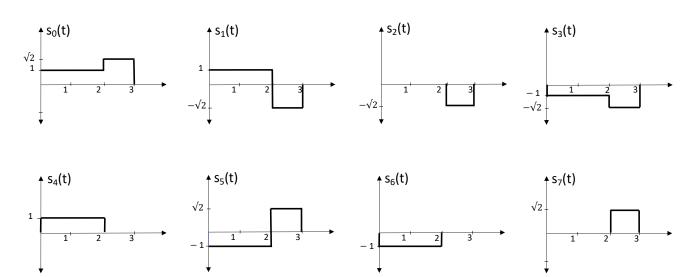
- a) Calcule la capacidad del Canal A y represéntela como una función de ε para $\varepsilon \in [0,1]$.
- b) Para el Canal A, si $p_X(x_0) = p$ y $p_X(x_2) = 0$, calcule las expresiones de las entropías H(X|Y), H(Y|X) y H(X,Y), en función de p y ε , y represéntelas en función de p para $\varepsilon = 1/2$.
- c) Obtenga la matriz de canal de la concatenación de los dos canales, explicando claramente cómo se ha obtenido.

(2.5 puntos)

Apellidos: Nombre: N° de matrícula o DNI: Firma	
--	--

Ejercicio 3

Un sistema de comunicaciones utiliza M=8 señales de forma equiprobable para transmitir la información según la siguiente figura.



El conjunto de señales se transmite por un canal AWGN con densidad espectral de potencia $\frac{N_o}{2}=1$.

- a) Obtenga, aplicando el procedimiento de ortogonalización de Gram-Schmidt, la base de dimensión mínima. Obtenga también la constelación.
- b) Obtenga la energía media de la constelación y la distancia entre señales.
- c) Diseñe el demodulador óptimo y las regiones de decisión óptimas.
- d) Obtenga la probabilidad de error del sistema según el procedimiento que considere más adecuado para la constelación transmitida.
- e) Si a la salida del demodulador óptimo hemos recibido $\mathbf{q}=(0.9,0.1)$, obtenga el símbolo que con más probabilidad se transmitió.

(2.5 puntos)