Fecha | Aula | Hora | Ponente | Título | Material |
17/06/2019 | TBA | ||||
10/06/2019 | 4.2.E03 | 9:40 | Carlos Sevilla | Bayesian CCA | |
03/06/2019 | |||||
27/05/2019 | 42E02 | 9:40 | Simón Roca | Contextual String Embeddings for Sequence Labeling | URL |
20/05/2019 | |||||
13/05/2019 | |||||
06/05/2019 | |||||
29/04/2019 | 40B01A | 9:40 | Jesús Cid | PyTorch (6): Word-embeddings | |
22/04/2019 | |||||
15/04/2019 | |||||
08/04/2018 | |||||
01/03/2018 | 40B01A | 9:40 | Óscar García | PyTorch (5): RNN, LSTM. | |
25/03/2018 | |||||
18/03/2018 | 42E02 | 9:40 | Simón Roca | Reading Tea Leaves: How Humans Interpret Topic Models | Slides |
11/03/2018 | |||||
04/03/2019 | 42E02 | 9:40 | Lorena Álvarez | PyTorch (4): Image Style Transfer Using Convolutional Neural Networks | |
25/02/2019 | 42E02 | 9:40 | |||
19/02/2019 | |||||
12/02/2019 | 41E02 | 9:40 | Carlos Sevilla | PyTorch (3): | |
05/02/2019 | 41E02 | 9:40 | Jesús Cid | Online Passive-Agressive Algorithms | |
29/01/2019 | |||||
22/01/2019 | 40E02 | 9:40 | Ángel Navia | PyTorch (2) (y II) | |
15/01/2019 | 40E02 | 9:40 | Jerónimo Arenas | PyTorch (2): | |
08/01/2019 | |||||
20/12/2018 | 42E00 | 9:40 | Luis Muñoz González | Adversarial Learning | Slides1, slides2 |
11/12/2018 | 41E02 | 9:40 | Óscar García | Generative Adversarial Nets | |
04/12/2018 | |||||
27/11/2018 | 41E02 | 9:40 | Manuel Vázquez | PyTorch (1): | |
20/11/2018 | 40E06 | 9:40 | Lorena Álvarez | Dropout: A Simple Way to Prevent Neural Networks from Overfitting | Slides |
Fecha | Aula | Hora | Ponente | Título | Material |
27/06/2018 | 4.0.D01 | 9:40 | Simón Roca | A Little Survey on Traditional and Current Word and Sentence Embeddings | Slides |
20/06/2018 | 4.0.E06 | 9:40 | Carlos Sevilla | Parsimonious CCA for Biomarker Design: Characterization of Mental Disorders | |
13/06/2018 | 4.0.E05 | 9:40 | Pablo Martínez | [DL] 20. Deep Generative Models | |
05/06/2018 | 7.2.J04 | 9:40 | Luis Azpicueta | Detección Automática de las Diferencias Perceptuales entre Respuestas Impulsivas de Recintos | |
28/05/2018 | 4.2.E02 | 9:40 | Ángel Navia | Privacy Preserving Machine Learning | |
21/05/2018 | 4.2.E02 | 9:40 | Jesús Cid | [DL] 19. Approximate Inference | Slides |
14/05/2018 | 4.2.E02 | 9:40 | Simón Roca | Unveiling Hidden Semantic Structures of Corpora Using Topic Models | |
07/05/2018 | 4.2.E02 | 9:40 | Jerónimo Arenas | [DL] 18. Confronting the Partition Function | Slides |
23/04/2018 | 4.2.E02 | 9:40 | Jesús Fernández Bes | Quantification of Physiological Cardiac Variability using Adaptive Signal Processing Techniques | |
16/04/2018 | 4.2.E02 | 9:40 | Adil Omari | Deep Residual Learning for Image Recognition | |
09/04/2018 | 4.2.E02 | 9:40 | Vanessa Gómez | [DL] 17. Monte Carlo Methods | |
19/03/2018 | 4.2.E02 | 9:40 | Óscar García | Worm-level Control through Search-based Reinforcement Learning | |
12/03/2018 | 4.2.E02 | 9:40 | Fernando de la Calle | Deep learning methods for Automatic Speech Recognition | arXiv, arXiv |
05/03/2018 | 4.2.E02 | 9:40 | Lorena Álvarez | [DL] 16. Structured Probabilistic Models for Deep Learning | Slides |
19/02/2018 | 4.2.E02 | 9:40 | Jesús Cid | Algorithms for recycling weakly labeled datasets | |
12/02/2018 | 4.2.E02 | 9:40 | Carlos Sevilla | [DL] 15. Representation Learning | |
05/02/2018 | 4.2.E02 | 9:40 | Pablo Martínez | [DL] 14. Autoencoders | |
01/02/2018 | 4.2.E02 | 9:40 | Luis Azpicueta | Head-Related Transfer Function (HRTF) + Machine Learning | |
22/01/2018 | 4.2.E02 | 9:40 | Manuel Vázquez | [DL] 13. Linear Factor Models | |
17/01/2018 | 4.1.E02 | 9:40 | Jerónimo Arenas | Random Walk Graph-based SemiSupervised Classification | Slides |
10/01/2018 | 4.1.E02 | 9:40 | Ángel Navia | [DL] 10. Sequence Modelling: Recurrent and Recursive Nets | NB, Slides |
29/11/2017 | 4.2.E02 | 9:40 | Vanessa Gómez | Bayesian Canonical Correlation Analysis | Notes |
22/11/2017 | 4.2.E02 | 9:40 | Simón Roca | [DL] 9. Convolutional Networks | |
15/11/2017 | 4.2.E02 | 9:40 | Lorena Álvarez | Semi-supervised learning | Slides |
08/11/2017 | 4.2.E02 | 9:40 | Adil Omari | [DL] 7. Regularization for Deep Learning and 8. Optimization for Training Deep Models | |
31/10/2017 | 4.0.E05 | 9:40 | Diego Rojo | Text Categorization from Category Names | |
18/10/2017 | 4.2.E02 | 9:40 | Óscar García | [DL] 6. Deep Feedforward Networks | |
20/09/2017 | 4.2.E02 | 9:40 | ... | Preparatory session: content of the next talks. |
Fecha | Aula | Hora | Ponente | Título | Material |
19/07/2017 | 7.1.J03 | 9:30 | Jesús Cid-Sueiro | PSBI (4): Scaling Variational Mean Field Algorithms | ... |
12/07/2017 | 4.2.E02 | 9:30 | Abdel Moujahid | The Metabolic Cost of Neuronal Activity | ... |
04/07/2017 | 4.2.E02 | 9:30 | Pablo Martínez-Olmos | PSBI (3): Parallel and distributed MCMC | ... |
29/06/2017 | 4.2.E02 | 9:30 | Manuel Vázquez-López | PSBI (2): MCMC with data subsets | Slides |
20/06/2017 | 4.2.E02 | 9:30 | Luis Azpicueta | Machine Learning Methods to Predict Diabetes Complications | ... |
14/06/2017 | 4.2.E02 | 9:30 | Jerónimo Arenas-García | Patterns of Scalable Bayesian Inference (1): Background | Slides, Notes |
07/06/2017 | 7.1.J02 | 9:30 | Ángel Navia-Vázquez | Natural Language Processing | ... |
31/05/2017 | 4.2.E02 | 9:30 | Vanessa Gómez-Verdejo | Building my Internet Search Engine: Scrapy and Lucene | Slides and code |
17/05/2017 | 4.2.E02 | 9:30 | Simón Roca-Sotelo | Topic Models and Word Embeddings | Slides |
10/05/2017 | 4.2.E02 | 9:30 | Lorena Álvarez Pérez | Training neural networks classifiers through Bayes risk minimization using Parzen windows | ... |
03/05/2017 | 4.2.E02 | 9:30 | Adil Omari | Deep Neural Networks for Wind and Solar Energy Prediction | |
26/04/2017 | 4.2.E02 | 9:30 | Diego Rojo García | Visualización en Python con Bokeh | ... |
19/04/2017 | 4.2.E02 | 9:30 | Jesús Cid-Sueiro | Convex Optimization (Cap 11: Interior Point Methods) | ... |
05/04/2017 | 4.2.E02 | 9:30 | Óscar García-Hinde | Neo4j | Slides, Tutorial |
29/03/2017 | 4.2.E02 | 9:30 | Henry Navarro | Convex Optimization (Cap 10: Equality Constrained Minimization) | ... |
22/03/2017 | 4.2.E02 | 9:30 | Jerónimo Arenas-García | SQL | ppt, csv ... |
15/03/2017 | 4.2.E02 | 9:30 | Ángel Navia-Vázquez | Convex Optimization (Cap 9: Unconstrained Minimization) | ... |
01/03/2017 | 4.2.E02 | 9:30 | Jesús Cid-Sueiro | Convex Optimization (Cap 8: Geometric Problems) | ... |
22/02/2017 | 4.2.E02 | 9:30 | Vanessa Gómez-Verdejo | Spark with Dataframes | ... |
15/02/2017 | 4.2.E02 | 9:30 | Luis Azpicueta | Google Fusion Tables | ... |
08/02/2017 | 4.2.E02 | 9:30 | Simón Roca-Sotelo | Convex Optimization (Cap 7: Statistical Estimation) | ... |
01/02/2017 | 4.2.E02 | 9:30 | Lorena Álvarez-Pérez | Qlik | ... |
25/01/2017 | 4.2.E02 | 9:30 | Abdel Moujahid | (1) A Nonlinear Dynamic Approach to Mouse Behavior Classification, and (2) Object Detection based on Community Identification in Graphs | slides |
18/01/2017 | 4.0.E04 | 9:30 | Oscar García-Hinde | Convex Optimization (Cap 6: Approximation and Fitting) | ... |
11/01/2017 | 4.0.E04 | 9:30 | Henry Navarro | Tableau | SW |
21/12/2016 | 4.2.E02 | 9:45 | Fernando García | Machine Learning en el Tratamiento de la Diabetes Tipo 1 | ... |
14/12/2016 | 4.0.D01 | 12:00 | Miguel Lázaro | Hierarchical Compositional Feature Learning | ... |
12/12/2016 | 4.0.D01 | 12:00 | Darío García | ML & AI @ FB | ... |
23/11/2016 | 4.2.E02 | 9:30 | Jerónimo Arenas-García | Convex Optimization (Cap 5: Duality (II)) | ... |
16/11/2016 | 4.2.E03 | 9:30 | Manuel Vázquez-López | Convex Optimization (Cap 5: Duality (I)) | ... |
09/11/2016 | 4.2.E02 | 9:30 | Ángel Navia-Vázquez | Carto | ... |
02/11/2016 | 4.2.E02 | 9:30 | Sergio Muñoz-Romero | Convex Optimization (Cap 4: Convex Optimization Problems) | ... |
26/10/2016 | 4.2.E02 | 9:30 | Jesús Cid-Sueiro | Gephi | Tutorial |
19/10/2016 | 4.2.E02 | 9:30 | Luis Azpicueta | Convex Optimization (Cap. 3: Convex Functions) | ... |
07/10/2016 | 4.2.E03 | 9:30 | Vanessa Gómez Verdejo | Convex Optimization (Cap. 2: Convex Sets) | ... |
Fecha | Aula | Hora | Ponente | Título | Material |
21/06/2016 | 4.1.E02 | 11:00 | Juan José Choquehuanca | Generative Adversarial Nets | |
14/06/2016 | 4.1.E02 | 11:00 | Óscar García-Hinde | Consistent Algorithms for Clustering Time Series | |
07/06/2016 | 7.2.H01 | 9:30 | Henry Navarro | Cross Collection Topic Models | |
31/05/2016 | 4.2.E02 | 9:30 | Raúl Moreno-Salinas | An Introduction to Symbolic Regression | ... |
17/05/2016 | 4.2.E03 | 9:40 | Jerónimo Arenas-García | Gaussian Processes for Big Data | |
10/05/2016 | 4.2.E03 | 9:30 | Ángel Navia-Vázquez | Overview of Apache Flink: Next-Gen Big Data Analytics Framework | ... |
03/05/2016 | 4.2.E03 | 9:30 | Sergio Muñoz-Romero | Towards a neocortex-inspired machine learning | pdf, html |
19/04/2016 | 4.2.E03 | 9:30 | Jesús Cid-Sueiro | A survey on Sentiment Analysis | |
12/04/2016 | 4.2.E03 | 9:30 | Luis Azpicueta | Noise pollution predition: noise maps + machine learning | |
05/04/2016 | 4.2.E03 | 9:30 | Vanessa Gómez-Verdejo | A Survey on Transfer Learning | |
08/03/2016 | 4.2.E03 | 9:30 | Juan José Choquehuanca | Spectral Representations for Convolutional Neural Nets | NIPS2015 |
01/03/2016 | 4.2.E03 | 9:30 | Oscar García-Hinde | Feature Selection in Solar Radiation Prediction Using Bootstrapped SVRs | |
23/02/2016 | 4.2.E03 | 9:30 | Henry Navarro | The Tie Decay Problem in Social Networks: Why Do People Stop Calling? | ... |
16/02/2016 | 4.2.E03 | 9:30 | Raúl Moreno-Salinas | Disruption Prediction in Nuclear Fusion Devices | Art1 , Art2 , Art3 , Thesis |
09/02/2016 | 4.2.E03 | 9:30 | Jesús Fernández-Bes | Introduction to Convolutional Networks using TensorFlow | web |
01/02/2016 | 4.0.E02 | 12:00 | Jerónimo Arenas-García | BDAS (Lab4): Machine Learning with Apache Spark | ... |
20/01/2016 | 4.2.E03 | 9:30 | Ángel Navia-Vázquez | BDAS (L7+L8+Lab3): Data Quality, Exploratory Analysis and Machine Learning (y 2) | ... |
13/01/2015 | 4.0.E02 | 9:30 | Ángel Navia-Vázquez | BDAS (L7+L8+Lab3): Data Quality, Exploratory Analysis and Machine Learning | ... |
16/12/2015 | 4.0.E02 | 9:30 | Sergio Muñoz-Romero | BDAS (L5+L6+Lab2): Data Management | PySpark pictures |
09/12/2015 | 4.0.E02 | 9:30 | Jesús Cid-Sueiro | BDAS (Lab1): Introduction to Apache Spark | ... |
02/12/2015 | 4.0.E02 | 9:30 | Luis Azpicueta | BDAS (L3+L4): Introduction to Apache Spark | ... |
25/11/2015 | 4.0.E02 | 9:30 | Rocío Arroyo-Valles | Big Data with Apache Spark (L1+L2): Introduction and SW setup | Slides |
18/11/2015 | 4.0.E02 | 9:30 | Vanessa Gómez Verdejo | Hadoop and Map Reduce for Dummies | ... |
Fecha | Aula | Hora | Ponente | Título | Material |
06/07/2015 | 4.2.E03 | 11:00 | Oscar García Hinde | A.Nguyen, J. Yosinski, J. Clune, "Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images" | |
22/06/2015 | 4.2.E03 | 11:00 | Jerónimo Arenas-García | Collapsed Gibbs Sampling for Latent Dirichlet Allocation on Spark | |
19/06/2015 | 4.0.E04 | 12:00 | Miguel Lázaro Gredilla | Towards Human-Level AI | Vicarious |
10/06/2015 | 7.1.H01 | 10:00 | Jesús Fernández-Bes | Algorithms for Energy-Efficient Adaptive Wireless Sensor Networks | Tesis |
01/06/2015 | 4.2.E03 | 12:00 | Mrityunjoy Chakraborty | Sparse Distributed Estimation via Heterogeneous Diffusion Adaptive Networks | ... |
25/05/2015 | 4.2.E03 | 11:00 | Ángel Navia-Vázquez | Procesado en array: núcleos y aproximación geométrica | doi1, doi2, tutorial1, tutorial2, |
11/05/2015 | 4.2.E03 | 11:00 | Sergio Muñoz-Romero | Análisis multivariante: soluciones eficientes e interpretables | Tesis |
27/04/2015 | 4.2.E03 | 11:00 | Jesús Cid-Sueiro | The U/P assignment problem for lifting transforms on graphs | ... |
23/04/2015 | 4.2.E02 | 10:30 | Vanessa Gómez-Verdejo | * Model Predictive Regulation | |
13/04/2015 | 4.2.E03 | 11:00 | Luis Azpicueta | * Battery Storage System sizing in distribution feeders with distributed photovoltaic systems | doi |
23/03/2015 | 4.0.E05 | 11:00 | Sergio Muñoz-Romero | * Economic viability of energy storage systems based on price arbitrage potential in real-time U.S. electricity markets | doi |
16/03/2015 | 4.0.E05 | 11:00 | Jesús Fernández-Bes | * Sizing and Optimal Operation of Battery Energy Storage System for Peak Shaving Application | doi |
11/03/2015 | 2.1.C08 | 11:00 | Rocío Arroyo-Valles | * Stochastic Optimal Control of the Storage System to Limit Ramp Rates of Wind Power Output | doi |
03/03/2015 | 4.0.E04 | 14:00 | Oscar García Hinde | * Analysis of battery storage utilization for load shifting and peak smoothing on a distribution feeder in New Mexico | doi |
* Las sesiones del Smart-Grid track se han organizado de acuerdo con el documento de referencia elaborado por Manel y Vanessa, que podéis encontrar aquí
Son o han sido participantes regulares de este foro en algún momento: