6 Evolución de un sistema cuántico
Desde el punto de vista físico la evolución temporal de un estado cuántico se rige por la ecuación de Schrödinger. En este curso vamos a considerar un modelo que surge de la discretización temporal de este proceso. En este modelo simplificado, la evolución de un estado cuántico aislado del exterior se rige por una transformación unitaria.
6.1 Transformación unitaria
Consideremos una evolución de un estado puro a un nuevo estado . Se tiene que donde es una transformación unitaria tal que .
La matriz de densidad de probabilidad de un estado puro es , donde . Utilizando la ecuación de evolución anterior, el sistema pasa a tener una nueva matriz de densidad : Aunque en este desarrollo hemos considerado estados puros, por linealidad, esta evolución se cumple también para combinaciones probabilísticas de estados, y por tanto aplica tanto a estados puros como a cualquier estado mixto con matriz de densidad de probabilidad .
Esta transformación implica que un estado cuántico definido por la matriz de densidad de probabilidad evoluciona en un nuevo estado . Al ser un operador unitario, se tiene que representa su inversa. Esta matriz puede representar, por ejemplo, una transformación producida por un canal de comunicaciones, una operación realizada en un laboratorio sobre un fotón, o una puerta lógica aplicada a un cúbit en un ordenador cuántico.
Ejemplo 6.1 Considere un fotón con polarización lineal modelado por el estado , donde . Este fotón se transmite por una fibra óptica cuyo efecto se modela con la transformación Esta transformación es una operación unitaria, dado que .
La matriz de densidad de probabilidad del fotón a la salida de la fibra está dada por
Por ejemplo, para un fotón con (polarización horizontal) y una fibra óptica con parámetro , se tiene que Este estado se corresponde a una fotón con . En general, se puede comprobar que la transformación definida en este ejemplo introduce una rotación de la polarización lineal del fotón de entrada por un ángulo :
6.2 Reversibilidad
El hecho de que la evolución temporal de un sistema cuántico se rija por transformaciones unitarias tiene múltiples implicaciones que veremos a lo largo del curso. Algunas de las más sorprendentes son la imposibilidad de clonar o borrar un estado cuántico, dos propiedades que serán la base de la criptografía cuántica.
Una implicación más inmediata es que cualquier proceso que modifique un estado cuántico es reversible. Consideremos un estado y una transformación unitaria de forma que obtenemos un nuevo estado Si aplicamos la transformación al estado , obtenemos dado que y que , al ser una transformación unitaria.
Así, para recuperar el estado original a partir de , sólo necesitamos aplicar la transformación inversa . Podríamos pensar entonces que es posible corregir cualquier error o desviación que se produzca en un sistema cuántico. Sin embargo, se debe tener en cuenta que para realizar este proceso:
- Se debe conocer la transformación que deseamos revertir.
- Tenemos que tener acceso al estado transformado .
A menudo no se cumplen estas dos condiciones y no es posible recuperar el estado cuántico original. Existen muchos procesos físicos en los cuales no conocemos la transformación , o en los que solo la conocemos parcialmente.
Ejemplo 6.2 Considere el ejemplo anterior de la transmisión de un fotón por una línea óptica. Ésta se puede modelar como donde se corresponde con el ángulo de rotación de polarización:
- Si el ángulo es conocido, basta aplicar una rotación con un ángulo para recuperar el fotón original. De hecho, en este caso : donde hemos utilizado que y que al ser funciones par e impar, respectivamente; y la conocida identidad trigonométrica .
- Si el ángulo es desconocido, en cambio, no es posible recuperar el fotón original al no poder construir la transformación inversa. En este caso sería necesario estimar de alguna forma la rotación que introduce la fibra para así poder compensarla.
6.3 Transformaciones elementales
En este apartado vamos a presentar de forma breve algunas de las transformaciones unitarias más habituales que aparecen en comunicaciones cuánticas, y que revisaremos también en el contexto de la computación cuántica. Las transformaciones más sencillas involucran estados de o cúbits, y se denominan puertas cuánticas por su analogía con las puertas lógicas que conforman los circuitos digitales clásicos.
Puertas de Pauli
Estas puertas de un único cúbit se corresponden a ciertas rotaciones del estado de entrada:
- La puerta es la identidad, por lo que no modifica el estado.
- La puerta transforma un estado puro en un , y viceversa, por tanto se puede considerar como equivalente a una puerta clásica NOT.
- Las puertas y aplican rotaciones de 90º sobre la fase del estado.
Puerta de Hadamard
Esta puerta opera sobre un único cúbit y realiza la operación de transformar el estado al estado y el estado el estado al estado Es decir, esta puerta permite generar una superposición de los estados y a partir de los estados básicos. Se puede interpretar también como una transformación de un estado de la base a la base .
Puerta CNOT
Esta puerta cuántica de dos cúbits se puede interpretar como una puerta controlada (controlled NOT, CNOT). Si el primero de los cúbits se corresponde con el estado , la puerta CNOT no modifica la salida. En cambio, si el primero de los cúbits es , esta puerta aplica una operación sobre el segundo cúbit.
Ejercicio 6.2 Considere el estado dado por la matriz de densidad de probabilidad .
¿Cuál es la dimensión de ? ¿Es un estado puro? ¿Es un estado entrelazado?
Obtenga la matriz de densidad del nuevo estado tras aplicar a la transformación , donde es la puerta de Hadamard . Denote a este nuevo estado .
Obtenga la nueva matriz de densidad si al resultado del apartado anterior le aplicamos la puerta (transformación unitaria) CNOT. ¿Reconoce el estado resultante? ¿Es un estado puro? ¿Es un estado entrelazado?
A lo largo de estas últimas secciones hemos introducido un modelo matemático que permite describir un sistema cuántico compuesto, posiblemente formado por varios sub-sistemas, así como el proceso de medida de su estado interno y su evolución. El conjunto de reglas vistas se conocen como los postulados de la mecánica cuántica y establecen una correspondencia entre los conceptos de estado, medida y evolución de los sistemas microscópicos y un modelo matemático para los mismos.
En los siguientes temas veremos como estos postulados nos permiten caracterizar propiedades no triviales de la mecánica cuántica, con aplicaciones en la transmisión de información (tanto para la transmisión de información clásica como de información cuántica) e incluso definir un nuevo paradigma de computación.